python实现gbdt
❶ GBDT 如何实现特征组合提取
以python调用sklearn为例,在你建立GBDT对象并作fit之后,可以使用如下代码获得你要的规则代码:
dot_data = tree.export_graphviz(model_tree, out_file=None,
max_depth=5, feature_names=names_list, filled=True, rounded=True) # 将决策树规则生成dot对象
其中tree就是你的数对象,如果你的out_file后面是一个文件名,那么你的规则会输出到文件中;如果是None(就像上面代码),那么值会保存在dot_data中。
无论哪种方法,你都能获得规则文本。然后剩下的就是普通的文本解析的事情了。
在决策树算法对象的tree_属性中,存储了所有有关决策树规则的信息(示例中的决策树规则存储在model_tree.tree_中)。最主要的几个属性:
children_left:子级左侧分类节点
children_right:子级右侧分类节点
feature:子节点上用来做分裂的特征
threshold:子节点上对应特征的分裂阀值
values:子节点中包含正例和负例的样本数量
上述属性配合节点ID、节点层级便迭代能得到如下的规则信息:
1 [label="rfm_score <= 7.8375
gini = 0.1135
samples =
14581
value = [13700, 881]", fillcolor="#e58139ef"] ;
其中规则开始的1代表节点ID,rfm_score是变量名称,rfm_score
<= 7.8375是分裂阀值,gini = 0.1135是在当前规则下的基尼指数,nsamples是当前节点下的总样本量,nvalue为正例和负例的样本数量。
来源:知乎
❷ python gbdt测试集误差竟然逐渐上升是怎么回事
是否是因为过拟合了?
随着训练集误差的下降,测试集误差一般应该是先下降后上升的。
❸ 如何给python加载科学计算库
1.安装
安装Python2.7:hownloads/release/python-2712/根据电脑配置选择合适版本下载安装。
安装过python之后,Python27Scripts有pip.exe,在Python27Scripts文件夹下运行cmd(点击Shift+右键),可以用pip安装其他包。
1. 安装科学计算库
pip installjupyter
pip installpandas
pip installnumpy
pip installmatplotlib
pip installseaborn
pip installscikit-learn
2. 用上述方式安装scipy不成功,可以这样:在ci.e/~gohlke/pythonlibs/下载合适的whl包,pip install <拖入下载到的scipy包>。安装后import scipy若提示缺少numpy+MKL,可以pip uninstall numpy,再下载numpy+MKL的whl包,pip install *.whl。
检测安装是否成功,打开Python的shell,输入:
import matplotlib
import numpy
import scipy等,若不报错,就安装成功。
比如生成一个y=x的直线:
import matplotlib.pyplot as plt
plt.plot([1,2,3])
plt.ylabel('some numbers')
plt.show()1234
上述是我采用的安装方式,过程比较顺利,除了pip,还有其他的方式哈:
1. 用easy_install安装,但是这种方法卸载不方便,不推荐。
2. 用anaconda的conda命令,好像也很常用,因为conda会安装或者更新一些依赖库,但是pip未必。有兴趣的可以试试。
2. 科学计算库的使用
综合:
1.遇到Numpy陌生函数,查询用法
2.pandas教程及API
pandas读取csv文件,提供了大量能使我们快速便捷地处理数据的函数和方法。
3.Matplotlib Tutorial(译)
是python最着名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。
数据可视化:
1.Seaborn tutorial
Seaborn模块自带许多定制的主题和高级的接口,来控制matplotlib图表的外观。
机器算法:
1.scikit-learn
scikit-learn的基本功能主要被分为六个部分,分类,回归,聚类,数据降维,模型选择,数据预处理,机器学习模型非常丰富,包括SVM,决策树,GBDT,KNN等等,可以根据问题的类型选择合适的模型,具体可以参考官方网站上的文档。
❹ python3.5做分类时,混淆矩阵加在哪一步
preface:做着最近的任务,对数据处理,做些简单的提特征,用机器学习算法跑下程序得出结果,看看哪些特征的组合较好,这一系列流程必然要用到很多函数,故将自己常用函数记录上。应该说这些函数基本上都会用到,像是数据预处理,处理完了后特征提取、降维、训练预测、通过混淆矩阵看分类效果,得出报告。
1.输入
从数据集开始,提取特征转化为有标签的数据集,转为向量。拆分成训练集和测试集,这里不多讲,在上一篇博客中谈到用StratifiedKFold()函数即可。在训练集中有data和target开始。
2.处理
[python]view plain
defmy_preprocessing(train_data):
X_normalized=preprocessing.normalize(train_data,norm="l2",axis=0)#使用l2范式,对特征列进行正则
returnX_normalized
defmy_feature_selection(data,target):
fromsklearn.feature_selectionimportSelectKBest
fromsklearn.feature_selectionimportchi2
data_new=SelectKBest(chi2,k=50).fit_transform(data,target)
returndata_new
defmy_PCA(data):#datawithouttarget,justtraindata,withoutraintarget.
