当前位置:首页 » 密码管理 » 加密插值

加密插值

发布时间: 2022-08-05 06:26:20

㈠ matlab差值,现在有数据 (x,y,z) 现在将这些点加密,z线性插值就可以,请问怎么编

你没给数据的话只能告诉你一下函数了。help 一下interp2函数,这是做二维插值的,另外,插值前请栅格化x,y,用meshgrid函数

㈡ matlab插值

不清楚你的具体问题,给你如下的例子。你可以参考下。
§2 插值问题

在应用领域中,由有限个已知数据点,构造一个解析表达式,由此计算数据点之间的函数值,称之为插值。
实例:海底探测问题
某公司用声纳对海底进行测试,在5×5海里的坐标点上测得海底深度的值,希望通过这些有限的数据了解更多处的海底情况。并绘出较细致的海底曲面图。
一、一元插值
一元插值是对一元数据点(xi,yi)进行插值。
1. 线性插值:由已知数据点连成一条折线,认为相临两个数据点之间的函数值就在这两点之间的连线上。一般来说,数据点数越多,线性插值就越精确。
调用格式:yi=interp1(x,y,xi,’linear’) %线性插值
zi=interp1(x,y,xi,’spline’) %三次样条插值
wi=interp1(x,y,xi,’cubic’) %三次多项式插值
说明:yi、zi、wi为对应xi的不同类型的插值。x、y为已知数据点。
例1:已知数据:
x 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
y .3 .5 1 1.4 1.6 1.9 .6 .4 .8 1.5 2
求当xi=0.25时的yi的值。
程序:
x=0:.1:1;
y=[.3 .5 1 1.4 1.6 1 .6 .4 .8 1.5 2];
yi0=interp1(x,y,0.025,'linear')
xi=0:.02:1;
yi=interp1(x,y,xi,'linear');
zi=interp1(x,y,xi,'spline');
wi=interp1(x,y,xi,'cubic');
plot(x,y,'o',xi,yi,'r+',xi,zi,'g*',xi,wi,'k.-')
legend('原始点','线性点','三次样条','三次多项式')
结果:yi0 = 0.3500

要得到给定的几个点的对应函数值,可用:
xi =[ 0.2500 0.3500 0.4500]
yi=interp1(x,y,xi,'spline')
结果:
yi =1.2088 1.5802 1.3454
(二) 二元插值
二元插值与一元插值的基本思想一致,对原始数据点(x,y,z)构造见世面函数求出插值点数据(xi,yi,zi)。
一、单调节点插值函数,即x,y向量是单调的。
调用格式1:zi=interp2(x,y,z,xi,yi,’linear’)
‘liner’ 是双线性插值 (缺省)
调用格式2:zi=interp2(x,y,z,xi,yi,’nearest’)
’nearest’ 是最近邻域插值
调用格式3:zi=interp2(x,y,z,xi,yi,’spline’)
‘spline’是三次样条插值
说明:这里x和y是两个独立的向量,它们必须是单调的。z是矩阵,是由x和y确定的点上的值。z和x,y之间的关系是z(i,:)=f(x,y(i)) z(:,j)=f(x(j),y) 即:当x变化时,z的第i行与y的第i个元素相关,当y变化时z的第j列与x的第j个元素相关。如果没有对x,y赋值,则默认x=1:n, y=1:m。n和m分别是矩阵z的行数和列数。
例2:已知某处山区地形选点测量坐标数据为:
x=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
y=0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
海拔高度数据为:
z=89 90 87 85 92 91 96 93 90 87 82
92 96 98 99 95 91 89 86 84 82 84
96 98 95 92 90 88 85 84 83 81 85
80 81 82 89 95 96 93 92 89 86 86
82 85 87 98 99 96 97 88 85 82 83
82 85 89 94 95 93 92 91 86 84 88
88 92 93 94 95 89 87 86 83 81 92
92 96 97 98 96 93 95 84 82 81 84
85 85 81 82 80 80 81 85 90 93 95
84 86 81 98 99 98 97 96 95 84 87
80 81 85 82 83 84 87 90 95 86 88
80 82 81 84 85 86 83 82 81 80 82
87 88 89 98 99 97 96 98 94 92 87
其地貌图为:
对数据插值加密形成地貌图。
程序:
x=0:.5:5;
y=0:.5:6;
z=[89 90 87 85 92 91 96 93 90 87 82
92 96 98 99 95 91 89 86 84 82 84
96 98 95 92 90 88 85 84 83 81 85
80 81 82 89 95 96 93 92 89 86 86
82 85 87 98 99 96 97 88 85 82 83
82 85 89 94 95 93 92 91 86 84 88
88 92 93 94 95 89 87 86 83 81 92
92 96 97 98 96 93 95 84 82 81 84
85 85 81 82 80 80 81 85 90 93 95
84 86 81 98 99 98 97 96 95 84 87
80 81 85 82 83 84 87 90 95 86 88
80 82 81 84 85 86 83 82 81 80 82
87 88 89 98 99 97 96 98 94 92 87];
mesh(x,y,z) %绘原始数据图
xi=linspace(0,5,50); %加密横坐标数据到50个
yi=linspace(0,6,80); %加密纵坐标数据到60个
[xii,yii]=meshgrid(xi,yi); %生成网格数据
zii=interp2(x,y,z,xii,yii,'cubic'); %插值
mesh(xii,yii,zii) %加密后的地貌图
hold on % 保持图形
[xx,yy]=meshgrid(x,y); %生成网格数据
plot3(xx,yy,z+0.1,'ob') %原始数据用‘O’绘出

2、二元非等距插值
调用格式:zi=griddata(x,y,z,xi,yi,’指定插值方法’)
插值方法有: linear % 线性插值 (默认)
bilinear % 双线性插值
cubic % 三次插值
bicubic % 双三次插值
nearest % 最近邻域插值
例:用随机数据生成地貌图再进行插值
程序:
x=rand(100,1)*4-2;
y=rand(100,1)*4-2;
z=x.*exp(-x.^2-y.^2);
ti=-2:.25:2;
[xi,yi]=meshgrid(ti,ti); % 加密数据
zi=griddata(x,y,z,xi,yi);% 线性插值
mesh(xi,yi,zi)
hold on
plot3(x,y,z,'o')

