python的第三方模块
⑴ 关于python第三方模块 求指教
你先从python的安装开始检查,或者重装python;
安装的时候在第一个页面把 □add path勾上,默认添加环境变量,可能是你没有添加。
安装的时候尽量用国内的镜像源,可以先升级pip指令,然后要切换到安装python的目录下,我这边是安装在C盘的根目录所以写 cd c: 回车后加上指令。
1、python -m pip install --upgrade pip -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
2、切换为C盘根目录:pip install -i https://pypi.douban.com/simple pillow
cd c: pip install -i https://pypi.douban.com/simple pillow看看你编写代码的工具里面有没有导入库,如果还不行就是你工具的原因。
工具你可以使用wing pro ,vscode ,aptana 三选一,体量小,方便使用。
还有不懂你再追问。
⑵ 什么是python第三方模块
Python内置的标准库之外的所有模块都称为第三方模块。
而标准库,指的是你安装Python程序(解释器)后,在安装目录里存在模块。
参考:常用Python标准库
⑶ Python必学的模块有哪些
简单来说,模块就是一堆代码实现某个功能,它们是已经写好的.py文件,在我们的.py文件中只需要用import导入模块就能使用它的功能了。
Python中的模块有内置标准模块、开源模块和自定义模块。
内置标准模块就是Python自带的模块,即下载好Python就可以直接导入使用的模块,例如我们之前使用过的math模块、time模块等。
开源模块就是不收费的由好心人写好的模块,我们可以通过下载这些模块后导入使用,开源模块一般也被我们称为第三方模块,例如数据处理工具NumPy、Pandas,以及深度学习着名框架Tensorflow都属于开源模块。
自定义模块与开源模块相对应,开源模块是他人写的,而自定义模块就是自己写好的模块。
Python常见的三个模块
一、time与datetime模块
在Python中,通常有这几种方式来表示时间:
时间戳(timestamp):通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。
格式化的时间字符串(Format String)
结构化的时间(struct_time):struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天,夏令时)
二、random模块
三、os模块
os模块是与操作系统交互的一个接口
⑷ python用于web开发的第三方库有哪些
1. wxPython
wxPython 是一个跨平台的 GUI 工具集,是 Python 语言的一套优秀的 GUI 图形库,允许程序员创建完整的、功能键全的 GUI 用户界面。它以wxWidgets为基础,可以分别在Windows、Mac OS、Linux上调用它们的本地组件,让 GUI 程序在不同的平台上显示对应的风格。
2. Kivy
Kivy 是一个开源库,能够让使用相同源代码创建的程序实现跨平台运行,而且它还可以做创新型用户界面开发,如果有做创新型用户界面的可以关注一下。
3. Dabo
Dabo是一个跨平台的应用程序开发框架,它使用Python语言开发,基于wxpython的再封装库。作为一个跨平台应用开发框架,它可以用来建立以数据为中心的应用程序,而且还提供数据库访问,商业逻辑以及用户界面。
4. Flexx
Flexx 是一个Python工具包,可以用来创建图形化界面程序,还支持使用 Web 技术进行界面的渲染,只要有 Python 和浏览器就可以运行。
5. Tkinter
这是一个跨平台图形用户界面GUI开发工具,是Tk图形用户界面工具包标准的Python接口,它很轻量,而且可以运行于绝大多数的Unix平台、Windows和Macintosh系统。
6. PyQt
PyQt 是一个非常全面的库,是Python编程语言和Qt库的成功融合。Qt本身是一个扩展的C++ GUI应用开发框架,可以在UNIX、Windows和Mac OS X上运行,而且能跨平台使用,被广泛应用于许多行业。
7. PyGTK
PyGTK 主要适用于 Linux/UNIX 系统,基于老版本的 GTK+2 的库提供绑定,借助于底层 GTK+2 所提供的各种可视化元素和组件,能开发出在 GNOME 桌面系统上运行的软件。值得一提的是,PyGTK 对 GTK+2 的C语言进行了简单封装,提供了面向对象的编程接口。
8. Pywin32
Windows Pywin32 库允许我们像 VC 一样的形式使用 Python 开发 win32 应用。Pywin32提供了很多访问windows的API。较重要的三个模块就是win32api、win32gui和win32con。