pca_sklearn=decomposition.PCA()
pca_sklearn.fit(data)
main_var=pca_sklearn.explained_variance_
printsum(main_var)*0.9
importmatplotlib.pyplotasplt
n=15
plt.plot(main_var[:n])
plt.show()
defclf_train(data,target):
fromsklearnimportsvm
#fromsklearn.linear_modelimportLogisticRegression
clf=svm.SVC(C=100,kernel="rbf",gamma=0.001)
clf.fit(data,target)
#clf_LR=LogisticRegression()
#clf_LR.fit(x_train,y_train)
#y_pred_LR=clf_LR.predict(x_test)
returnclf
defmy_confusion_matrix(y_true,y_pred):
fromsklearn.metricsimportconfusion_matrix
labels=list(set(y_true))
conf_mat=confusion_matrix(y_true,y_pred,labels=labels)
print"confusion_matrix(leftlabels:y_true,uplabels:y_pred):"
print"labels ",
foriinrange(len(labels)):
printlabels[i]," ",
print
foriinrange(len(conf_mat)):
printi," ",
forjinrange(len(conf_mat[i])):
printconf_mat[i][j],' ',
print
print
defmy_classification_report(y_true,y_pred):
fromsklearn.metricsimportclassification_report
print"classification_report(left:labels):"
printclassification_report(y_true,y_pred)
- my_preprocess()函数:
- 主要参考sklearn官网
主要使用sklearn的preprocessing函数中的normalize()函数,默认参数为l2范式,对特征列进行正则处理。即每一个样例,处理标签,每行的平方和为1.
my_feature_selection()函数:
使用sklearn的feature_selection函数中SelectKBest()函数和chi2()函数,若是用词袋提取了很多维的稀疏特征,有必要使用卡方选取前k个有效的特征。
my_PCA()函数:
主要用来观察前多少个特征是主要特征,并且画图。看看前多少个特征占据主要部分。
clf_train()函数:
可用多种机器学习算法,如SVM, LR, RF, GBDT等等很多,其中像SVM需要调参数的,有专门调试参数的函数如StratifiedKFold()(见前几篇博客)。以达到最优。
my_confusion_matrix()函数:
主要是针对预测出来的结果,和原来的结果对比,算出混淆矩阵,不必自己计算。其对每个类别的混淆矩阵都计算出来了,并且labels参数默认是排序了的。
my_classification_report()函数:
主要通过sklearn.metrics函数中的classification_report()函数,针对每个类别给出详细的准确率、召回率和F-值这三个参数和宏平均值,用来评价算法好坏。另外ROC曲线的话,需要是对二分类才可以。多类别似乎不行。
❺ python数据挖掘是什么
数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信
息和知识的过程。
python数据挖掘常用模块
numpy模块:用于矩阵运算、随机数的生成等
pandas模块:用于数据的读取、清洗、整理、运算、可视化等
matplotlib模块:专用于数据可视化,当然含有统计类的seaborn模块
statsmodels模块:用于构建统计模型,如线性回归、岭回归、逻辑回归、主成分分析等
scipy模块:专用于统计中的各种假设检验,如卡方检验、相关系数检验、正态性检验、t检验、F检验等
sklearn模块:专用于机器学习,包含了常规的数据挖掘算法,如决策树、森林树、提升树、贝叶斯、K近邻、SVM、GBDT、Kmeans等
数据分析和挖掘推荐的入门方式是?小公司如何利用数据分析和挖掘?
