当前位置:首页 » 编程语言 » python多进程通信

python多进程通信

发布时间: 2022-04-26 14:05:14

A. python多线程和多进程的区别有哪些

python多线程和多进程的区别有七种:

1、多线程可以共享全局变量,多进程不能。

2、多线程中,所有子线程的进程号相同;多进程中,不同的子进程进程号不同。

3、线程共享内存空间;进程的内存是独立的。

4、同一个进程的线程之间可以直接交流;两个进程想通信,必须通过一个中间代理来实现。

5、创建新线程很简单;创建新进程需要对其父进程进行一次克隆。

6、一个线程可以控制和操作同一进程里的其他线程;但是进程只能操作子进程。

7、两者最大的不同在于:在多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响;而多线程中,所有变量都由所有线程共享。

更多Python知识,请关注:Python自学网!!

B. 如何实现Python多进程http服务器

端口只能绑定一个进程。
1 换成线程实现 SocketServer.ThreadingTCPServer
2 主进程调度分发。主进程收到端口请求后通过进程间通信让其他进程工作。
我想要用 python 的 multiprocessing 模块实现一个多进程多线程的 http 服务器,服务器会使用进程池 Pool 创建多个子进程,然后每个子进程再用 socketserver 创建多线程的 http 服务器,但是现在我遇到一个问题,就是服务器运行以后,只有第一个子进程可以处理 http 连接,如何做到让每一个子进程都可以处理连接?
备注:通过 getpid 可以看到每次接受请求的都是同一个子进程
# Python 3import os, socketserver, signal, sysfrom multiprocessing import Poolclass MyTCPHandler(socketserver.BaseRequestHandler):

def handle(self):
self.data = self.request.recv(1024)
respone = b'HTTP/1.1 200 OK\r\n\r\nOK%d' % os.getpid()
self.request.sendall(respone)def httpd_task():
socketserver.ThreadingTCPServer.allow_reuse_address = True
server = socketserver.ThreadingTCPServer(('0.0.0.0', 80), MyTCPHandler) try:
server.serve_forever() except: pass
server.server_close()if __name__=='__main__':

p = Pool(4) for i in range(4):
p.apply_async(httpd_task)
p.close()
p.join()

C. 如何使用Python实现多进程编程

1.Process
创建进程的类:Process([group[,target[,name[,args[,kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。

例1.1:创建函数并将其作为单个进程
importmultiprocessing
importtime

defworker(interval):
n=5
whilen>0:
print("Thetimeis{0}".format(time.ctime()))
time.sleep(interval)
n-=1

if__name__=="__main__":
p=multiprocessing.Process(target=worker,args=(3,))
p.start()
print"p.pid:",p.pid
print"p.name:",p.name
print"p.is_alive:",p.is_alive()
结果
12345678p.pid:8736p.name:Process-1p.is_alive:TrueThetimeisTueApr2120:55:122015ThetimeisTueApr2120:55:152015ThetimeisTueApr2120:55:182015ThetimeisTueApr2120:55:212015ThetimeisTueApr2120:55:242015

例1.2:创建函数并将其作为多个进程
importmultiprocessing
importtime

defworker_1(interval):
print"worker_1"
time.sleep(interval)
print"endworker_1"

defworker_2(interval):
print"worker_2"
time.sleep(interval)
print"endworker_2"

defworker_3(interval):
print"worker_3"
time.sleep(interval)
print"endworker_3"

if__name__=="__main__":
p1=multiprocessing.Process(target=worker_1,args=(2,))
p2=multiprocessing.Process(target=worker_2,args=(3,))
p3=multiprocessing.Process(target=worker_3,args=(4,))

p1.start()
p2.start()
p3.start()

print("ThenumberofCPUis:"+str(multiprocessing.cpu_count()))
forpinmultiprocessing.active_children():
print("childp.name:"+p.name+" p.id"+str(p.pid))
print"END!!!!!!!!!!!!!!!!!"
结果
1234567891011ThenumberofCPUis:4childp.name:Process-3p.id7992childp.name:Process-2p.id4204childp.name:Process-1p.id6380END!!!!!!!!!!!!!!!!!worker_1worker_3worker_2endworker_1endworker_2endworker_3