⑸ 怎么安装python 第三方模块
方法1:下载源码,手动运行setuppy install去安装 下载对应的源码,往往都是targz,zip的压缩包,解压后,打开windows的cmd,切换到对应目录,运行: setuppy install 即可去安装。 方法2:利用第三方安装工具(如pip,easy_install,distr怎么安装python 第三方模块
⑹ 值得收藏的Python第三方库
网络站点爬取
爬取网络站点的库Scrapy – 一个快速高级的屏幕爬取及网页采集框架。cola – 一个分布式爬虫框架。Demiurge – 基于PyQuery 的爬虫微型框架。feedparser – 通用 feed 解析器。Grab – 站点爬取框架。MechanicalSoup – 用于自动和网络站点交互的 Python 库。portia – Scrapy 可视化爬取。pyspider – 一个强大的爬虫系统。RoboBrowser – 一个简单的,Python 风格的库,用来浏览网站,而不需要一个独立安装的浏览器。
交互式解析器
交互式 Python 解析器。
IPython – 功能丰富的工具,非常有效的使用交互式 Python。
bpython- 界面丰富的 Python 解析器。
ptpython – 高级交互式Python解析器, 构建于python-prompt-toolkit 之上。
图像处理
用来操作图像的库.
pillow – Pillow 是一个更加易用版的 PIL。
hmap – 图像直方图映射。
imgSeek – 一个使用视觉相似性搜索一组图片集合的项目。
nude.py – 裸体检测。
pyBarcode – 不借助 PIL 库在 Python 程序中生成条形码。
pygram – 类似 Instagram 的图像滤镜。
python-qrcode – 一个纯 Python 实现的二维码生成器。
Quads – 基于四叉树的计算机艺术。
scikit-image – 一个用于(科学)图像处理的 Python 库。
thumbor – 一个小型图像服务,具有剪裁,尺寸重设和翻转功能。
wand – MagickWand的Python 绑定。MagickWand 是 ImageMagick的 C API 。
HTTP
使用HTTP的库。
requests – 人性化的HTTP请求库。
grequests – requests 库 + gevent ,用于异步 HTTP 请求.
httplib2 – 全面的 HTTP 客户端库。
treq – 类似 requests 的Python API 构建于 Twisted HTTP 客户端之上。
urllib3 – 一个具有线程安全连接池,支持文件 post,清晰友好的 HTTP 库。
数据库
Python实现的数据库。
pickleDB – 一个简单,轻量级键值储存数据库。
PipelineDB – 流式 SQL 数据库。
TinyDB – 一个微型的,面向文档型数据库。
ZODB – 一个 Python 原生对象数据库。一个键值和对象图数据库。
Web 框架
全栈 web 框架。
Django – Python 界最流行的 web 框架。
awesome-django系列
Flask – 一个 Python 微型框架。
https://github.com/humiaozuzu/awesome-flask系列
Pyramid – 一个小巧,快速,接地气的开源Python web 框架。
awesome-pyramid系列
Bottle – 一个快速小巧,轻量级的 WSGI 微型 web 框架。
CherryPy – 一个极简的 Python web 框架,服从 HTTP/1.1 协议且具有WSGI 线程池。
TurboGears – 一个可以扩展为全栈解决方案的微型框架。
web.py – 一个 Python 的 web 框架,既简单,又强大。
web2py – 一个全栈 web 框架和平台,专注于简单易用。
Tornado – 一个web 框架和异步网络库。
HTML处理
处理 HTML和XML的库。
BeautifulSoup – 以 Python 风格的方式来对 HTML 或 XML 进行迭代,搜索和修改。
bleach – 一个基于白名单的 HTML 清理和文本链接库。
cssutils – 一个 Python 的 CSS 库。
html5lib – 一个兼容标准的 HTML 文档和片段解析及序列化库。
lxml – 一个非常快速,简单易用,功能齐全的库,用来处理 HTML 和 XML。
MarkupSafe – 为Python 实现 XML/HTML/XHTML 标记安全字符串。
pyquery – 一个解析 HTML 的库,类似 jQuery。
untangle – 将XML文档转换为Python对象,使其可以方便的访问。