关于数据分析与挖掘的入门方式是先实现代码和Python语法的落地(前期也需要你了解一些统计学知识、数学知识等),这个过程需要
你多阅读相关的数据和查阅社区、论坛。然后你在代码落地的过程中一定会对算法中的参数或结果产生疑问,此时再去查看统计学和数据
挖掘方面的理论知识。这样就形成了问题为导向的学习方法,如果将入门顺序搞反了,可能在硬着头皮研究理论算法的过程中就打退堂鼓
了。
对于小公司来说,你得清楚的知道自己的痛点是什么,这些痛点是否能够体现在数据上,公司内部的交易数据、营销数据、仓储数据等是
否比较齐全。在这些数据的基础上搭建核心KPI作为每日或每周的经营健康度衡量,数据分析侧重于历史的描述,数据挖掘则侧重于未来
的预测。
差异在于对数据的敏感度和对数据的个性化理解。换句话说,就是懂分析的人能够从数据中看出破绽,解决问题,甚至用数据创造价值;
不懂分析的人,做不到这些,更多的是描述数据。
更多技术请关注python视频教程。
❻ 怎么用Python数学建模
数学建模的重点是数学,不是计算机或编程语言,重点是要有强大的数学功底,及对欲建模问题的深刻理解和分析,计算机只是一个辅助工具。当你在数学层面对要建模问题分析清楚了,然后用计算机编程语言去把它表达出来即可。
选python 做这事还是不错的。python 是开源的,开源的东西生机勃勃,众人拾柴火焰高,全世界的编程高手都在为 python 增砖添瓦,目前官方(pypi.org)显示有10多万个第3方库,而且貌似每天以数百个新库的速度在增加,如此庞大的第3方库,几乎涉及各行各业各领域,你想做点什么事情,随便找找一般总有适合你的基础库别人已经做好了,你直接拿来用事半功倍。python 的庞大生态库,大概只有 java 可与之一拼了,其它没有哪种语言有这么庞大的库。python 在 tiobe 琅琊榜上稳步上升,目前已超越 C++排第3了。
你要做数学建模,以下这些基础库或许会用到:
numpy, pandas, scipy, matplotlib , sympy .....
更多的你自己去了解一下。
❼ python gradientboostingregressor可以做预测吗
可以
最近项目中涉及基于Gradient Boosting Regression 算法拟合时间序列曲线的内容,利用python机器学习包scikit-learn 中的GradientBoostingRegressor完成
因此就学习了下Gradient Boosting算法,在这里分享下我的理解
Boosting 算法简介
Boosting算法,我理解的就是两个思想:
1)“三个臭皮匠顶个诸葛亮”,一堆弱分类器的组合就可以成为一个强分类器;
2)“知错能改,善莫大焉”,不断地在错误中学习,迭代来降低犯错概率
当然,要理解好Boosting的思想,首先还是从弱学习算法和强学习算法来引入:
1)强学习算法:存在一个多项式时间的学习算法以识别一组概念,且识别的正确率很高;
2)弱学习算法:识别一组概念的正确率仅比随机猜测略好;
Kearns & Valiant证明了弱学习算法与强学习算法的等价问题,如果两者等价,只需找到一个比随机猜测略好的学习算法,就可以将其提升为强学习算法。
那么是怎么实现“知错就改”的呢?
Boosting算法,通过一系列的迭代来优化分类结果,每迭代一次引入一个弱分类器,来克服现在已经存在的弱分类器组合的shortcomings
在Adaboost算法中,这个shortcomings的表征就是权值高的样本点
而在Gradient Boosting算法中,这个shortcomings的表征就是梯度
无论是Adaboost还是Gradient Boosting,都是通过这个shortcomings来告诉学习器怎么去提升模型,也就是“Boosting”这个名字的由来吧
Adaboost算法
Adaboost是由Freund 和 Schapire在1997年提出的,在整个训练集上维护一个分布权值向量W,用赋予权重的训练集通过弱分类算法产生分类假设(基学习器)y(x),然后计算错误率,用得到的错误率去更新分布权值向量w,对错误分类的样本分配更大的权值,正确分类的样本赋予更小的权值。每次更新后用相同的弱分类算法产生新的分类假设,这些分类假设的序列构成多分类器。对这些多分类器用加权的方法进行联合,最后得到决策结果。
其结构如下图所示:
可以发现,如果要用Gradient Boosting 算法的话,在sklearn包里调用还是非常方便的,几行代码即可完成,大部分的工作应该是在特征提取上。
感觉目前做数据挖掘的工作,特征设计是最重要的,据说现在kaggle竞赛基本是GBDT的天下,优劣其实还是特征上,感觉做项目也是,不断的在研究数据中培养对数据的敏感度。
❽ LightGBM 如何确定最佳迭代次数
LightGBM中实现了哪些梯度增强方法,它们有什么区别?一般来说,哪些参数是重要的?哪些正则化参数需要调整?如何调整lightGBM参数在python?梯度提升的方法
使用LightGBM,你可以运行不同类型的渐变增强提升方法。你有:GBDT、DART和GOSS,这些可以通过“boosting”参数指定。
在下一节中,我将对这些方法进行解释和比较。
梯度提升决策树(GBDT)
该方法是本文首先提出的传统梯度提升决策树,也是XGBoost和pGBRT等优秀库背后的算法。
由于其精度高、效率高、稳定性好,目前已得到广泛的应用。你可能知道gbdt是一个决策树的集合模型但是它到底是什么意思呢?