㈢ 我有一些散点(x,y,z),x,y为坐标,z表示高程。MATLAB如何对地形图散点进行插值

x=[129 140 103.5 88 185.5 195 105 157.5 107.5 77 81 162 162 117.5];
y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5];
z=-[4 8 6 8 6 8 8 9 9 8 8 9 4 9];
xi=75:1:200;
yi=-50:1:150;
zi=griddata(x,y,z,xi,yi','cubic')
subplot(1,2,1), plot(x,y,'*')
subplot(1,2,2), mesh(xi,yi,zi)

㈣ 叠前地震数据重建方法研究

霍志周

(中国石化石油勘探开发研究院,北京 100083)

摘 要 地震勘探的目的是为了获得地下构造的精确成像。由于人为因素和环境原因,地震数据在空间方向上往往是不规则采样或缺失采样的,因此经常需要在空间方向对缺失的地震数据进行重建。最小范数傅立叶重建方法是基于估算非规则采样地震数据傅立叶系数的方法,一旦准确求得这些系数,就可以通过傅立叶反变换将地震数据重建到任何合适的空间位置。该方法的主要优点是既可以处理规则采样数据有空道的情况,也可以处理非规则采样的数据;该方法的缺点是无法重建含空间假频以及含空隙过大的地震数据。针对含空间假频的地震数据重建问题,本文通过将最小范数傅立叶重建方法和多步自回归方法相结合,较好地克服了最小范数傅立叶重建方法的缺点。通过对不同的理论和实际地震数据算例的验证,表明了该重建方法的有效性和实用性。

关键词 地震数据重建 最小范数反演 傅立叶变换 多步自回归

Research on Pre-stack Seismic Data Reconstruction Method

HUO Zhizhou

(Exploration and Proction Research Institute,SINOPEC,Beijing 100083,China)

Abstract The objective of exploration seismology is to obtain an accurate image of the subsurface.Due to human-related reasons and environmental circumstances,more often than not the seismic data can be irregularly sampled or missing sampled in spatial direction.Therefore,it often needs to reconstruct missing seismic data along spatial direction.Fourier reconstruction with minimum norminversion is based on estimating the Fourier coefficients that describe the irregularly sampled seismic data,and once these coefficients have been obtained, seismic data can be reconstructed on any suitable spatial location via inverse Fourier transformation.The main advantages of Fourier reconstruction are flexible,as it can not only handle regularly sampled data with gaps,but also can handle irregularly sampled data.The disadvantage of this method is that the method can’t handle spatially aliased seismic data and seismic data with large gaps.In this article,for reconstruction question of spatially aliased seismic data,Fourier reconstruction with minimum norminversion and multi-step autoregressive method is combine.This method overcomes the shortcomings of the Fourier reconstruction method.Several different theoretical and practical seismic data would be reconstructed using multi-step autoregressive method,that prove the effectiveness and practicality of this method。

Key words seismic data reconstruction;minimum norm inversion;Fourier transforms;multistep autoregressive

众所周知,地震数据的采集严重影响地震数据最终的成像结果,而地震数据采集中很常见的一个问题就是地震数据沿着空间方向是非规则采样或是稀释采样的。地震数据在空间方向上稀疏采样的原因主要是出于经济因素的考虑,稀疏采样比较经济,但意味着采集到较少的数据,而且会导致地震数据中含有空间假频,尤其是在3D地震勘探中。引起地震数据在空间方向上非规则采样的原因主要有:地表障碍物的存在(建筑物、道路、桥梁等)或地形条件因素(禁采区和山区、森林、河网地区等)、仪器硬件(地震检波器、空气枪、电缆等)问题引起的采集坏道以及海洋地震数据采集时电缆的羽状漂流等。在地震数据处理过程中,非规则采样和稀疏采样不但会引起人为误差,而且会对基于多道技术的DMO、FK域滤波、速度分析、多次波衰减、谱估计和波动方程偏移成像等方法的处理结果带来严重的影响,因此通过对原有的地震数据进行重建,使其包含的地球物理信息更加真实地反映地下地质体的地球物理特征,使得后续地震数据处理能够更好地满足对复杂地质构造进行精细刻画的要求,为油气勘探提供更有效的指示和帮助等具有重要的现实意义[1,2]

基于傅立叶变换的地震数据重建方法不需要地质或地球物理假设,只要求地震数据是空间有限带宽的,并且计算效率高。傅立叶重建方法利用最小二乘反演估算非规则采样数据的傅立叶系数,如何更好地估算傅立叶系数是该方法的核心。一旦傅立叶系数被正确估算出来,数据可以重建到任意采样网格上。Duijndam等[3]将傅立叶重建方法应用于非规则采样地震数据的规则化上,并成功解决了参数选择等一系列问题。Hindriks和Duijndam[4]将该方法扩展到3D地震数据重建中。Liu和Sachhi[5]提出了最小加权范数插值的傅立叶重建方法,该带限重建方法利用自适应谱加权范数的正则化项来约束反演方程的解,将数据的带宽和频谱的形状作为带限地震数据重建问题的先验信息,因此得到了比传统的带限数据傅立叶重建方法更好的解,但没有给出好的反假频方法。Zwartjes和Sachhi[6]提出了使用非二次型正则化项的稀疏约束傅立叶重建方法,以改善地震数据含较宽的空道时的重建效果,并较好地解决了含有空间假频的地震数据的重建问题。傅立叶重建方法不但可以重建规则采样的地震数据,而且可以重建非规则和随机采样的地震数据,但是不能很好地重建含有空间假频的地震数据。

本文对基于最小范数解的傅立叶地震数据重建方法的研究分析,通过最小二乘反演方法得到傅立叶域的系数来进行地震数据重建。为了改进最小范数傅立叶重建方法不能重建空道间距过大的地震数据和无法重建含有空间假频的地震数据的缺点,本文采用了最小范数傅立叶重建方法和多步自回归方法相结合的思想进行地震数据重建,该方法不但能重建空道间距大的地震数据,而且可以重建含有空间假频的地震数据。

1 最小范数傅立叶重建方法

傅立叶重建是从非规则采样数据上恢复信号的一种方法,它是基于采样定理的,也就是说一个带限的连续信号能够从规则采样数据中恢复。如果非规则采样信号的平均采样率超过Nyquist采样率,则非规则采样的信号也可以重建。在规则采样的情况下,离散傅立叶变换是正交变换。但是当采样是非规则时,傅立叶变换的基函数不再是正交的,这就意味着直接用离散傅立叶变换计算傅立叶系数将产生误差。利用最小二乘反演计算傅立叶系数就是一种补救措施[7]