例1.3:将进程定义为类
importmultiprocessing
importtime

classClockProcess(multiprocessing.Process):
def__init__(self,interval):
multiprocessing.Process.__init__(self)
self.interval=interval

defrun(self):
n=5
whilen>0:
print("thetimeis{0}".format(time.ctime()))
time.sleep(self.interval)
n-=1

if__name__=='__main__':
p=ClockProcess(3)
p.start()
注:进程p调用start()时,自动调用run()
结果
12345thetimeisTueApr2120:31:302015thetimeisTueApr2120:31:332015thetimeisTueApr2120:31:362015thetimeisTueApr2120:31:392015thetimeisTueApr2120:31:422015

D. python 多线程和多进程的区别 mutiprocessing theading

在socketserver服务端代码中有这么一句:

server = socketserver.ThreadingTCPServer((ip,port), MyServer)

ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver,它的继承关系是这样的:

class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass

右边的TCPServer实际上是主要的功能父类,而左边的ThreadingMixIn则是实现了多线程的类,ThreadingTCPServer自己本身则没有任何代码。

MixIn在Python的类命名中很常见,称作“混入”,戏称“乱入”,通常为了某种重要功能被子类继承。

我们看看一下ThreadingMixIn的源代码:

class ThreadingMixIn:

daemon_threads = False

def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)

def process_request(self, request, client_address):

t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()

在ThreadingMixIn类中,其实就定义了一个属性,两个方法。其中的process_request()方法实际调用的正是Python内置的多线程模块threading。这个模块是Python中所有多线程的基础,socketserver本质上也是利用了这个模块。

socketserver通过threading模块,实现了多线程任务处理能力,可以同时为多个客户提供服务。

那么,什么是线程,什么是进程?

进程是程序(软件,应用)的一个执行实例,每个运行中的程序,可以同时创建多个进程,但至少要有一个。每个进程都提供执行程序所需的所有资源,都有一个虚拟的地址空间、可执行的代码、操作系统的接口、安全的上下文(记录启动该进程的用户和权限等等)、唯一的进程ID、环境变量、优先级类、最小和最大的工作空间(内存空间)。进程可以包含线程,并且每个进程必须有至少一个线程。每个进程启动时都会最先产生一个线程,即主线程,然后主线程会再创建其他的子线程。

线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不独立拥有系统资源,但它可与同属一个进程的其它线程共享该进程所拥有的全部资源。每一个应用程序都至少有一个进程和一个线程。在单个程序中同时运行多个线程完成不同的被划分成一块一块的工作,称为多线程。

举个例子,某公司要生产一种产品,于是在生产基地建设了很多厂房,每个厂房内又有多条流水生产线。所有厂房配合将整个产品生产出来,单个厂房内的流水线负责生产所属厂房的产品部件,每个厂房都拥有自己的材料库,厂房内的生产线共享这些材料。公司要实现生产必须拥有至少一个厂房一条生产线。换成计算机的概念,那么这家公司就是应用程序,厂房就是应用程序的进程,生产线就是某个进程的一个线程。

线程的特点:

线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令。假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时继续先前的进度。有一个方法就是记下页数、行数与字数这三个数值,这些数值就是execution context。如果你的室友在你休息的时候,使用相同的方法读这本书。你和她只需要这三个数字记下来就可以在交替的时间共同阅读这本书了。

线程的工作方式与此类似。CPU会给你一个在同一时间能够做多个运算的幻觉,实际上它在每个运算上只花了极少的时间,本质上CPU同一时刻只能干一件事,所谓的多线程和并发处理只是假象。CPU能这样做是因为它有每个任务的execution context,就像你能够和你朋友共享同一本书一样。

进程与线程区别:

