当前位置:首页 » 密码管理 » 非对称加密认证

非对称加密认证

发布时间: 2022-09-19 20:50:50

‘壹’ 什么是非对称加密技术

非对称加密算法是一种密钥的保密方法。
在对称加密中加密和解密过程用的是同一把钥匙,而非对称加密中加密和解密过程用的是一对密钥,这对密钥分别称为“公钥”和“私钥”。因为使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。

‘贰’ 非对称加密的加密原则是

非对称加密原则如下:

公钥私钥的使用原则

①每一个公钥都对应一个私钥。

②密钥对中,让大家都知道的是公钥,不告诉大家,只有自己知道的,是私钥。

③如果用其中一个密钥加密数据,则只有对应的那个密钥才可以解密。

④如果用其中一个密钥可以进行解密数据,则该数据必然是对应的那个密钥进行的加密。

非对称密钥密码的主要应用就是公钥加密和公钥认证。

‘叁’ 非对称加密算法有哪些

RSA:RSA 是一种目前应用非常广泛、历史也比较悠久的非对称秘钥加密技术,在1977年被麻省理工学院的罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)三位科学家提出,由于难于破解,RSA 是目前应用最广泛的数字加密和签名技术,比如国内的支付宝就是通过RSA算法来进行签名验证。它的安全程度取决于秘钥的长度,目前主流可选秘钥长度为 1024位、2048位、4096位等,理论上秘钥越长越难于破解,按照维基网络上的说法,小于等于256位的秘钥,在一台个人电脑上花几个小时就能被破解,512位的秘钥和768位的秘钥也分别在1999年和2009年被成功破解,虽然目前还没有公开资料证实有人能够成功破解1024位的秘钥,但显然距离这个节点也并不遥远,所以目前业界推荐使用 2048 位或以上的秘钥,不过目前看 2048 位的秘钥已经足够安全了,支付宝的官方文档上推荐也是2048位,当然更长的秘钥更安全,但也意味着会产生更大的性能开销。

DSA:既 Digital Signature Algorithm,数字签名算法,他是由美国国家标准与技术研究所(NIST)与1991年提出。和 RSA 不同的是 DSA 仅能用于数字签名,不能进行数据加密解密,其安全性和RSA相当,但其性能要比RSA快。

ECDSA:Elliptic Curve Digital Signature Algorithm,椭圆曲线签名算法,是ECC(Elliptic curve cryptography,椭圆曲线密码学)和 DSA 的结合,椭圆曲线在密码学中的使用是在1985年由Neal Koblitz和Victor Miller分别独立提出的,相比于RSA算法,ECC 可以使用更小的秘钥,更高的效率,提供更高的安全保障,据称256位的ECC秘钥的安全性等同于3072位的RSA秘钥,和普通DSA相比,ECDSA在计算秘钥的过程中,部分因子使用了椭圆曲线算法。

‘肆’ 什么是非对称加密密钥为什么可以证明我的身份

公钥私钥是非对称加密的典型例子。公钥负责加密,私钥负责解密。使用非对称加密,连接方式只有一条路。浏览器使用非对称加密来验证公私钥对,以及扩展证书本身。为此,浏览器将使用随时可用的公钥来加密一小撮一次性数据。 如果服务器能够解密这个数据并以明文形式发回,那么它证明了它的私钥对应于公钥。至此,浏览器和服务器可以开始他们的加密链接了。

‘伍’ 入门密码学④非对称加密

公钥密码(Public-key cryptography) 也称非对称式密码(Asymmetric cryptography)是密码学的一种算法,它需要两个密钥,一个是公开密钥,另一个是私有密钥; 公钥用作加密,私钥则用作解密 。使用公钥把明文加密后所得的密文,只能用相对应的私钥才能解密并得到原本的明文,最初用来加密的公钥不能用作解密。由于加密和解密需要两个不同的密钥,故被称为非对称加密;不同于加密和解密都使用同一个密钥的对称加密。公钥可以公开,可任意向外发布;私钥不可以公开。