假设数据是在空间方向上是不规则采样的,每个采样点的位置分别为[x0,…,xn,…,xN-1]。使用真实的采样位置和采样间隔的中点法则,非规则采样数据的离散傅立叶变换可由以下离散求和的形式表达:

油气成藏理论与勘探开发技术(五)

上式为非均匀离散傅立叶变换。其中,空间采样间隔△xn定义为:

油气成藏理论与勘探开发技术(五)

在波数域规则采样意味着数据在空间域是周期性的,所以 X为非规则采样数据的长度。如果直接用NDFT(Non-uniform Discrete Fourier Transform)计算波数,则由于采样非规则而会引起极大的误差,因此实际计算时通常采用最小二乘反演来计算波数。

首先定义由规则采样波数计算任意空间位置采样数据的数学变换,把它当作正演模型。假设带限数据的波数域带宽为[-M△k,M△k],在波数域规则采样,△k为空间波数采样间隔,则由波数域重建任意空间位置xn的离散傅立叶反变换为

油气成藏理论与勘探开发技术(五)

记系数矩阵为 不规则采样数据为dn=P(xn,ω),待求的规则波数为

油气成藏理论与勘探开发技术(五)

则将公式(3)写成矩阵形式为

油气成藏理论与勘探开发技术(五)

在实际的地震数据处理中,由于数据可能不完全是带限的,所以部分空间波数成分会超出定义的频带范围,这些超出的成分构成了上述正演模型的误差和噪音,因此在上式中需要噪声项:

油气成藏理论与勘探开发技术(五)

Duijndam等[3]通过最小二乘反演估计得到非规则采样数据d(xn,t)的空间波数 从非规则采样数据向量d中计算出未知的规则采样的傅立叶系数向量 可以归结为求解一个不适定线性反演问题,需要对其进行正则化,借助一些先验信息构建出合适的解。可以使用任何所需的参数估计技术,首先我们假设噪音n=N(0,Cn)和先验信息

油气成藏理论与勘探开发技术(五)

都是高斯分布的,噪音的协方差矩阵为Cn,其平均值为零。利用贝叶斯参数反演方法通过寻找后验概率密度函数

油气成藏理论与勘探开发技术(五)

的最大值来进行反演,其中 是似然函数, 表示模型向量的先验分布。分别满足

油气成藏理论与勘探开发技术(五)

油气成藏理论与勘探开发技术(五)

求 的最大后验概率解转化为求下面目标函数的最小化解,建立目标函数

油气成藏理论与勘探开发技术(五)

最小化目标函数得:

油气成藏理论与勘探开发技术(五)

这里, 为计算要得到的规则采样波数,AH为矩阵A的共轭转置矩阵, 为先验模型的协方差矩阵。

下面我们对(9)式进行简化。首先对于地震数据,通常没有先验模型信息,因此 一般没有理由假设空间波数之间的相关性,所以 是对角阵,通常的形式为 是先验模型的方差。准确地表达噪音的协方差矩阵Cn是不现实的,因为关于噪音详细的信息是未知的。Duijndam等[3]给出的噪音协方差矩阵为Cn =c2W-1,c是常数;W为权系数组成的对角阵,即W=diag(△xn)。根据离散傅立叶变换理论,应选择△k≤2π/X,这里X=∑n△xn,为数据的长度,即X=xN-1-x0,则(9)式变为

油气成藏理论与勘探开发技术(五)

其中, 称为阻尼因子。λ可以通过L-curve或者广义交叉验证(GCV)方法确定,最佳的选取方法是[4]

油气成藏理论与勘探开发技术(五)

式中:F为用户给定的常数,表示期望的数据信噪比值。但在实际地震数据重建过程中,λ一般取AHWA矩阵主对角元素的1%。

方程(10)的解称为最小范数解,也称为阻尼最小二乘解,该重建方法称为最小范数傅立叶重建方法(Fourierreconstruction with minimum norminversion,FRMN)[8]。通常非规则采样时,式(10)的系数矩阵AHWA为病态的Toeplitz矩阵。当不加权矩阵W时,AHA形成的Toeplitz矩阵病态程度受非规则采样数据之间的致密程度控制。非规则采样地震数据中地震道靠得越近,间距△x越小,则Toeplitz矩阵的条件数就越大,求解越困难;加上权系数矩阵W后,AHWA形成的Toeplitz矩阵病态程度受各数据之间的最大空隙△xa的大小控制,△xa=max(△xn)。系数矩阵AHWA的条件数与最大空隙△xa的关系如下[7]

油气成藏理论与勘探开发技术(五)

由上式可见,最大空隙△xa越大,矩阵AHWA病态程度越大,求解方程时就越难以收敛。如果定义空间Nyquist采样间隔为

油气成藏理论与勘探开发技术(五)

则当△xa≥3△xNyq时,系数矩阵AHWA已经无法保证迭代收敛[3]。也就是说当非规则采样地震数据的空隙太大时,不能得到满意的重建效果。这是傅立叶重建方法的固有弊病。

方程(10)实际求解时一般在频率域逐频率求解。在求解方程时,由于低频部分只需要很小的波数带宽就能完整重建数据,因此求解方程(10)的规模小,求解相对容易;而高频部分则需要较大的波数带宽,因此求解式(10)中的未知数多,求解需要更多的计算时间,而且解也不稳定。因此,利用最小范数傅立叶方法重建的地震数据低频部分有较高的精度。

2 多步自回归方法

自回归模型(预测滤波器)在信号处理领域具有广泛的应用,它是一种模拟信号演化的技术[9]。自回归模型可以应用于信号预测和噪音消除[10]、地震道内插[11,12]以及参数频谱分析[13]等方面。t-x域的线性同相轴变换到f-x域是复正弦函数,该函数可以通过自回归算子来模拟。Spitz[11]和Porsani[12]提出了自回归的重建方法,成功地解决了规则采样含空间假频地震数据的插值问题,这些方法是利用低频信息来恢复数据的高频部分。但这种方法只适用原始地震数据是空间规则采样的情况,而且只能用于加密插值。