  • 同一个进程中的线程共享同一内存空间,但进程之间的内存空间是独立的。

  • 同一个进程中的所有线程的数据是共享的,但进程之间的数据是独立的。

  • 对主线程的修改可能会影响其他线程的行为,但是父进程的修改(除了删除以外)不会影响其他子进程。

  • 线程是一个上下文的执行指令,而进程则是与运算相关的一簇资源。

  • 同一个进程的线程之间可以直接通信,但是进程之间的交流需要借助中间代理来实现。

  • 创建新的线程很容易,但是创建新的进程需要对父进程做一次复制。

  • 一个线程可以操作同一进程的其他线程,但是进程只能操作其子进程。

  • 线程启动速度快,进程启动速度慢(但是两者运行速度没有可比性)。

  • 由于现代cpu已经进入多核时代,并且主频也相对以往大幅提升,多线程和多进程编程已经成为主流。Python全面支持多线程和多进程编程,同时还支持协程。

E. python多进程中队列不空时阻塞,求解为什么

最近接触一个项目,要在多个虚拟机中运行任务,参考别人之前项目的代码,采用了多进程来处理,于是上网查了查python中的多进程

一、先说说Queue(队列对象)

Queue是python中的标准库,可以直接import 引用,之前学习的时候有听过着名的“先吃先拉”与“后吃先吐”,其实就是这里说的队列,队列的构造的时候可以定义它的容量,别吃撑了,吃多了,就会报错,构造的时候不写或者写个小于1的数则表示无限多

import Queue

q = Queue.Queue(10)

向队列中放值(put)

q.put(‘yang')

q.put(4)

q.put([‘yan','xing'])

在队列中取值get()

默认的队列是先进先出的

>>> q.get()
‘yang'
>>> q.get()
4
>>> q.get()
[‘yan', ‘xing']

当一个队列为空的时候如果再用get取则会堵塞,所以取队列的时候一般是用到

get_nowait()方法,这种方法在向一个空队列取值的时候会抛一个Empty异常

所以更常用的方法是先判断一个队列是否为空,如果不为空则取值

队列中常用的方法

Queue.qsize() 返回队列的大小
Queue.empty() 如果队列为空,返回True,反之False
Queue.full() 如果队列满了,返回True,反之False
Queue.get([block[, timeout]]) 获取队列,timeout等待时间
Queue.get_nowait() 相当Queue.get(False)
非阻塞 Queue.put(item) 写入队列,timeout等待时间
Queue.put_nowait(item) 相当Queue.put(item, False)

二、multiprocessing中使用子进程概念

from multiprocessing import Process

可以通过Process来构造一个子进程

p = Process(target=fun,args=(args))

再通过p.start()来启动子进程

再通过p.join()方法来使得子进程运行结束后再执行父进程

from multiprocessing import Process
import os

# 子进程要执行的代码
def run_proc(name):
print 'Run child process %s (%s)...' % (name, os.getpid())

if __name__=='__main__':
print 'Parent process %s.' % os.getpid()
p = Process(target=run_proc, args=('test',))
print 'Process will start.'
p.start()
p.join()
print 'Process end.'

上面的程序运行后的结果其实是按照上图中1,2,3分开进行的,先打印1,3秒后打印2,再3秒后打印3

代码中的p.close()是关掉进程池子,是不再向里面添加进程了,对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),调用close()之后就不能继续添加新的Process了。

当时也可以是实例pool的时候给它定义一个进程的多少

如果上面的代码中p=Pool(5)那么所有的子进程就可以同时进行

三、多个子进程间的通信

多个子进程间的通信就要采用第一步中说到的Queue,比如有以下的需求,一个子进程向队列中写数据,另外一个进程从队列中取数据,

#coding:gbk

from multiprocessing import Process, Queue
import os, time, random

# 写数据进程执行的代码:
def write(q):
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
time.sleep(random.random())

# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(True)
print 'Get %s from queue.' % value
time.sleep(random.random())
else:
break

if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
pw = Process(target=write, args=(q,))
pr = Process(target=read, args=(q,))
# 启动子进程pw,写入:
pw.start()
# 等待pw结束:
pw.join()
# 启动子进程pr,读取:
pr.start()
pr.join()
# pr进程里是死循环,无法等待其结束,只能强行终止:
print
print '所有数据都写入并且读完'

四、关于上面代码的几个有趣的问题

if __name__=='__main__':
# 父进程创建Queue,并传给各个子进程:
q = Queue()
p = Pool()
pw = p.apply_async(write,args=(q,))
pr = p.apply_async(read,args=(q,))
p.close()
p.join()

print
print '所有数据都写入并且读完'