1976年以前,所有的加密方法都是同一种模式:加密和解密使用同样的规则。
1976年,由惠特菲尔德·迪菲(Bailey Whitfield Diffie)和马丁·赫尔曼(Martin Edward Hellman)在1976年首次发表 迪菲-赫尔曼密钥交换
1977年,Ralph Merkle和Martin Hellman 共同设计了一种具体的公钥密码算法-- Knapsack
1978年,罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)共同发表了一种公钥密码算法-- RSA
RSA 可以说是现在公钥密码的事实标准

在对称密码中,由于加密和解密的密钥是相同的,因此必须向接收者配送密钥。由于解密的密钥必须被配送给接收者,在传输中的过程中存在着被窃听的问题,这一问题称为 密钥配送问题
解决密钥配送问题的方法有以下几种:

RSA 是世界第一个广泛使用的公钥算法,可以被用于公钥密码和数字签名。RSA公开密钥密码体制的原理是:根据数论,寻求两个大素数比较简单,而将它们的乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。它的强度被认为与分解一个非常大的数字的难度有关。以现代数字计算机的当前和可预见的速度,在生成 RSA 密钥时选择足够长的素数应该使该算法无限期地安全。但是,这种信念尚未在数学上得到证明,并且可能有一种快速分解算法或一种完全不同的破解 RSA 加密的方法。

ab = 1

然而只根据 N 和 E(注意:不是p和q)要计算出 d 是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道D)才可对密文解密。

RSA 是现在最为普及的一种公钥密码算法,但是除了 RSA之外还有其他的公钥密码,基于与 RSA 等效复杂度的不同数学,包括 ElGamal 加密 、 Rabin 方式 和 椭圆曲线加密 。

在密码学中, ElGamal 加密算法 是一个基于迪菲-赫尔曼密钥交换的非对称加密算法。它在1985年由塔希尔·盖莫尔(Taher ElGamal)提出。ElGamal加密算法利用了 求离散对数的困难数。

Rabin 利用了 下平方根的困难度

椭圆曲线密码 是通过将椭圆曲线上的特定点进行特殊的乘法运算实现,它利用了这种乘法运算的逆运算非常困难这一特性。它的特点是所需的密钥长度比 RSA 短。

‘陆’ 非对称加密算法 (RSA、DSA、ECC、DH)

非对称加密需要两个密钥:公钥(publickey) 和私钥 (privatekey)。公钥和私钥是一对,如果用公钥对数据加密,那么只能用对应的私钥解密。如果用私钥对数据加密,只能用对应的公钥进行解密。因为加密和解密用的是不同的密钥,所以称为非对称加密。

非对称加密算法的保密性好,它消除了最终用户交换密钥的需要。但是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比对称加密慢上1000倍。

算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。

RSA、Elgamal、背包算法、Rabin、D-H、ECC (椭圆曲线加密算法)。使用最广泛的是 RSA 算法,Elgamal 是另一种常用的非对称加密算法。

收信者是唯一能够解开加密信息的人,因此收信者手里的必须是私钥。发信者手里的是公钥,其它人知道公钥没有关系,因为其它人发来的信息对收信者没有意义。

客户端需要将认证标识传送给服务器,此认证标识 (可能是一个随机数) 其它客户端可以知道,因此需要用私钥加密,客户端保存的是私钥。服务器端保存的是公钥,其它服务器知道公钥没有关系,因为客户端不需要登录其它服务器。

数字签名是为了表明信息没有受到伪造,确实是信息拥有者发出来的,附在信息原文的后面。就像手写的签名一样,具有不可抵赖性和简洁性。

简洁性:对信息原文做哈希运算,得到消息摘要,信息越短加密的耗时越少。

不可抵赖性:信息拥有者要保证签名的唯一性,必须是唯一能够加密消息摘要的人,因此必须用私钥加密 (就像字迹他人无法学会一样),得到签名。如果用公钥,那每个人都可以伪造签名了。

问题起源:对1和3,发信者怎么知道从网上获取的公钥就是真的?没有遭受中间人攻击?