多步自回归方法(multistep autoregressive,MSAR)[14]是对Spitz单步预测方法的拓展,使其应用范围从只能进行道加密插值扩展到能对不规则缺道地震数据进行插值重建。假设地震数据包含有限个线性同相轴,由N个等间距的地震道组成,部分地震道是缺失的。首先将地震数据从时间域变换到频率域,在f-x域,地震数据可以用向量x(f)表示,xT(f)=[x1(f),x2(f),x3(f),…,xN(f)],其中只有M道数据是已知的。分别用n={n(1),n(2),n(3),…,n(M)}和m={m(1),m(2),m(3),…,m(N-M)}表示已知数据和未知数据(缺失道)的下标,目标是从xn(f)中恢复出xm(f)。

由L个近似线性的同相轴构成的地震数据在f-x域可表示为

油气成藏理论与勘探开发技术(五)

式中:△x和△f分别表示空间域和频率域采样间隔;pj表示第j个线性同相轴的斜率;Aj表示振幅。对于每个频率成分f,上式表明在f-x域每个线性同相轴都可以用复谐波函数来表示。考虑当△x′=α△x,△f′=△f/α时,得到:

油气成藏理论与勘探开发技术(五)

此外,通过自回归模型的形式,可将L个谐波函数的叠加表达为

油气成藏理论与勘探开发技术(五)

其中P(j,n△f)表示预测滤波因子。同样的,对于△x′和△f′,有

油气成藏理论与勘探开发技术(五)

比较表达式(15)、(16)和(17),可得:

油气成藏理论与勘探开发技术(五)

该式即为多步自回归方法的基础。它表明在频率轴上,对于预测滤波器的每个成分都是可预测的。这就意味着,如果已知某些频率的预测滤波器,可以预测得到其他频率的预测滤波器。也就是说,我们可以从傅立叶方法重建得到的无空间假频的低频成分的预测滤波器中提取高频成分的预测滤波器,进而重建得到缺失地震道的高频成分。

假设用最小范数傅立叶方法重建得到的低频数据的频率范围为f∈[fminr,fmaxr],在f-x域线性同相轴向前和向后预测的多步预测滤波器可以由下列方程组确定:

油气成藏理论与勘探开发技术(五)

式中:*表示复共轭;L表示预测滤波器的长度;Pj(f)表示预测滤波器。这些方程对应一种特殊类型的自回归模型,向前自回归方程(19)和向后自回归方程(20)是通过每次向前和向后跳α步来实现的。通过自回归方程(19)和(20)可以计算出在α步时的预测滤波器Pj(f)。参数α=1,2,…,αmax是步长因子,用于从频率f中提取频率αf的预测滤波器。由于步长因子是一个正整数,很显然低频部分为数据重建算法提供了重要的信息。步长上限αmax依赖于地震道数N和预测滤波器的长度L,该参数由下式给出

油气成藏理论与勘探开发技术(五)

这里[.]表示取整数部分。

当用多步自回归方法从已重建的低频数据x(f)中计算出高频数据x(f′)的预测滤波器时,同Spitz插值方法相似,可以通过已知的数据和预测滤波器重建出缺失的数据。向前和向后自回归重建方程为

油气成藏理论与勘探开发技术(五)

设地震数据中含有L个不同斜率的线性同相轴,地震数据的有效频带范围为[fmin,fmax],含空间假频的不规则道缺失的地震数据的重建实施步骤为:(1)首先将原始地震数据变换到f-x域,用最小范数傅立叶方法重建无空间假频的低频段[fminr,fmaxr]的地震数据,得到低频段地震数据,其中fminr=fminr。对于不含空间假频的有限带宽信号而言,FRMN重建得到的地震数据精度较高;(2)运用方程(19)和(20),从低频段[fminr,fmaxr]中提取高频成分的预测滤波器Pj(f′);(3)利用已知道数据和预测滤波器Pj(f′)重建缺失的地震数据;(4)最后将重建后的地震数据反变换回t-x域。遇到复杂地震数据时,同相轴可能不满足线性假设,可将地震数据划分成多个小时空窗,分窗口进行重建。综上所述,从无空间假频低频段[fminr,fmaxr]数据中提取缺失数据高频成分f′=αf的预测滤波器,然后利用已知数据和预测滤波器计算缺失数据的高频成分,最终完成多步自回归重建。

3 理论数据算例

为了验证多步自回归算法的有效性,本节中我们将该算法应用于理论数据,进行缺失道的重建以及加密插值。第一个理论数据如图1(a)所示,是由7个不同斜率的线性同相轴组成,其f-k谱含有严重的空间假频(如图1(c)所示)。共有81道,道间距为5m,时间采样间隔为2ms,采样点数为901。图1(b)是从原始数据中随机抽去了40%的地震道后得到的数据。图1(d)是图1(b)对应的f-k谱。从图1(d)中可以看出,由于地震道的缺失而导致f-k谱上产生严重的噪音。

图1 多步自回归法理论算例

图2 最小范数傅立叶重建方法与多步自回归法的理论联合应用(一)

图2(a)是利用FRMN方法重建出的低频数据,其f-k谱如图2(c)所示。重建出的低频数据被MSAR算法用于提取预测滤波器来重建数据的高频部分。对于数据低频端的预测滤波器是通过预测滤波器的外推来估计。通过FRMN + MSAR方法重建后的完整数据如图2(b)所示,其对应的f-k谱如图2(d)所示,与原始数据的f-k谱(图1(c))相对比,几乎完全一样,由采样缺失引起的噪音已被消除。与原始数据(图1(a))相对比,缺失的地震道被填充,线性同相轴的连续性也很好。

图3 最小范数傅立叶重建方法与多步自回归法的理论联合应用(二)

图4 图3中数据对应的f-k谱

图5 最小范数傅立叶重建方法与多步自回归方法的实际应用

为了进一步验证算法在复杂情况下的适用性,我们选取了Marmousi模型数据中的一个单炮数据(图3(a)),共有96道数据,道间距为25m,时间采样间隔为4ms,采样点数为750。随机抽去了其中的27道数据(图3(b)),用FRMN + MSAR方法对该数据进行重建,图3(c)显示的是用FRMN方法重建的低频段的数据,图3(d)显示的是用FRMN+MSAR方法重建的完整单炮数据。由于模型很复杂,所以原始单炮数据的f-k谱有空间假频的存在(图4(a))。图4(b)是图3(b)对应的f-k谱,可以看出含有严重的噪音。图4(c)和图4(d)分别是3(c)和图3(d)对应的f-k谱。重建后的数据f-k谱中的噪音消除了,缺失的道也得到了填充,而且同相轴也保持很好的连续性。