如果main函数写成上面的样本,本来我想要的是将会得到一个队列,将其作为参数传入进程池子里的每个子进程,但是却得到

RuntimeError: Queue objects should only be shared between processes through inheritance

的错误,查了下,大意是队列对象不能在父进程与子进程间通信,这个如果想要使用进程池中使用队列则要使用multiprocess的Manager类

if __name__=='__main__':
manager = multiprocessing.Manager()
# 父进程创建Queue,并传给各个子进程:
q = manager.Queue()
p = Pool()
pw = p.apply_async(write,args=(q,))
time.sleep(0.5)
pr = p.apply_async(read,args=(q,))
p.close()
p.join()

print
print '所有数据都写入并且读完'

这样这个队列对象就可以在父进程与子进程间通信,不用池则不需要Manager,以后再扩展multiprocess中的Manager类吧

关于锁的应用,在不同程序间如果有同时对同一个队列操作的时候,为了避免错误,可以在某个函数操作队列的时候给它加把锁,这样在同一个时间内则只能有一个子进程对队列进行操作,锁也要在manager对象中的锁

#coding:gbk

from multiprocessing import Process,Queue,Pool
import multiprocessing
import os, time, random

# 写数据进程执行的代码:
def write(q,lock):
lock.acquire() #加上锁
for value in ['A', 'B', 'C']:
print 'Put %s to queue...' % value
q.put(value)
lock.release() #释放锁

# 读数据进程执行的代码:
def read(q):
while True:
if not q.empty():
value = q.get(False)
print 'Get %s from queue.' % value
time.sleep(random.random())
else:
break

if __name__=='__main__':
manager = multiprocessing.Manager()
# 父进程创建Queue,并传给各个子进程:
q = manager.Queue()
lock = manager.Lock() #初始化一把锁
p = Pool()
pw = p.apply_async(write,args=(q,lock))
pr = p.apply_async(read,args=(q,))
p.close()
p.join()

print
print '所有数据都写入并且读完'

F. python多进程,多线程分别是并行还是并发

并发和并行

你吃饭吃到一半,电话来了,你一直到吃完了以后才去接,这就说明你不支持并发也不支持并行。
你吃饭吃到一半,电话来了,你停了下来接了电话,接完后继续吃饭,这说明你支持并发。
你吃饭吃到一半,电话来了,你一边打电话一边吃饭,这说明你支持并行。
并发的关键是你有处理多个任务的能力,不一定要同时。
并行的关键是你有同时处理多个任务的能力。
所以我认为它们最关键的点就是:是否是‘同时’。
Python 中没有真正的并行,只有并发
无论你的机器有多少个CPU, 同一时间只有一个Python解析器执行。这也和大部分解释型语言一致, 都不支持并行。这应该是python设计的先天缺陷。
javascript也是相同的道理, javascript早起的版本只支持单任务,后来通过worker来支持并发。
Python中的多线程
先复习一下进程和线程的概念
所谓进程,简单的说就是一段程序的动态执行过程,是系统进行资源分配和调度的一个基本单位。一个进程中又可以包含若干个独立的执行流,我们将这些执行流称为线程,线程是CPU调度和分配的基本单位。同一个进程的线程都有自己的专有寄存器,但内存等资源是共享的。
这里有一个更加形象的解释, 出自阮一峰大神的杰作:
http://www.ruanyifeng.com/blog/2013/04/processes_and_threads.html
Python中的thread的使用
通过 thread.start_new_thread 方法
import thread
import time

# Define a function for the thread
def print_time( threadName, delay):
count = 0
while count < 5:
time.sleep(delay)
count += 1
print "%s: %s" % ( threadName, time.ctime(time.time()) )

# Create two threads as follows
try:
thread.start_new_thread( print_time, ("Thread-1", 2, ) )
thread.start_new_thread( print_time, ("Thread-2", 4, ) )
except:
print "Error: unable to start thread"

while 1:
pass

通过继承thread
#!/usr/bin/python
import threading
import time
exitFlag = 0
class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
print_time(self.name, self.counter, 5)
print "Exiting " + self.name

def print_time(threadName, delay, counter):
while counter:
if exitFlag:
threadName.exit()
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1

# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# Start new Threads
thread1.start()
thread2.start()
print "Exiting Main Thread"

线程的同步
#!/usr/bin/python

import threading
import time

class myThread (threading.Thread):
def __init__(self, threadID, name, counter):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
def run(self):
print "Starting " + self.name
# Get lock to synchronize threads
threadLock.acquire()
print_time(self.name, self.counter, 3)
# Free lock to release next thread
threadLock.release()

def print_time(threadName, delay, counter):
while counter:
time.sleep(delay)
print "%s: %s" % (threadName, time.ctime(time.time()))
counter -= 1

threadLock = threading.Lock()
threads = []

# Create new threads
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)

# Start new Threads
thread1.start()
thread2.start()

# Add threads to thread list
threads.append(thread1)
threads.append(thread2)

# Wait for all threads to complete
for t in threads:
t.join()
print "Exiting Main Thread"

利用multiprocessing多进程实现并行
进程的创建
Python 中有一套类似多线程API 的的类来进行多进程开发: multiprocessing
这里是一个来自官方文档的例子:
from multiprocessing import Process
def f(name):
print 'hello', name

if __name__ == '__main__':
p = Process(target=f, args=('bob',))
p.start()
p.join()

类似与线程,一可以通过继承process类来实现:
from multiprocessing import Process
class Worker(Process):
def run(self):
print("in" + self.name)

if __name__ == '__main__':
jobs = []
for i in range(5):
p = Worker()
jobs.append(p)
p.start()
for j in jobs:
j.join()

进程的通信
Pipe()
pipe()函数返回一对由双向通信的管道连接的对象,这两个对象通过send, recv 方法实现 信息的传递
from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, 'hello'])
conn.close()

if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
print parent_conn.recv() # prints "[42, None, 'hello']"
p.join()

Quene
from multiprocessing import Process, Queue
def f(q):
q.put([42, None, 'hello'])

if __name__ == '__main__':
q = Queue()
p = Process(target=f, args=(q,))
p.start()
print q.get() # prints "[42, None, 'hello']"
p.join()

进程间的同步
Python 中多进程中也有类似线程锁的概念,使用方式几乎一样:
from multiprocessing import Process, Lock
def f(l, i):
l.acquire()
print 'hello world', i
l.release()
if __name__ == '__main__':
lock = Lock()
for num in range(10):
Process(target=f, args=(lock, num)).start()

进程间的共享内存
每个进程都有独自的内存,是不能相互访问的, 也行 python官方觉得通过进程通信的方式过于麻烦,提出了共享内存的概念,以下是官方给出的例子:
from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927
for i in range(len(a)):
a[i] = -a[i]

if __name__ == '__main__':
num = Value('d', 0.0)
arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print num.value
print arr[:]

总结
python通过多进程实现多并行,充分利用多处理器,弥补了语言层面不支持多并行的缺点。Python, Node.js等解释型语言似乎都是通过这种方式来解决同一个时间,一个解释器只能处理一段程序的问题, 十分巧妙。

G. python 多进程通讯 使用什么好

多进程通信方法好多,不一而数。刚才试python封装好嘅多进程通信模块 multiprocessing.connection。

简单测试咗一下,效率还可以,应该系对socket封装,效率可以达到4krps,可以满足好多方面嘅需求啦。

附代码如下:

client


#!/usr/bin/python
#-*-coding:utf-8-*-
"""download-slave
"""
__author__='Zagfai'
__license__='MIT@2014-02'
importwebtul
frommultiprocessing.connectionimportClient
a=0
try:
whileTrue:
a+=1
address=('10.33.41.112',6666)
conn=Client(address,authkey='hellokey')
#printconn.recv()
d=conn.recv()
conn.close()
except:
pass
printa