让我来告诉你要点。
它基于三个重要原则:
弱学习者(决策树)梯度优化提升技术所以在gbdt方法中,我们有很多决策树(弱学习者)。这些树是按顺序构建的:
首先,树学习如何适应目标变量第二棵树学习如何适合残差(差异)之间的预测,第一棵树和地面真相第三棵树学习如何匹配第二棵树的残差,以此类推。所有这些树都是通过传播整个系统的误差梯度来训练的。
gbdt的主要缺点是,在每个树节点中找到最佳分割点非常耗时,而且会消耗内存。其他的提升方法试图解决这个问题。
DART梯度提升
在这篇优秀的论文中(arxiv/1505.01866),你可以学习所有关于DART梯度提升的东西,这是一种使用dropout(神经网络中的标准)的方法,来改进模型正则化和处理一些其他不太明显的问题。
也就是说,gbdt存在过度专门化(over-specialization)的问题,这意味着在以后的迭代中添加的树往往只会影响对少数实例的预测,而对其余实例的贡献则可以忽略不计。添加dropout会使树在以后的迭代中更加难以专门化那些少数的示例,从而提高性能。
lgbm goss基于梯度的单边采样
事实上,将该方法命名为lightgbm的最重要原因就是使用了基于本文的Goss方法。Goss是较新的、较轻的gbdt实现(因此是“light”gbm)。
标准的gbdt是可靠的,但在大型数据集上速度不够快。因此goss提出了一种基于梯度的采样方法来避免搜索整个搜索空间。我们知道,对于每个数据实例,当梯度很小时,这意味着不用担心数据是经过良好训练的,而当梯度很大时,应该重新训练。这里我们有两个方面,数据实例有大的和小的渐变。因此,goss以一个大的梯度保存所有数据,并对一个小梯度的数据进行随机抽样(这就是为什么它被称为单边抽样)。这使得搜索空间更小,goss的收敛速度更快。
让我们把这些差异放在一个表格中:
注意:如果你将增强设置为RF,那么lightgbm算法表现为随机森林而不是增强树! 根据文档,要使用RF,必须使用baggingfraction和featurefraction小于1。
正则化
在这一节中,我将介绍lightgbm的一些重要的正则化参数。显然,这些是您需要调优以防止过拟合的参数。
您应该知道,对于较小的数据集(<10000条记录),lightGBM可能不是最佳选择。在这里,调优lightgbm参数可能没有帮助。
此外,lightgbm使用叶向树生长算法,而xgboost使用深度树生长算法。叶向方法使树的收敛速度更快,但过拟合的几率增加。
注意:如果有人问您LightGBM和XGBoost之间的主要区别是什么?你可以很容易地说,它们的区别在于它们是如何实现的。
根据lightGBM文档,当面临过拟合时,您可能需要做以下参数调优:
使用更小的max_bin使用更小的num_leaves使用mindatainleaf和minsumhessianin_leaf通过设置baggingfraction和baggingfreq使用bagging_freq通过设置feature_fraction使用特征子采样使用更大的训练数据尝试lambdal1、lambdal2和mingainto_split进行正则化尝试max_depth以避免树的深度增长在下面的部分中,我将更详细地解释这些参数。
lambda_l1
Lambdal1(和lambdal2)控制l1/l2,以及mingainto_split用于防止过拟合。我强烈建议您使用参数调优(在后面的小节中讨论)来确定这些参数的最佳值。
num_leaves
numleaves无疑是控制模型复杂性的最重要参数之一。通过它,您可以设置每个弱学习者拥有的叶子的最大数量。较大的numleaves增加了训练集的精确度,也增加了因过度拟合而受伤的几率。根据文档,一个简单的方法是numleaves = 2^(maxdepth)但是,考虑到在lightgbm中叶状树比层次树更深,你需要小心过度拟合!因此,必须同时使用maxdepth调优numleaves。
子采样
通过子样例(或bagging_fraction),您可以指定每个树构建迭代使用的行数百分比。这意味着将随机选择一些行来匹配每个学习者(树)。这不仅提高了泛化能力,也提高了训练速度。
我建议对基线模型使用更小的子样本值,然后在完成其他实验(不同的特征选择,不同的树结构)时增加这个值。
feature_fraction
特征分数或子特征处理列采样,LightGBM将在每次迭代(树)上随机选择特征子集。例如,如果将其设置为0.6,LightGBM将在训练每棵树之前选择60%的特性。
这个功能有两种用法:
可以用来加速训练吗可以用来处理过拟合吗
max_depth
该参数控制每棵经过训练的树的最大深度,将对:
num_leaves参数的最佳值模型的性能训练时间注意,如果您使用较大的max_depth值,那么您的模型可能会对于训练集过拟合。
max_bin
装箱是一种用离散视图(直方图)表示数据的技术。Lightgbm在创建弱学习者时,使用基于直方图的算法来寻找最优分割点。因此,每个连续的数字特性(例如视频的视图数)应该被分割成离散的容器。