这样就需要第三方机构来保证公钥的合法性,这个第三方机构就是 CA (Certificate Authority),证书中心。

CA 用自己的私钥对信息原文所有者发布的公钥和相关信息进行加密,得出的内容就是数字证书。

信息原文的所有者以后发布信息时,除了带上自己的签名,还带上数字证书,就可以保证信息不被篡改了。信息的接收者先用 CA给的公钥解出信息所有者的公钥,这样可以保证信息所有者的公钥是真正的公钥,然后就能通过该公钥证明数字签名是否真实了。

RSA 是目前最有影响力的公钥加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可发布的供任何人使用,私钥则为自己所有,供解密之用。

A 要把信息发给 B 为例,确定角色:A 为加密者,B 为解密者。首先由 B 随机确定一个 KEY,称之为私钥,将这个 KEY 始终保存在机器 B 中而不发出来;然后,由这个 KEY 计算出另一个 KEY,称之为公钥。这个公钥的特性是几乎不可能通过它自身计算出生成它的私钥。接下来通过网络把这个公钥传给 A,A 收到公钥后,利用公钥对信息加密,并把密文通过网络发送到 B,最后 B 利用已知的私钥,就能对密文进行解码了。以上就是 RSA 算法的工作流程。

由于进行的都是大数计算,使得 RSA 最快的情况也比 DES 慢上好几倍,无论是软件还是硬件实现。速度一直是 RSA 的缺陷。一般来说只用于少量数据加密。RSA 的速度是对应同样安全级别的对称密码算法的1/1000左右。

比起 DES 和其它对称算法来说,RSA 要慢得多。实际上一般使用一种对称算法来加密信息,然后用 RSA 来加密比较短的公钥,然后将用 RSA 加密的公钥和用对称算法加密的消息发送给接收方。

这样一来对随机数的要求就更高了,尤其对产生对称密码的要求非常高,否则的话可以越过 RSA 来直接攻击对称密码。

和其它加密过程一样,对 RSA 来说分配公钥的过程是非常重要的。分配公钥的过程必须能够抵挡中间人攻击。假设 A 交给 B 一个公钥,并使 B 相信这是A 的公钥,并且 C 可以截下 A 和 B 之间的信息传递,那么 C 可以将自己的公钥传给 B,B 以为这是 A 的公钥。C 可以将所有 B 传递给 A 的消息截下来,将这个消息用自己的密钥解密,读这个消息,然后将这个消息再用 A 的公钥加密后传给 A。理论上 A 和 B 都不会发现 C 在偷听它们的消息,今天人们一般用数字认证来防止这样的攻击。

(1) 针对 RSA 最流行的攻击一般是基于大数因数分解。1999年,RSA-155 (512 bits) 被成功分解,花了五个月时间(约8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央内存的 Cray C916计算机上完成。

RSA-158 表示如下:

2009年12月12日,编号为 RSA-768 (768 bits, 232 digits) 数也被成功分解。这一事件威胁了现通行的1024-bit 密钥的安全性,普遍认为用户应尽快升级到2048-bit 或以上。

RSA-768表示如下:

(2) 秀尔算法
量子计算里的秀尔算法能使穷举的效率大大的提高。由于 RSA 算法是基于大数分解 (无法抵抗穷举攻击),因此在未来量子计算能对 RSA 算法构成较大的威胁。一个拥有 N 量子位的量子计算机,每次可进行2^N 次运算,理论上讲,密钥为1024位长的 RSA 算法,用一台512量子比特位的量子计算机在1秒内即可破解。

DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 签名算法的变种,被美国 NIST 作为 DSS (DigitalSignature Standard)。 DSA 是基于整数有限域离散对数难题的。

