python数据挖掘入门与实践
‘壹’ 希望介绍个学python的好网站或者下载资源,或者书本。采纳后追加~!谢谢分享
网络云课堂
http://study.163.com/,里面有很多不光是python的学习。
比如你找到这个地址中就有python的模块。
http://study.163.com/find.htm#/find/courselist?ct=31001&ct2=31013
‘贰’ 如何自学成为数据分析师
数据分析师的基本工作流程:
1.定义问题
确定需要的问题,以及想得出的结论。需要考虑的选项有很多,要根据所在业务去判断。常见的有:变化趋势、用户画像、影响因素、历史数据等。
2.数据获取
数据获取的方式有很多种:
一是直接从企业数据库调取,需要sql技能去完成数据提取等的数据库管理工作。
二是获取公开数据,政府、企业、统计局等机构有。
三是通过Python编写网页爬虫。
3.数据预处理
对残缺、重复等异常数据进行清洗。
4.数据分析与建模
这个部分需要了解基本的统计分析方法、数据挖掘算法,了解不同统计方法适用的场景和适合的问题。
5.数据可视化和分析报告撰写
学习一款可视化工具,将数据通过可视化最直观的展现出来。
数据分析入门需要掌握的技能有:
1. SQL(数据库):
怎么从数据库取数据?怎么取到自己想要的特定的数据?等这些问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能。
2. excel
分析师更多的时候是在分析数据,分析数据时需要把数据放到一个文件里,就是excel。
熟练excel常用公式,学会做数据透视表,什么数据画什么图等。
3.Python或者R的基础:
必备项,也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。
4.学习一个可视化工具
如果你想往更高层次发展,上面的东西顶多只占20%,剩下的80%则是业务理解能力,目标拆解能力,根据数据需求更多新技能的学习能力。
‘叁’ 学习python爬虫推荐书籍
1、基础书籍:《Python编程》
推荐理由:作者专业水平极高,从原理到开发实战,内容详尽且涉及面广,通过多个案例介绍了不同场景下如何实现数据爬取,通篇干货,无一点水分。
适读群体:适合有一定Python基础,或有开发经验想转爬虫方向的读者。
‘肆’ Python 入门书籍有哪些推荐
1、Python基础教程:是经典的Python入门教程书籍,本书层次鲜明,结构严谨。这本书既适合初学者夯实基础,又能帮助Python程序员提升技能,即使是Python方面的技术专家,也能从书里找到实用性极强的内容。
2、Python数据分析(Python for data analysis):该书介绍了ipython 、notebook、Numpy、Scipy和Pandas包的使用等知识点,只要读者掌握了python的基本语法就可以学习,对于提升学习Python十分有效。
3、Python 3程序开发指南:讲述了构成Python语言的8个关键要素,分为不同章节对其进行了详尽的阐述,包括数据类型、控制结构与函数、模块、文件处理、调试、进程与线程、网络、数据库、正则表达式、GUI程序设计等各个方面。适合作为Python语言教科书使用。
4、Python数据分析与挖掘实战:本书的基础部分介绍的详细且全面,是一本Python入门书,在后段中的Demo也很贴近实战,并且介绍了使用Python进行数据挖掘的详细案例,数据和代码都可以下载,有极强的实用性。
5、Python Cookbook:本书介绍了Python在各个领域中的一些技巧和方法,从最基本的字符、文件序列、字典和排序,到进阶的面向对象编程、数据库和数据持久化、 XML处理和Web编程,再到高级和抽象的描述符、装饰器、元类、迭代器和生成器,均有涉及。
‘伍’ 如何学习python
Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。
最近几年,随着大数据和人工智能的到来,python越来越受到欢迎,转行学python的也越来越多。那么小白该如何学习python呢?