此外,在这个GitHub repo(huanzhang12/lightgbm-gpu)中,你可以找到一些全面的实验,完全解释了改变max_bin对CPU和GPU的影响。
如果你定义maxbin 255,这意味着我们可以有255个唯一的值每个特性。那么,较小的maxbin会导致更快的速度,较大的值会提高准确性。
训练参数
当你想用lightgbm训练你的模型时,一些典型的问题可能会出现:
训练是一个耗时的过程处理计算复杂度(CPU/GPU RAM约束)处理分类特征拥有不平衡的数据集定制度量的需要需要对分类或回归问题进行的调整在本节中,我们将尝试详细解释这些要点。
num_iterations
Num_iterations指定增强迭代的次数(要构建的树)。你建立的树越多,你的模型就越精确,代价是:
较长的训练时间过拟合的可能性更高从较少的树开始构建基线,然后当您想从模型中挤出最后的%时增加基线。
建议使用更小的learningrate和更大的numiteration。此外,如果您想要更高的numiteration,那么您应该使用earlystopping_rounds,以便在无法学习任何有用的内容时停止训练。
earlystoppingrounds
如果验证度量在最后一轮停止后没有改进,此参数将停止训练。这应该与一些迭代成对地进行定义。如果你把它设置得太大,你就增加了过拟合的变化(但你的模型可以更好)。
经验法则是让它占num_iterations的10%。
lightgbm categorical_feature
使用lightgbm的优势之一是它可以很好地处理分类特性。是的,这个算法非常强大,但是你必须小心如何使用它的参数。lightgbm使用一种特殊的整数编码方法(由Fisher提出)来处理分类特征
实验表明,该方法比常用的单热编码方法具有更好的性能。
它的默认值是“auto”,意思是:让lightgbm决定哪个表示lightgbm将推断哪些特性是绝对的。
它并不总是工作得很好,我强烈建议您简单地用这段代码手动设置分类特性
cat_col = dataset_name.select_dtypes(‘object’).columns.tolist()
但是在幕后发生了什么,lightgbm是如何处理分类特征的呢?
根据lightgbm的文档,我们知道树学习器不能很好地使用一种热编码方法,因为它们在树中深度生长。在提出的替代方法中,树形学习器被最优构造。例如,一个特征有k个不同的类别,有2^(k-1) -1个可能的划分,通过fisher方法,可以改进到k * log(k),通过找到分类特征中值排序直方图的最佳分割方式。
isunbalance vs scalepos_weight
其中一个问题,你可能面临的二分类问题是如何处理不平衡的数据集。显然,您需要平衡正/负样本,但如何在lightgbm中做到这一点呢?
lightgbm中有两个参数允许你处理这个问题,那就是isunbalance和scalepos_weight,但是它们之间有什么区别呢?
当您设置Is_unbalace: True时,算法将尝试自动平衡占主导地位的标签的权重(使用列集中的pos/neg分数)
如果您想改变scaleposweight(默认情况下是1,这意味着假设正负标签都是相等的),在不平衡数据集的情况下,您可以使用以下公式来正确地设置它
sample_pos_weight = number of negative samples / number of positive samples
lgbm函数宏指令(feaval)
有时你想定义一个自定义评估函数来测量你的模型的性能,你需要创建一个“feval”函数。
Feval函数应该接受两个参数:
preds 、train_data
并返回
evalname、evalresult、ishigherbetter
让我们一步一步地创建一个自定义度量函数。
定义一个单独的python函数
def feval_func(preds, train_data): # Define a formula that evaluates the results return ('feval_func_name', eval_result, False)
使用这个函数作为参数:
print('Start training...') lgb_train = lgb.train(..., metric=None, feval=feval_func)
注意:要使用feval函数代替度量,您应该设置度量参数 metric “None”。
分类参数与回归参数
我之前提到的大多数事情对于分类和回归都是正确的,但是有些事情需要调整。
具体你应该:
lightgbm最重要的参数
我们已经在前面的部分中回顾并了解了有关lightgbm参数的知识,但是如果不提及Laurae令人难以置信的基准测试,那么关于增强树的文章将是不完整的。
您可以了解用于lightGBM和XGBoost的许多问题的最佳默认参数。
你可以查看这里,但一些最重要的结论是:
注意:绝对不要理会任何参数值的默认值,并根据您的问题进行调整。 也就是说,这些参数是超参数调整算法的一个很好的起点。
Python中的Lightgbm参数调整示例
最后,在解释完所有重要参数之后,该进行一些实验了!