#!/usr/bin/python
#-*-coding:utf-8-*-
"""downloader-masterserver
"""
__author__='Zagfai'
__license__='MIT@2014-02'
importwebtul
frommultiprocessing.connectionimportListener
fromthreadingimportThread

deflistener():
address=('10.33.41.112',6666)
listener=Listener(address,backlog=100,authkey='hellokey')
whileTrue:
conn=listener.accept()
#print'connectionacceptedfrom',listener.last_accepted
try:
conn.send({'1':2,'2':'abc'})
exceptException,e:
printe
finally:
conn.close()
listener.close()
listener_th=Thread(target=listener)
listener_th.daemon=True
listener_th.start()
listener_th.join(timeout=20)

H. python 多进程

os.fork()指令会创建另外一个进程,他的输出源也是你的python command line或者其他IDE。所以你会看见2个提示符。另外,IDE要处理那么多输出源,当然会很卡。还有,你连打下3次这个命令,相当于对三个进程都进行了下达指令,所以这时候你的进程数目为8(看不懂的建议看小学数学)。你的各个进程的输出会类似于打架,所以窗口会变得很慢。
建议:用pid来区分各个进程(os.fork()在父进程会返回pid,子进程会返回0),例如:
import os
import time
pid=os.fork()
if pid==0:
time.sleep(0.1);

print "Child."

else:
print "The child's pid is:"+str(pid)

//end

以上代码中子进程我给他暂停0.1秒来防止与父进程的输出“打架”,当然有更好的解决方法,由于字数限制不打出来了,具体就是锁住输出源,通过之后再解锁,可以网络。

点赞、采纳、转发,素质三连,友谊你我他!

I. python多进程和多线程的区别

进程是程序(软件,应用)的一个执行实例,每个运行中的程序,可以同时创建多个进程,但至少要有一个。每个进程都提供执行程序所需的所有资源,都有一个虚拟的地址空间、可执行的代码、操作系统的接口、安全的上下文(记录启动该进程的用户和权限等等)、唯一的进程ID、环境变量、优先级类、最小和最大的工作空间(内存空间)。进程可以包含线程,并且每个进程必须有至少一个线程。每个进程启动时都会最先产生一个线程,即主线程,然后主线程会再创建其他的子线程。

线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不独立拥有系统资源,但它可与同属一个进程的其它线程共享该进程所拥有的全部资源。每一个应用程序都至少有一个进程和一个线程。在单个程序中同时运行多个线程完成不同的被划分成一块一块的工作,称为多线程。

举个例子,某公司要生产一种产品,于是在生产基地建设了很多厂房,每个厂房内又有多条流水生产线。所有厂房配合将整个产品生产出来,单个厂房内的流水线负责生产所属厂房的产品部件,每个厂房都拥有自己的材料库,厂房内的生产线共享这些材料。公司要实现生产必须拥有至少一个厂房一条生产线。换成计算机的概念,那么这家公司就是应用程序,厂房就是应用程序的进程,生产线就是某个进程的一个线程。

线程的特点:

线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令。假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时继续先前的进度。有一个方法就是记下页数、行数与字数这三个数值,这些数值就是execution context。如果你的室友在你休息的时候,使用相同的方法读这本书。你和她只需要这三个数字记下来就可以在交替的时间共同阅读这本书了。

线程的工作方式与此类似。CPU会给你一个在同一时间能够做多个运算的幻觉,实际上它在每个运算上只花了极少的时间,本质上CPU同一时刻只能干一件事,所谓的多线程和并发处理只是假象。CPU能这样做是因为它有每个任务的execution context,就像你能够和你朋友共享同一本书一样。

进程与线程区别:

  • 同一个进程中的线程共享同一内存空间,但进程之间的内存空间是独立的。

  • 同一个进程中的所有线程的数据是共享的,但进程之间的数据是独立的。

  • 对主线程的修改可能会影响其他线程的行为,但是父进程的修改(除了删除以外)不会影响其他子进程。

  • 线程是一个上下文的执行指令,而进程则是与运算相关的一簇资源。

  • 同一个进程的线程之间可以直接通信,但是进程之间的交流需要借助中间代理来实现。

  • 创建新的线程很容易,但是创建新的进程需要对父进程做一次复制。

  • 一个线程可以操作同一进程的其他线程,但是进程只能操作其子进程。

  • 线程启动速度快,进程启动速度慢(但是两者运行速度没有可比性)。

由于现代cpu已经进入多核时代,并且主频也相对以往大幅提升,多线程和多进程编程已经成为主流。Python全面支持多线程和多进程编程,同时还支持协程。

J. python可以多进程吗

想要充分利用多核CPU资源,Python中大部分情况下都需要使用多进程,Python中提供了multiprocessing这个包实现多进程。multiprocessing支持子进程、进程间的同步与通信,提供了Process、Queue、Pipe、Lock等组件。