图6 图5中数据对应的f-k谱

4 实际数据算例

本节我们将对实际数据进行重建,以验证FRMN +MSAR方法的适用性。选取一个共偏移距地震剖面的部分数据(图5(a)),总共有201道,道间距为12.5m,时间采样间隔为2ms。随机抽去其中30%的地震道(图5(b))进行重建,图5(c)展示的是FRMN方法重建的低频段的数据,图5(d)展示的是FRMN+MSAR重建的完整数据。图6(a)、图6(b)、图6(c)和图6(d)分别是图5(a)、图5(d)、图5(c)和图5(d)对应的f-k谱。可以看出,重建前后数据f-k谱的变化很小。重建后数据的缺失道得到了恢复,且同相轴连续,重建的结果接近于原始数据。

5 结论

本文在最小范数傅立叶重建方法的基础上,结合多步自回归方法进行含空间假频地震数据的重建。多步自回归方法是对Spitz方法的拓展,也是基于近似线性同相轴的假设。因此在处理复杂地震数据的时候一般难以满足这个假设,这时可采用小时空窗的方法来进行计算,在小时空窗中可以认为满足近似线性的假设。但是时空窗太小会使数据量不足,反而会导致重建的结果不好或可能无法重建。众所周知,为了能够求解大多数的地球物理问题,必须基于某些假设条件。一般在处理实际数据时,都是部分地违背这些假设的。事实上,对于中等程度弯曲的同相轴本方法同样能取得比较理想的重建结果,说明本文的重建方法具有很好的稳定性。实际上,对于含有大间距空道的地震数据,该方法同样取得了较好的重建结果。通过对一些理论数据和实际数据进行重建实验,验证了本文中重建方法的有效性和实用性。另外,地震数据的重建效果同原始数据的复杂程度以及谱的性质、缺失地震道的数量及位置和缺失道间距的大小等多方面原因有关,需要进一步研究这些因素对重建算法的影响。

参考文献

[1]Eiken O,Haugen G U,Schonewile M A,and Duijndam A J W.A proven method for acquiring highly repeatable towed streamer seismic data[J].Geophysics,2003,68(4):1303~1309.

[2]Wever A,Spetzler J.Criteria for source and receiver positioning in time-lapse seismic acquisition:74th Ann.Internat.Mtg.,SEG,Expanded Abstracts,2004:2319~2322.

[3]Duijndam A J W,Schonewille M A,and Hindriks C O H.Reconstruction of band-limited signals, irregulary sampled along one spatial direction[J].Geophysics,1999,64(2):524~538.

[4]Hindriks K,Duijndam A J W,Reconstruction of3 -D seismic signals irregularly sampled along two spatial coordinates[J].Geophysics,2000,65(1):253~263.

[5]Liu B,Sacchi M.Minimum weighted norminterpolation of seismic records[J].Geophysics,2004,69(6):1560~1568.

[6]Zwartjes P M ,Sacchi M D.Fourier reconstruction of nonuniformly sampled,aliased seismic data[J]. Geophysics,2007,72(1):21~32.

[7]Feichtinger H G,Grochenig K,Strohmer T.Efficient numerical methods in non -uniformsampling theory[J].Numerische Mathematik,1995,69:423~440.

[8]Zwartjes P M,Fourier reconstruction with sparse inversion:Ph.D.thesis,Delft University of Technology,2005.

[9]Takalo R,Hytti H,Ihalainen H.Tutorial on univariate autoregressive spectral analysis[J].Joural of Clinical Monitoring and Computing,2005,19(6):401~410.

[10]Canales L L.Random noise rection:54th Ann.Internat.Mtg .,SEG,Expanded Abstracts,1984: Session:S10.1.

[11]Spitz S.Seismic traces interpolation in f-x domain[J].Geophysics,1991,56(6):785 ~794.

[12]Porsani M J.Seismic trace interpolation using half-step prediction filters[J].Geophysics,1999,64(5):1461~1467.

[13]Marple S L.Digital spectral analysis with applications.Englewood Cliffs,New Jersey:Prentice-Hall Inc,1987.

[14]Naghizadeh M,Sacchi M D.Multistep autoregressive reconstruction of seismic records[J]. Geophysics,2007,72(6):111-118.

㈤ 实体模型的构建

系统提供了根据钻孔数据来构建地下水三维模型的功能,也提供了根据多源数据(剖面图、等值线、钻孔、离散点)构建三维实体模型的功能,但目前多源数据构建三维实体模型的方法还不够成熟和完善。

图5—131 从剖面图中整理提取得钻孔数据

图5—132 剖面图重构前后示意图

图5—133 剖面图的三维显示

图5—134 剖面图的三维查询

1.基于钻孔数据的实体模型的构建

根据研究区的钻孔数据以及从剖面上提取的虚拟钻孔数据可以很方便的构建地下水三维模型,如果虚拟钻孔越能够反映剖面上边界线的变化趋势,那么构建的三维实体模型精度就越高,基于钻孔数据的实体建模流程如图5—135所示。

下面详细论述该建模过程:

(1)选择钻孔,提取钻孔数据,构建构建含水组层面初始DEM三角网。对于特定的建模区域,可能会有数目众多的钻孔,这些钻孔能够提供的信息包括各个钻孔的位置(地理坐标)、钻孔的类型以及含水组的分层信息等。这些信息虽然繁多但相对规整,可以存贮在数据库中,形成特定区域的钻孔属性资料库以备重复使用。当用户构建研究区的三维含水组模型时,首先可选取研究区一定数目的钻孔,然后从钻孔数据库中提取各个钻孔的含水组分层信息作为建模的原始数据,供下面的各个建模步骤使用。

图5—135 基于钻孔数据的华北地下水建模流程

图5—136 含水组骨架模型示意图

然后从原始钻孔数据库中获取各钻孔的孔口位置,构建含水组层面初始DEM三角网。这个初始DEM三角网是构建含水组各个层面的基础,可根据其生成三维含水组模型的骨架结构。但显然,并非研究区内所有含水组在各个钻孔中都有揭露(如:图5—136中钻孔ZK02就缺失了含水组C—3)。对缺失含水组的处理方法有两种:①一般的多层DEM建模法是将其当作尖灭含水组进行处理(如图5—136(a)所示),假定缺失含水组在钻孔位置处尖灭,那么该含水组分界面的控制点应该与该层上一层的层底或下一层的层顶(如图5—136(a)中的P0点)重合。②另一种处理方式认为缺失含水组并非一定在钻孔位置处尖灭,该含水组可能被流水侵蚀掉一部分后在其他位置而非钻孔处发生尖灭,因此,可采用一定的插值算法求出缺失含水组在钻孔位置处的初始高程(即未被侵蚀前的含水组分界面高程),然后再作相应的调整处理。本文采用后一种方法构建华北地下水的模型。