简单的说,这是一种更高级的验证方式,用作数字签名。不单单只有公钥、私钥,还有数字签名。私钥加密生成数字签名,公钥验证数据及签名,如果数据和签名不匹配则认为验证失败。数字签名的作用就是校验数据在传输过程中不被修改,数字签名,是单向加密的升级。

椭圆加密算法(ECC)是一种公钥加密算法,最初由 Koblitz 和 Miller 两人于1985年提出,其数学基础是利用椭圆曲线上的有理点构成 Abel 加法群上椭圆离散对数的计算困难性。公钥密码体制根据其所依据的难题一般分为三类:大整数分解问题类、离散对数问题类、椭圆曲线类。有时也把椭圆曲线类归为离散对数类。

ECC 的主要优势是在某些情况下它比其他的方法使用更小的密钥 (比如 RSA),提供相当的或更高等级的安全。ECC 的另一个优势是可以定义群之间的双线性映射,基于 Weil 对或是 Tate 对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。

ECC 被广泛认为是在给定密钥长度的情况下,最强大的非对称算法,因此在对带宽要求十分紧的连接中会十分有用。

比特币钱包公钥的生成使用了椭圆曲线算法,通过椭圆曲线乘法可以从私钥计算得到公钥, 这是不可逆转的过程。

https://github.com/esxgx/easy-ecc

Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 算法。

https://www.jianshu.com/p/58c1750c6f22

DH,全称为"Diffie-Hellman",它是一种确保共享 KEY 安全穿越不安全网络的方法,也就是常说的密钥一致协议。由公开密钥密码体制的奠基人 Diffie 和 Hellman 所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。也就是由甲方产出一对密钥 (公钥、私钥),乙方依照甲方公钥产生乙方密钥对 (公钥、私钥)。

以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥 (SecretKey) 对数据加密。这样,在互通了本地密钥 (SecretKey) 算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯。

具体例子可以移步到这篇文章: 非对称密码之DH密钥交换算法

参考:
https://blog.csdn.net/u014294681/article/details/86705999

https://www.cnblogs.com/wangzxblog/p/13667634.html

https://www.cnblogs.com/taoxw/p/15837729.html

https://www.cnblogs.com/fangfan/p/4086662.html

https://www.cnblogs.com/utank/p/7877761.html

https://blog.csdn.net/m0_59133441/article/details/122686815

https://www.cnblogs.com/muliu/p/10875633.html

https://www.cnblogs.com/wf-zhang/p/14923279.html

https://www.jianshu.com/p/7a927db713e4

https://blog.csdn.net/ljx1400052550/article/details/79587133

https://blog.csdn.net/yuanjian0814/article/details/109815473

‘柒’ 什么是非对称加密

MD5
\PGP这类的都属于非对称加密.就是加密简单,解密(破解)困难.

‘捌’ 对称加密、非对称加密、摘要、数字签名、数字证书

作为一个开发人员,或多或少都听说过对称加密、非对称加密、摘要、数字签名、数字证书这几个概念,它们是用来保证在互联网通信过程中数据传输安全的。有人可能会有疑惑,我给传输数据加个密不就安全了,为什么还要搞这么多花样出来?本文主要通过一个案例来讲解这几个概念的实际作用。

在此之前,我先简单介绍一下这几个概念。

对称加密是指用来加密和解密的是同一个秘钥。其特点是加密速度快,但是秘钥容易被黑客截获,所以安全性不高。常见的有AES、DES算法。

非对称加密是指用来加密和解密的是不同的秘钥,它们是成对出现的,称为公钥和私钥,知道其中一个秘钥是无法推导出另外一个秘钥的。用公钥加密的内容需要用私钥才能解密,用私钥加密的内容需要用公钥才能解密。非对称加密的特点是安全性高,缺点是加密速度慢。常见的有RSA算法。

所谓的摘要就是一段信息或者一个文件通过某个哈希算法(也叫摘要算法)而得到的一串字符。摘要算法的特点就是不同的文件计算出的摘要是不同的(也有可能相同,但是可能性非常非常低),比如一个1G的视频文件,哪怕只是改动其中一个字节,最后计算得到的摘要也是完全不同的,所以摘要算法通常是用来判断文件是否被篡改过。其还有一个特点就是通过摘要是无法推导出源文件的信息的。常用的摘要算法有MD5、SHA等。