很多人对python缩进试的简洁表达不以为然。那些都是已混迹于C和java的老鸟已经习惯了花括号。对于初学者,python语言是最好写,最好读的。
1、追求生产力,应该学python
python是全能语言,社区庞大,有太多的库和框架。你只需要找到合适的工具来实现想法,省去了造轮子的精力。
coder可以写尽可能少的代码来实现同等的功能。“人生苦短,我用python”是至理名言。
如果实现一个中等业务复杂度的项目,在相同的时间要求内,用java实现要4-5个码农的话,用python实现也许只需要1个。这就是python最大的优势了。
2、那么应该如何入门python呢
看书学编辑是效率最低的事情。且不说书的内容基本过时。就是比较较的翻译也很晦涩,照书写了代码跑不通,不断报错。是很打击学习积极性的。
不过,介绍语法的基础书,还是可以买一本,作为手册查阅之用。这类基础书籍买一本就好,找个周末休息时间,一天便可看完。
3、那么应该如何进阶python呢
对python语言有一个全面的了解之后,就可以进阶了。怎么进阶,很简单,找一个你喜欢的领域直接做项目。做WEB网站,做爬虫,都可以的。
首先要找容易上手的教程。网上有SET BY SET这种文字型 教程 ,这种只能做相对简单的项目,如果是复杂一点的是效率那是让人无法忍受的。而且文字教程由于有时效性问题,或是教程本身细节的一些错误,会让人抓狂的。
最好的学习教程,其实就是现在淘宝上贩卖的项目视频教程。这类教程有很多,但是鱼龙混杂,很难去伪存真。当然也有很多技术网站提供官方教程 。
‘陆’ 《Python数据挖掘入门与实践》pdf下载在线阅读,求百度网盘云资源
《Python数据挖掘入门与实践》([澳] Robert Layton)电子书网盘下载免费在线阅读
链接:https://pan..com/s/12d3rQe0uNTG98m09c12INA
书名:Python数据挖掘入门与实践
作者:[澳] Robert Layton
译者:杜春晓
豆瓣评分:7.9
出版社:人民邮电出版社
出版年份:2016-7
页数:252
内容简介:
本书作为数据挖掘入门读物,介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带你轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用决策树和随机森林算法预测美国职业篮球联赛比赛结果,如何使用亲和性分析方法推荐电影,如何使用朴素贝叶斯算法进行社会媒体挖掘,等等。本书也涉及神经网络、深度学习、大数据处理等内容。
作者简介:
Robert Layton
计算机科学博士,网络犯罪问题和文本分析方面的专家。多年来一直热衷于Python编程,参与过scikit-learn库等很多开源库的开发,曾担任2014年度“谷歌编程之夏”项目导师。他曾与全球几大数据挖掘公司密切合作,挖掘真实数据并研发相关应用。他的公司dataPipeline为多个行业提供数据挖掘和数据分析解决方案。
译者简介:
杜春晓
英语语言文学学士,软件工程硕士。其他译着有《电子达人——我的第一本Raspberry Pi入门手册》《Python数据分析》。新浪微博:@宜_生。
‘柒’ python教程哪里下载
一、Python入门到进阶的 廖雪峰 Python & JS & Git 教程PDF版 链接:‘捌’ 有哪些 Python 经典书籍
《深度学习入门》([ 日] 斋藤康毅)电子书网盘下载免费在线阅读
资源链接:
链接: https://pan..com/s/1ddnvGv-r9PxjwMLpN0ZQIQ
书名:深度学习入门
作者:[ 日] 斋藤康毅
译者:陆宇杰
豆瓣评分:9.4
出版社:人民邮电出版社
出版年份:2018-7
页数:285
内容简介:本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等“为什么”的问题。
作者简介:
斋藤康毅
东京工业大学毕业,并完成东京大学研究生院课程。现从事计算机视觉与机器学习相关的研究和开发工作。是Introcing Python、Python in Practice、The Elements of Computing Systems、Building Machine Learning Systems with Python的日文版译者。
译者简介:
陆宇杰
众安科技NLP算法工程师。主要研究方向为自然语言处理及其应用,对图像识别、机器学习、深度学习等领域有密切关注。Python爱好者。
‘玖’ 数据挖掘方向,Python中还需要学习哪些内容
就题论题,还包括:
1. Python 数据库连接库,例如MySQL 连接库的应用,这决定你的数据从哪里来。这里面涉及到sql语法和数据库基本知识,是你在学习的时候必须一起学会的。
2. Python 做基本数据计算和预处理的库,包括numpy ,scipy,pandas 这三个用得最多。
3. 数据分析和挖掘库,主要是sklearn,Statsmodels。前者是最广泛的机器学习库,后者是侧重于统计分析的库。(要知道统计分析大多时候和数据挖掘都错不能分开使用)
4. 图形展示库。matpotlib,这是用的最多的了。
说完题主本身 要求,楼上几位说的对,你还需要一些关于数据挖掘算法的基本知识和认知,否则即使你调用相关库得到结果,很可能你都不知道怎么解读,如何优化,甚至在什么场景下还如何选择算法等。因此基本知识你得了解。主要包括:
1.统计学相关,看看深入浅出数据分析和漫画统计学吧,虽然是入门的书籍,但很容易懂。
2.数据挖掘相关,看看数据挖掘导论吧,这是讲算法本身得书。
剩下的就是去实践了。有项目就多参与下项目,看看真正的数据挖掘项目是怎么开展的,流程怎样等。没有项目可以去参加一些数据挖掘或机器学习方面的大赛,也是增加经验得好方法。
‘拾’ python数据挖掘入门与实践1.5什么是分类的完整代码
分类应用的目标是,根据已知类别的数据集,经过训练得到一个分类模型,再用模型对类别未知的数据进行分类。
例如,我们可以对收到的邮件进行分类,标注哪些是自己希望收到的,哪些是垃圾邮件,然后用这些数据训练分类模型,实现一个垃圾邮件过滤器,这样以后再收到邮件,就不用自己去确认它是不是垃圾邮件了,过滤器就能帮你搞定。