(2)插值缺失含水组在钻孔位置处的初始高程。为求出缺失含水组在钻孔位置处的初始高程,可采用特定的插值算法(如距离反比加权法、自然邻近点法、克立格法等)进行计算。

(3)调整高程。对于插值出来的含水组面高程,需要与原始钻孔数据比较,并进行适当的调整处理。以图5—136(b)所示的情况为例,含水组面3在钻孔ZK02处的插值结果既有可能高于点P0(如点P1),也有可能低于点P0(如点P2);这取决于含水组面上已知控制点的高程和使用的插值算法。对于插值出来的含水组面高程高于点P0的情况,不需要进行任何特殊的处理,因为在建模的第(7)步(见下文)可以将其调整回来;对于插值结果低于点P0的情况,需要强行将其设定为与点P0的高程相等,因为插值出来的含水组面高程虽然与原始钻孔数据不符,但建模的第(7)步却不能将其调整回来,只能在第(3)步先进行高程调整处理。这样,经过第(2)、(3)步的工作,求出了缺失含水组在钻孔位置处的初始高程,为下面的建模工作(如含水组加密、插值等)奠定了基础。

(4)加密初始DEM三角网。对初始DEM三角网进行加密,生成“主TIN”(加密后的含水组层面DEM三角网)。所谓“主TIN”(Primary TIN),是指以钻孔孔口坐标为基准,结合建模区域边界条件,采用标准的三角网加密算法加密后生成的一个三角网。“主TIN”不仅定义了待构建的三维含水组模型的外边界,还能够表达建模区域各个含水组层面的拓扑关系。“主TIN”可以看做是确定建模区域含水组拓扑关系的一个“模板”,它可以沿着钻孔深度自上而下推延至建模区域的全部含水组。这样可以保证各个含水组层面具有确定的、上下一致的拓扑关系,能够极大地简化后续处理的复杂度,增强算法的稳健性。

(5)对加密后的含水组层面高程进行插值。分别提取各个含水组层面的控制点高程信息(包括钻孔数据库中的数据、地质剖面中的控制点数据、含水组等值线数据、含水组高程点数据),然后利用这些点插值求“主TIN”上各个未知点的高程值;如果“主TIN”上的点与钻孔的坐标(指二维平面坐标)一致,则该点的高程不需要插值,直接与钻孔所揭示的含水组控制点高程(在建模的第(3)步已经确定)一致。

(6)含水组层面相交处理。经过第(3)步和第(5)步插值处理后的TIN面可能会出现上下含水组层面交叉的情况,这需要通过含水组层面相交处理来消除。在上下含水组层面求交时,由于第(4)步所定义的“主TIN”具有上下严格一致的拓扑关系,这导致每个TIN面中特定位置的三角形只能与另一个TIN中对应位置的三角形相交,利用这一特性可大大减少TIN面求交的时间复杂度。

(7)调整含水组高程。经过含水组层面相交处理后的“主TIN”可能会出现本应位于下部含水组上的点的高程却高于其上部含水组的情况,这需要调整含水组高程,强行将其拉回到与其上一层相等的高程上。这一工作是通过比较“主TIN”中各个含水组层面对应的顶点高程来完成的。

(8)构建三维含水组模型。前面已经完成了生成各个含水组层面三角网的工作,现在只需要将上下相邻的含水组层面的三角网在竖向上“缝合”起来,即可以构成完整的三维含水组实体模型。这是一个相对简单的过程,只需以顶层(或底层)TIN中的一个三角形为起点,然后循环处理各个含水组以及各个含水组TIN面上的所有三角形即可完成。

2.基于多源数据的实体模型的构建

基于多源数据构建实体模型时首先构建各层的初始底界面模型,如图5-137所示;然后再与断层格局模型及其他底界面模型切割调整,最终形成与断层格局模型拓扑一致的含水组实体模型。

图5—137 基于多源数据的第三含水组底界面初始模型的构建

㈥ 插值加密什么意思

举一个例子,你已经有了一组数据,他是[(1,2),(3,5)(5,9)(7,10)],你会需要用这组数据输入到一个坐标系里面,但是这个坐标系,需要x是从1到7每个都有的,我们怎么办呢,一般就是采用插入的方法,在(1,2)和(3,5)之间插入(2,(2+5)/2),在(3,5)和(5,9)之间插入(4,(5+9)/2),在(5,9)和(7,10)之间插入(6,(9+10)/2).这个就是插值加密了。

㈦ 土壤碳储量计算方法

一、数据来源及处理

本研究数据一是本次多目标区域地球化学调查数据。样品采集于2007年,土壤样品采用网格布样法采集,表层土壤采样密度为1件/km2;同时采集深层土壤样品,采样密度为1点/4km2,平原区采样深度1.5~2.0m,山地丘陵区采集的是1.2m以下土柱;共采集表层土壤样品55 370件,深层土壤样品12 540件。按4个相邻网格(表层样4km2,深层样16km2)的样品组合为一个样品进行分析。采用X射线荧光光谱、等离子光谱、氢化物原子荧光光谱、发射光谱等大型精密仪器分析54项元素(指标),其中土壤有机碳、全碳采用经硫酸、重铬酸钾消解后,硫酸亚铁铵容量法进行测定,分析检出限0.02%,准确度和精密度合格率均为100%。样品采集、分析及质量监控按中国地质调查局《多目标区域地球化学调查规范(DD2005—01)》执行。二是山东省第二次土壤普查数据,山东省于20世纪80年代中期(1985~1986年)进行了全省第二次土壤普查,从中收集了表层不同类型土壤的879个有机质数据。

将山东省第二次土壤普查获得的1:50万土壤有机质含量分布图矢量化。利用MapGIS软件对所收集的879个有机质数据进行空间加密插值重新成图,利用MapGIS空间分析功能把多目标调查分析点位与“新图”进行相交分析,提取山东省第二次土壤普查时期与多目标调查同点位的有机质含量数据,再除以Bemmelen系数1.724得到山东省第二次土壤普查有机碳含量数据。