xhtml2pdf – HTML/CSS 转 PDF 工具。
xmltodict – 像处理 JSON 一样处理 XML。
游戏开发
超赞的游戏开发库。
Cocos2d – cocos2d 是一个用来开发 2D 游戏, 示例和其他图形/交互应用的框架。基于 pyglet。
Panda3D – 由迪士尼开发的 3D 游戏引擎,并由卡内基梅陇娱乐技术中心负责维护。使用C++编写, 针对 Python 进行了完全的封装。
Pygame – Pygame 是一组 Python 模块,用来编写游戏。
PyOgre – Ogre 3D 渲染引擎的 Python 绑定,可以用来开发游戏和仿真程序等任何 3D 应用。
PyOpenGL – OpenGL 的 Python 绑定及其相关 APIs。
PySDL2 – SDL2 库的封装,基于 ctypes。
RenPy – 一个视觉小说(visual novel)引擎。
⑺ python数据分析方向的第三方库是什么
Python除了有200个标准库以外,还有10万个第三方扩展库,囊括了方方面面。其中做数据分析最常用到的库有4个:
Numpy
Numpy是Python科学计算的基础包。它除了为Python提供快速的数组处理能力,还是在算法和库之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的 Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy 数组中的数据,无需进行任何数据复制工作。因此,许多Python的数值计算工具要么使用NumPy 数组作为主要的数据结构,要么可以与NumPy进行无缝交互操作。
Pandas
Pandas提供了快速便捷处理结构化数据的大量数据结构和函数,兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,能更加便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。因为数据操作、准备、清洗是数据分析最重要的技能,所以Pandas也是学习的重点。
Matplotlib
Matplotlib是最流行的用于绘制图表和其它二维数据可视化的Python库,它非常适合创建出版物上用的图表。虽然还有其它的Python可视化库,但Matplotlib却是使用最广泛的,并且它和其它生态工具配合也非常完美。
Scikit-learn
Scikit-learn是Python的通用机器学习工具包。它的子模块包括分类、回归、聚类、降维、选型、预处理,对于Python成为高效数据科学编程语言起到了关键作用。
⑻ Python语言中的第三方模块xlrd和xlwt是分别起读取excel的内容和写入excel的内容的作用
你这里存在一个误区,只靠xlrd和xlwt不能直接实现对已经存在Excel进行数据插入,原因如下:
1、使用xlrd的xlrd.open_workbook()方法打开文件返回的是一个只读对象,只能读Excel内容,不能向Excel写入数据;
2、使用xlwt的xlwt.Workbook()方法是创建一个空的Excel对象,然后向里面写入;
所以读取和创建Excel都可以直接实现,但是修改已经存在的Excel需要借助xlutils,它的作用是在xlrd类型的workbook和xlwt类型的workbook之间建立了一个管道,利用xlutils的方法将只读对象变成可写对象,简单代码实现如下:
importxlrd
fromxlutils.import
readOnlyWorkbook=xlrd.open_workbook('TestFile.xls')
readOnlySheet=readOnlyWorkbook.sheet_by_index(0)#通过sheet_by_index()获取的sheet没有write()方法
writableWorkbook=(readOnlyWorkbook)#利用xlutils.函数,将xlrd.Book转为xlwt.Workbook
writableSheet=writableWorkbook.get_sheet(0)#通过get_sheet()获取的sheet有write()方法
writableSheet.write(3,3,'insertData')#写入3,3这个单元格
writableWorkbook.save('TestFile.xls')#保存文件
你自己增加代码判断原Excel某个单元格是否有数据,完善你的代码,避免插入时覆盖了,运行后Excel情况见截图
上述方法我写的是不能“直接”实现已有Excel的数据插入或修改,但是可以间接的来
使用xlrd读原有Excel
使用xlwt创建一个新文件并把1中读取的内容写入
再插入需要增加的数据,保存
删掉原Excel,把新创建的Excel改成原Excel的名字
这种方法你就自己玩,因为原来Excel可能有格式啊,公式啊什么的,新创建就会很麻烦