我将使用最受欢迎的Kaggle竞赛之一:Santander Customer Transaction Prediction. 交易预测
我将使用本文介绍如何在任何脚本中的Python中运行超参数调整。
在开始之前,一个重要的问题! 我们应该调整哪些参数?
请注意您要解决的问题,例如,Santander 数据集高度不平衡,在调整时应考虑到这一点!
一些参数是相互依赖的,必须一起调整。 例如,mindatainleaf取决于训练样本和numleaves的数量。
注意:为超参数创建两个字典是一个好主意,一个字典包含您不想调整的参数和值,另一个字典包含您想要调整的参数和值范围。
SEARCH_PARAMS = {'learning_rate': 0.4, 'max_depth': 15, 'num_leaves': 20, 'feature_fraction': 0.8, 'subsample': 0.2} FIXED_PARAMS={'objective': 'binary', 'metric': 'auc', 'is_unbalance':True, 'boosting':'gbdt', 'num_boost_round':300, 'early_stopping_rounds':30}
❾ python sklearn 怎么根据gbdt apply函数 和原来特征加起来
跟版本没关系。函数需要的传参类型不一致。明显已经说需要 字符串 和数字类型的参数了。而不是 一个字符串 和数字类型的 zip包
❿ Python 在编程语言中是什么地位为什么很多大学不教 Python
作者看着网上各种数据分析的知识泛滥, 但是没有什么体系,初学者不知道学哪些, 不知道学多少, 不知道学多深, 单纯一个python语言, 数据分析会用到那种程度, 不可能说像开发那样去学, numpy如果不是做算法工程师用到的知识并不多, pandas知识杂乱无章, 哪些才是最常用的功能等等, 作者不忍众生皆苦, 决定写一套python数据分析的全套教程, 目前已完成一部分课件的制作。需要说明的是, 作为一名数据分析师, 你应该先会一点Excel和SQL知识,相关的内容, 网上很多。但是, 即便你一点Excel和SQL都不会也不会影响这部分的学习 !目前作者整理的大纲如下:
第一章 python编程基础
1.1 python语言概述 1.2 数据科学神器--Anaconda介绍与安装 1.3 标准输入输出 1.4 变量定义与赋值 1.5 数据类型 1.6 流程控制语句 1.7 函数
1.8 面向对象编程 第二章 python数据清洗之numpy 2.1 核心ndarray对象的创建 2.2 ndarray对象常用的属性和方法 2.3 ndarray对象的索引和切片 2.4 ndarray对象的分割与合并 2.5 ndarray对象的广播(Broadcast) 2.6 numpy中的算术运算函数 2.7 numpy中的统计函数 2.8 numpy中的排序 搜索 计数 去重函数 2.9 numpy中的字符串函数 2.10 numpy中可能会用到的线性代数模块(后期机器学习会用到一点)
第三章 数据清洗神器pandas
3.1 pandas核心对象之Series对象的创建 常用属性和方法 3.2 pandas核心对象之DataFrame对象的创建 常用属性和方法 3.3 DataFrame对象的列操作和行操作 3.4 DataFrame对象的索引和切片 3.5 DataFrame对象的布尔索引 3.6 数据的读入与导出 3.7 groupby分组运算 3.8 数据合并与数据透视
第四章 数据可视化matplotlib seaborn pyecharts
4.1 包括常用图形的绘制,略
第五章 实战案列
5.1 拉勾网数据分析相关职位分析 5.2 boss直聘数据分析相关职位分析 5.3 珍爱网女性用户数据分析
第六章 机器学习
机器学习部分, 简单的算法会讲手写, 难的就用scikit-learn实现, 可能有小伙伴说, 这是调包侠干的, 小哥哥!小姐姐!哪有那么多公司, 那么多人自己干写算法的, 有几个人敢说他写的算法比scikit-learn写得好? 再说了, 你是数据分析师, 这些是你的工具, 解决问题的!不是一天到晚拉格朗日对偶性!先来个机器学习介绍, 然后如下:
6.1 K近邻算法 6.2 Kmeans算法 6.3 决策树 阶段案列:决策树案列(保险行业) 6.4 线性回归 岭回归 Lasso回归 6.5 逻辑回归 6.6 朴素贝叶斯 阶段案列:推荐系统(电商玩具) 6.7 随机森林 6.8 Adaboost 6.9 梯度提升树GBDT 6.10 极端梯度提升树Xgboost 6.11 支持向量机SVM 6.12 神经网络 阶段案例:Xgboost案例