二、插值数据误差统计

多目标区域地球化学调查获得的土壤地球化学数据,使计算的土壤碳密度及储量可以客观地反映研究区土壤中碳的分布现状。但是,在用山东省第二次土壤普查土壤有机质数据来估算1985年土壤有机碳储量的过程中,运用了人为加密插值方法,插值过程不可避免的产生误差,只有误差较小的情况下,插值数据才有意义。本研究以山东省第二次土壤普查实测数据为参照,对插值后提取的879个数据所产生的误差进行了分析。

利用MapGIS软件提取插值后879个实测点位在山东省第二次土壤普查时期的土壤有机碳含量数据,并与实测含量数据比较(表6-1)。实测土壤有机碳含量范围为0.023%~2.129%,均值为0.533%;插值后所提取的879个点位的土壤有机碳含量范围为0.141%~1.336%,均值为0.534%。虽然提取的插值数据极值较实测值极值有很大变化,插值极差值是实测的56.74%,但含量均值仅变化了0.19%,中位数仅变化了0.59%。可认为,插值过程中产生一定的误差,运用插值获得的表层土壤有机碳数据在一定程度上能反映1985年的土壤有机碳含量状况,在没有更准确的资料情况下,利用这些数据也使研究土壤有机碳时空变化得以实现。

表6-1 山东省第二次土壤普查实测与插值有机碳数据特征参数对比表

三、土壤碳储量计算方法

单位面积一定深度的土体中碳(包括有机碳和无机碳)储量为土壤碳密度(soil carbondensity,简称为SCD),4km2范围内,一定深度土体中碳的储量为单位土壤碳量(unit soil carbon amount,简称为USCA);一定面积和深度土体中碳的总量为土壤碳储量(soil carbon reserve,简称为SCR)。本研究采用了0~0.2m,0~1.0m和0~1.5m 3种不同的土层深度分别代表表层、中上层和全层土壤。

根据中国地质调查局《基于多目标调查的土壤碳储量估算方法》,土壤有机碳和无机碳密度计算应采用不同的计算公式,这一方法认为土壤有机碳含量符合从表层到深层逐渐递减的指数曲线模型(y=αebx)空间变化规律,其计算土壤碳密度的本质是对土壤剖面在垂直(z)方向上的积分,结果相当于土壤碳含量曲线与坐标轴围成的面积,采用该方法计算的有机碳密度误差最小。而土壤无机碳含量剖面接近直线模型(y=αx+b),从表层到深层含量均匀递减,故采用直线模型法计算无机碳在任意深度(0~1.5m)内的平均含量,进而求取土壤无机碳密度。

土壤有机碳密度(soil organic carbon density,简称为SOCD)计算公式为

SOCD=D×ρ×TOC×10 (6-1)

鲁东地区农业生态地球化学研究

土壤无机碳密度(soil inorganic carbon density,简称为SICD)计算公式为

SICD=D×ρ×TIC×10 (6-3)

鲁东地区农业生态地球化学研究

式中:SOCD和 SICD分别为土壤有机碳和无机碳密度,kg/m2;TOC 和 TIC 分别为一定深度内土壤有机碳和无机碳平均含量,%;TOC1和 TOC2分别为表层土壤和深层土壤有机碳实测含量,%;TIC1和 TIC2分别为表层土壤和深层土壤无机碳含量,%;由全碳实测数据减有机碳取得;d1取表层土壤取样中间深度,数值为0.1m;d2为深层土壤取样实际深度,范围为1.2~1.8m,平均为 1.6m;D 为所要计算碳量的深度,分别取0.2m,1.0m和1.6m;ρ为土壤容重,g/cm3;10 为单位换算系数。土壤容重数据取自闫鹏等(1994)。

使用以上求出的“土壤碳密度”乘4×103,即为单位土壤碳量(USCA),单位为t;对统计范围内的所有单位土壤碳量求和,即为土壤碳储量(SCR),单位为 t。土壤有机碳量(SOCR)与无机碳量(SICR)之和为土壤全碳量(USCR)。

㈧ 分析加密技术在信息安全体系中的地位和作用

加密技术(Cryptography)已经为人们所熟悉,广泛应用于各行各业。加密技术研究已有多年,有许多加密方法,但是由于加密明确的告知用户,此文件或其他媒介已经进行过加密,窃密者必将利用各种破解工具进行破解,得到密文。虽然加密长度和强度一再增加,但破解工具也在加强。并且由于计算机性能的飞速发展,使解密时间缩短,所以加密术的使用局限性已见一斑。

信息隐藏,信息隐藏可以追溯到公元1499年,它的历史久远。但是直到20世纪90年代,在IT界,人们才赋予了它新的内容,使之成为继加密技术之后,保护信息的又一强有力的工具。信息隐藏与传统的信息加密的明显区别在于,传统的加密技术以隐藏信息的内容为目的,使加密后的文件变得难以理解,而信息隐藏是以隐藏秘密信息的存在为目标。所以科学技术的发展使信息隐藏技术在信息时代又成为新的研究热点。它既发扬了传统隐藏技术的优势,又具有了现代的独有特性。对于研究信息安全方向的学者而言,研究信息隐藏是很有意义的,也是刻不容缓的。

信息隐藏的相关研究

在信息隐藏的研究中,主要研究信息隐藏算法与隐蔽通信。在信息隐藏算法中,主要有空间域算法和变换域算法。最典型的空间域信息隐藏算法为LSB算法,最典型的变换域算法是小波变换算法。由于LSB算法的鲁棒性比较差,相关的研究改进工作都是提高其鲁棒性。对于小波变换算法,由于小波变换具有良好的视频局部特性,加上JPEG2000和MPEG4压缩标准使用小波变换算法取得了更高的压缩率,使得基于小波的变换的信息隐藏技术成为目前研究的热点。一般根据人类的视觉特点,对秘密信息用一定的比例进行小波压缩,压缩过程增加了数据的嵌入容量。然后量化小波系数并转换为二进制流数据。对载体信号同样进行小波变换,选择适当的小波系数及嵌入参数嵌入信息。因为小波有几十种,每种小波的特性不同,参数的选取也不同,所以必须通过实验,筛选出隐蔽性较好、容量较大的方法,从而使不可感知性、鲁棒性与容量三者之间达到平衡。另外,还可以先对偶数点的小波系数与之相邻的两点的小波系数的平均值来替换,这个平均值称为插值,作为秘密数据嵌入的位置。