开辟子进程
multiprocessing中提供了Process类来生成进程实例

Process([group [, target [, name [, args [, kwargs]]]]])
group分组,实际上不使用
target表示调用对象,你可以传入方法的名字
args表示给调用对象以元组的形式提供参数,比如target是函数a,他有两个参数m,n,那么该参数为args=(m, n)即可
kwargs表示调用对象的字典
name是别名,相当于给这个进程取一个名字
先来个小例子:

# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time

def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime()) #获取当前进程号和正在运行是的时间
time.sleep(wTime) #等待(休眠)
n += 1

if __name__ == "__main__":
p = Process(target=run_proc, args=(2,)) #申请子进程
p.start() #运行进程
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
运行结果:

Parent process run. subProcess is 30196
Parent process end,Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:23 2017
subProcess 30196 run, Mon Mar 27 11:20:25 2017

根据运行结果可知,父进程运行结束后子进程仍然还在运行,这可能造成僵尸( zombie)进程。

通常情况下,当子进程终结时,它会通知父进程,清空自己所占据的内存,并在内核里留下自己的退出信息。父进程在得知子进程终结时,会从内核中取出子进程的退出信息。但是,如果父进程早于子进程终结,这可能造成子进程的退出信息滞留在内核中,子进程成为僵尸(zombie)进程。当大量僵尸进程积累时,内存空间会被挤占。

有什么办法可以避免僵尸进程呢?
这里介绍进程的一个属性 deamon,当其值为TRUE时,其父进程结束,该进程也直接终止运行(即使还没运行完)。
所以给上面的程序加上p.deamon = true,看看效果。

# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time

def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1

if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True #加入daemon
p.start()
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
执行结果:

Parent process run. subProcess is 31856
Parent process end,Mon Mar 27 11:40:10 2017

这是问题又来了,子进程并没有执行完,这不是所期望的结果。有没办法将子进程执行完后才让父进程结束呢?
这里引入p.join()方法,它使子进程执行结束后,父进程才执行之后的代码

# -*- coding:utf-8 -*-
from multiprocessing import Process, Pool
import os
import time

def run_proc(wTime):
n = 0
while n < 3:
print "subProcess %s run," % os.getpid(), "{0}".format(time.ctime())
time.sleep(wTime)
n += 1

if __name__ == "__main__":
p = Process(target=run_proc, args=(2,))
p.daemon = True
p.start()
p.join() #加入join方法
print "Parent process run. subProcess is ", p.pid
print "Parent process end,{0}".format(time.ctime())
执行结果:

subProcess 32076 run, Mon Mar 27 11:46:07 2017
subProcess 32076 run, Mon Mar 27 11:46:09 2017
subProcess 32076 run, Mon Mar 27 11:46:11 2017
Parent process run. subProcess is 32076
Parent process end,Mon Mar 27 11:46:13 2017

这样所有的进程就能顺利的执行了。

热点内容
汽车小组件怎么弄到安卓桌面 发布:2025-05-16 13:51:12 浏览:218
linuxg编译器下载 发布:2025-05-16 13:50:58 浏览:775
centosc编译器 发布:2025-05-16 13:50:17 浏览:946
安卓手机如何变换桌面 发布:2025-05-16 13:39:33 浏览:514
sql存储过程命令 发布:2025-05-16 13:17:54 浏览:145
用纸做解压小玩具西瓜 发布:2025-05-16 13:04:09 浏览:935
局域网xp无法访问win7 发布:2025-05-16 13:03:58 浏览:942
油卡如何修改密码 发布:2025-05-16 13:00:35 浏览:901
安卓手机如何拼照片 发布:2025-05-16 12:58:23 浏览:374
深入浅出python 发布:2025-05-16 12:56:52 浏览:655