------------------------------本节内容-----------------------------------------
python语言概述
在说python之前, 我们还是先来看看计算机软硬件的发展历史。
1 计算机硬件的发展历史
第一代计算机-电子管计算机(1946-1957)
无论如何,一项技术的突破必然伴随着其他行业的突破,简而言之,电子计算机的出现,前提必须有电子技术的进步,否则一切都是空谈!下面是我列举出计算机硬件的发展过程中, 一些比较重要的事件。
1906年, 美国的Lee De Forest 发明了电子管。在这之前造出数字电子计算机是不可能的。这为电子计算机的发 展奠定了基础。
1924年2月, 一个具有划时代意义的公司成立,IBM。
1935年, IBM推出IBM 601机。 这是一台能在一秒钟算出乘法的穿孔卡片计算机。这台机器无论在自然科学还是在商业意义上都具有重要的地位。大约造了1500台。
1937年, 英国剑桥大学的Alan M. Turing (1912-1954)出版了他的论文 ,并提出了被后人称之为"图灵机"的数学模型。
1937年, 美国贝尔试验室的George Stibitz展示了用继电器表示二进制的装置。尽管仅仅是个展示品,但却是世界上第一台二进制电子计算机。
1941年, Atanasoff和学生Berry完成了能解线性代数方程的计算机,取名叫"ABC"(Atanasoff-Berry Computer),用电容作存储器,用穿孔卡片作辅助存储器,那些孔实际上是"烧"上的。 时钟频率是60HZ,完成一次加法运算用时一秒。这就是ABC计算机。
1946年, 美国宾夕法尼亚大学,第一台通用电子计算机ENIAC (Electronic Numerical Integrator 和 Computer)诞生, 总工程师埃克特在当时年仅25岁。
这时的计算机的基本线路是采用电子管结构,程序从人工手编的 机器指令程序(0 1),过渡到符号语言(汇编),电子管计算机是计算工具革命性发展的开始,它所采用的进位制与程序存贮等基本技术思想,奠定了现代电子计算机技术基础。以冯·诺依曼为代表。
第二代计算机——晶体管计算机(时间1957~1964)
电子管时代的计算机尽管已经步入了现代计算机的范畴,但其体积之大、能耗之高、故障之多、价格之贵大大制约了它的普及应用。直到晶体管被发明出来,电子计算机才找到了腾飞的起点,一发而不可收……
20世纪50年代中期,晶体管的出现使计算机生产技术得到了根本性的发展,由晶体管代替电子管作为计算机的基础器件,用 磁芯或磁鼓作存储器,在整体性能上,比第一代计算机有了很大的提高。
第三代计算机——中小规模集成电路计算机(时间1964~1971)
20世纪60年代中期, 计算机发展历程随着半导体工艺的发展,成功制造了集成电路。中小规模集成电路成为计算机的主要部件,主存储器也渐渐过渡到 半导体存储器,使计算机的体积更小,大大降低了计算机计算时的功耗,由于减少了 焊点和 接插件,进一步提高了计算机的可靠性。
第四代计算机——大规模和超大规模集成电路计算机(时间1971~至今)
随着大规模集成电路的成功制作并用于计算机硬件生产过程,计算机的体积进一步缩小,性能进一步提高。集成更高的大容量半导体存储器作为内存储器,发展了并行技术和多机系统,出现了 精简指令集计算机(RISC),软件系统工程化、理论化,程序设计自动化。微型计算机在社会上的应用范围进一步扩大,几乎所有领域都能看到计算机的“身影”。
第五代计算机——泛指具有人工智能的计算机(至今~未来)
目前还没有明确地定义
2 简述计算机软件的发展历史
编程语言的发展
计算机软件系统的发展,也伴随着编程语言的发展。计算机程序设计语言的发展,经历了从机器语言、汇编语言到高级语言的历程。
机器语言:简单点说,机器本身也只认识0和1,电路无非就只有通和断两种状态,对应的二进制就是二进制的1和1。
汇编语言:汇编语言只是把一些特殊的二进制用特殊的符号表示,例如,机器要传送一个数据,假设“传送”这个指令对应的机器码是000101,则人们把000101用一个特殊符号,比如mov来表示,当人们要用这个指令时用mov就行,但是mov的本质还是000101,没有脱离硬件的范围,有可能这个指令不能在其他机器上用。