信息隐藏的实施阶段

一般而言,信息隐藏是分为四个阶段:预处理阶段、嵌入阶段、传输阶段和提取阶段。为了使每个阶段都达到安全,所以必须在预处理阶段,引入加密术中的加密算法。在嵌入阶段,使用基于小波的隐藏信息的算法,在传输阶段,进行隐蔽通信,从而使用传输阶段也是安全的。所以这套信息隐藏的处理方案,将形成一个安全的体系,因此即能隐藏秘密信息的内容,也能隐蔽通信的接收方和发送方,从而建立隐藏通信。

信息隐藏的应用范围

信息隐藏的优势决定了其具有广泛的应用前景,它的应用范围包括:电子商务中的电子交易保护、保密通信、版权保护、拷贝控制和操作跟踪、认证和签名等各个方面。信息隐藏主要分为隐写术和数字水印,数字水印技术主要用于版权保护以及拷贝控制和操作跟踪。在版权保护中,将版权信息嵌入到多媒体中(包括图像、音频、视频、文本),来达到标识、注释以及版权保护。数字水印技术的应用已经很成熟。信息隐藏的另一个分支为隐写术,隐写术的分类的依据不同:可以按隐写系统结构分类:分为纯隐写术、密钥隐写术和公钥隐写术;按隐写空间分类:可以分为信道隐秘、空域隐写、变换域隐写;按隐写载体分类可以分为文本隐写、语音隐写、视频隐写和二进制隐写。

㈨ 什么是插值算法

插值法又称“内插法”,是利用函数f (x)在某区间中插入若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方法称为插值法。如果这特定函数是多项式,就称它为插值多项式。
1、Lagrange插值:
Lagrange插值是n次多项式插值,其成功地用构造插值基函数的 方法解决了求n次多项式插值函数问题;
★基本思想将待求的n次多项式插值函数pn(x)改写成另一种表示方式,再利 用插值条件⑴确定其中的待定函数,从而求出插值多项式。

2、Newton插值:
Newton插值也是n次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange插值相比,具有承袭性和易于变动节点的特点;
★基本思想将待求的n次插值多项式Pn(x)改写为具有承袭性的形式,然后利用插值条件⑴确定Pn(x)的待定系数,以求出所要的插值函数。

3、Hermite插值:
Hermite插值是利用未知函数f(x)在插值节点上的函数值及导数值来构造插值多项式的,其提法为:给定n+1个互异的节点x0,x1,……,xn上的函数值和导数值
求一个2n+1次多项式H2n+1(x)满足插值条件
H2n+1(xk)=yk
H'2n+1(xk)=y'k k=0,1,2,……,n ⒀
如上求出的H2n+1(x)称为2n+1次Hermite插值函数,它与被插函数
一般有更好的密合度;
★基本思想
利用Lagrange插值函数的构造方法,先设定函数形式,再利
用插值条件⒀求出插值函数.

4、分段插值:
插值多项式余项公式说明插值节点越多,误差越小,函数逐近越好,但后来人们发现,事实并非如此,例如:取被插函数,在[-5,5]上的n+1个等距节点:计算出f(xk)后得到Lagrange插值多项式Ln(x),考虑[-5,5]上的一点x=5-5/n,分别取n=2,6,10,14,18计算f(x),Ln(x)及对应的误差Rn(x),得下表
从表中可知,随节点个数n的增加,误差lRn(x)l不但没减小,反而不断的增大.这个例子最早是由Runge研究,后来人们把这种节点加密但误差增大的现象称为Runge现象.出现Runge现象的原因主要是当节点n较大时,对应
的是高次插值多项式,此差得积累"淹没"了增加节点减少的精度.Runge现象否定了用高次插值公式提高逼近精度的想法,本节的分段插值就是克服Runge现象引入的一种插值方法.
分段多项式插值的定义为
定义2: a=x0<x1<…<xn=b: 取[a,b]上n+1个节点 并给定在这些节点 上的函数值f(xR)=yR R=0,1,…,n
如果函数Φ(x)满足条件
i) Φ(x)在[a,b]上连续
ii) Φ(xr)=yR,R =0,1,…,n
iii) Φ(x)zai 每个小区间[xR,xR+1]是m次多项式,
R=0,1,…,n-1则称Φ(x)为f(x)在[a,b]上的分段m次插值多项式
实用中,常用次数不超过5的底次分段插值多项式,本节只介绍分段线性插值和分段三次Hermite插值,其中分段三次Hermite插值还额外要求分段插值函数Φ(x)
在节点上与被插值函数f(x)有相同的导数值,即
★基本思想将被插值函数f〔x〕的插值节点 由小到大 排序,然后每对相邻的两个节点为端点的区间上用m 次多项式去近似f〔x〕.
例题
例1 已知f(x)=ln(x)的函数表为:
试用线性插值和抛物线插值分别计算f(3.27)的近似值并估计相应的误差。
解:线性插值需要两个节点,内插比外插好因为3.27 (3.2,3.3),故选x0=3.2,x1=3.3,由n=1的lagrange插值公式,有
所以有,为保证内插对抛物线插值,选取三个节点为x0=3.2,x1=3.3,x2=3.4,由n=2的lagrange插值公式有
故有
所以线性插值计算ln3.27的误差估计为
故抛物线插值计算ln3.27的误差估计为:
显然抛物线插值比线性插值精确;

5、样条插值:
样条插值是一种改进的分段插值。
定义 若函数在区间〖a,b〗上给定节点a=x0<x1<;…<xn=b及其函数值yj,若函数S(x)满足
⒈ S(xj)=yj,j=0,1,2,…,n;
插值法主要用于道路桥梁,机械设计,电子信息工程等 很多工科领域的优化方法。

热点内容
在配置更新的时候没电关机怎么办 发布:2024-05-18 20:36:10 浏览:926
win7访问win2000 发布:2024-05-18 20:27:41 浏览:387
青岛人社局密码多少 发布:2024-05-18 20:19:10 浏览:733
无法存储呼叫转移 发布:2024-05-18 20:18:30 浏览:125
数据库的调优 发布:2024-05-18 20:18:29 浏览:345
sqlserver注册表清理 发布:2024-05-18 20:13:14 浏览:990
linux删除连接 发布:2024-05-18 20:06:56 浏览:821
linux搭建云服务器平台 发布:2024-05-18 19:52:21 浏览:401
安卓怎么关闭美易订阅 发布:2024-05-18 19:29:16 浏览:643
苹果手机配置代理服务器怎么开 发布:2024-05-18 19:29:07 浏览:230