高级语言:高级语言完全脱离了硬件范畴,所有的语法更贴近人类的自然语言,人们只需要清楚高级语言的语法,写出程序就行了,剩下的交给编译器或者解释器去编译或者解释成机器语言就行了,看,这样就完全脱离了硬件的范畴,大大提高了程序的开发效率。接下来我们就来看看高级语言的发展,高级语言非常多,我们主要看看比较经典的几个。
高级语言的发展
B语言与Unix
20世纪60年代,贝尔实验室的研究员Ken Thompson(肯·汤普森)发明了B语言,并使用B编了个游戏 - Space Travel,他想玩自己这个游戏,所以他背着老板找到了台空闲的机器 - PDP-7,但是这台机器没有操作系统,于是Thompson着手为PDP-7开发操作系统,后来这个OS被命名为 - UNIX。
C语言
1971年,Ken Thompson(肯·汤普森)的同事D.M.Ritchie(DM里奇),也很想玩Space Travel,所以加入了Ken Thompson,合作开发UNIX,他的主要工作是改进Thompson的B语言。最终,在1972年这个新语言被称为C,取BCPL的第二个字母,也是B的下一个字母。
C语言和Unix
1973年,C主体完成。Ken Thompson和D.M.Ritchie迫不及待的开始用C语言完全重写了UNIX。此时编程的乐趣已经使他们完全忘记了那个“Space Travel”,一门心思的投入到了UNIX和C语言的开发中。自此,C语言和UNIX相辅相成的发展至今。
类C语言起源、历史
C++(C plus plus Programming Language) - 1983
还是贝尔实验室的人,Bjarne Stroustrup(本贾尼·斯特劳斯特卢普) 在C语言的基础上推出了C++,它扩充和完善了C语言,特别是在面向对象编程方面。一定程度上克服了C语言编写大型程序时的不足。
Python (Python Programming Language)--1991
1989年圣诞节期间,Guido van Rossum 在阿姆斯特丹,Guido van Rossum为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,做为ABC语言的一种继承。之所以选中Python(大蟒蛇的意思)作为该编程语言的名字,是因为他是一个叫Monty Python的喜剧团体的爱好者。第一个Python的版本发布于1991年。
Java(Java Programming Language) - 1995
Sun公司的Patrick Naughton的工作小组研发了Java语言,主要成员是James Gosling(詹姆斯·高斯林)
C(C Sharp Programming Language) - 2000
Microsoft公司的Anders Hejlsberg(安德斯·海尔斯伯格)发明了C,他也是Delphi语言之父。
当然现在还有一些新语言,比如2009年Google的go语言,以及麻省理工的julia等。
3 为什么是Python
Python有哪些优点
1 语法简单 漂亮:我们可以说Python是简约的语言,非常易于读写。在遇到问题时,我们可以把更多的注意力放在问题本身上,而不用花费太多精力在程序语言、语法上。
2 丰富而免费的库:Python社区创造了各种各样的Python库。在他们的帮助下,你可以管理文档,执行单元测试、数据库、web浏览器、电子邮件、密码学、图形用户界面和更多的东西。所有东西包括在标准库,然而,除了它,还有很多其他的库。
3 开源:Python是免费开源的。这意味着我们不用花钱,就可以共享、复制和交换它,这也帮助Python形成了丰富的社区资源,使其更加完善,技术发展更快。
4 Python既支持面向过程,也支持面向对象编程。在面向过程编程中,程序员复用代码,在面向对象编程中,使用基于数据和函数的对象。尽管面向对象的程序语言通常十分复杂,Python却设法保持简洁。
5 Python兼容众多平台,所以开发者不会遇到使用其他语言时常会遇到的困扰。
Python有哪些作用
Python是什么都能做,但是我们学的是数据分析,我们看看在数据分析领域Python能做什么。
数据采集:以Scrapy 为代表的各类方式的爬虫
数据链接:Python有大量各类数据库的第三方包,方便快速的实现增删改查
数据清洗:Numpy、Pandas,结构化和非结构化的数据清洗及数据规整化的利器
数据分析:Scikit-Learn、Scipy,统计分析,科学计算、建模等
数据可视化:Matplotlib、Seaborn等等大量各类可视化的库
所以说总结, 为什么数据科学选的是python, 最重要就是两个原因:
1 语法简单漂亮
2 大量丰富免费的第三方库