数字签名就是一个文件的摘要加密后的信息。数字签名是和源文件一起发送给接收方的,接收方收到后对文件用摘要算法算出一个摘要,然后和数字签名中的摘要进行比对,两者不一致的话说明文件被篡改了。

数字证书是一个经证书授权中心生成的文件,数字证书里一般会包含公钥、公钥拥有者名称、CA的数字签名、有效期、授权中心名称、证书序列号等信息。其中CA的数字签名是验证证书是否被篡改的关键,它其实就是对证书里面除了CA的数字签名以外的内容进行摘要算法得到一个摘要,然后CA机构用他自己的私钥对这个摘要进行加密就生成了CA的数字签名,CA机构会公开它的公钥,验证证书时就是用这个公钥解密CA的数字签名,然后用来验证证书是否被篡改。

场景:

张三要找人装修一个房子,原则是谁的出价便宜就给谁装修,所以对于报价文件就是属于机密文件。下面我们来看下不同的方式传输报价文件都会有什么风险。

现在李四想接这个装修的活,他做了一份报价文件(文件名: lisi.txt ,文件内容: 报价50万 )。然后李四用一个对称秘钥 123 对这个文件进行加密。最后李四将这个秘钥和加密的文件发给张三,张三收到后用这个秘钥解密,知道了李四的报价是50万。

同时王五也想接这个装修的活,他本来是想报价55万的,但是又担心报价太高而丢掉这个活。恰巧王五是个黑客高手,于是他截获了李四发给张三的秘钥和加密文件,知道了李四报价是50万。最后王五将自己的报价改成了49万发给张三,结果王五接下了这个装修活。

结论:
用对称加密的话,一旦秘钥被黑客截获,加密就形同虚设,所以安全性比较低。

首先张三会生成一对秘钥,私钥是 zhangsan1 ,公钥是 zhangsan2 ,私钥张三自己保存,将公钥公布出去。

李四将报价文件 list.txt 用张三公布的公钥 zhangsan2 进行加密后传给张三,然后张三用私钥 zhangsan1 进行解密得到李四的报价是50万。

这个时候即使王五截获到了李四发给张三的报价文件,由于王五没有张三的私钥,所以他是无法解密文件的,也就无法知道李四的报价。最后王五因为报价55万而丢掉了这个装修的机会。

所以用非对称加密是可以保证数据传输安全的。不过这里说一句题外话,既然非对称加密安全性高,那为什么不淘汰掉对称加密呢?其实关键就在于加密速度,非对称加密计算量很大,所以加密速度是很慢的,如果发送消息非常频繁,使用非对称加密的话就会对性能造成很大影响。所以在实际开发过程中通常是对称加密和非对称加密结合使用的。也就是对称加密的秘钥是用非对称加密后发送的,这样能保证对称加密的秘钥不被黑客截获,然后在发送业务数据时就用对称加密。这样既保证了安全性也保证了加密速度。

结论:
非对称加密可以防止黑客截获加密后的内容,安全性高。

前面都说了非对称加密是安全的,那为什么还要数字签名呢?

设想一下,王五截获了李四的报价文件,王五虽然无法知道李四的实际报价,但是他完全可以伪造一份李四的报价(文件名: lisi.txt ,文件内容: 报价60万 ),然后将这份伪造文件用张三公布的公钥 zhangsan2 进行加密后替换原来的报价文件。张三收到后解密发现报价是60万,于是张三就以为李四报的价是60万,最后决定将装修的活给报价55万的王五来做。

发生这个问题的关键就在于张三无法知道报价文件是否被篡改过。要解决这个问题就需要用到数字签名。

首先李四需要自己生成一对非对称加密的秘钥,私钥 lisi1 自己保存,公钥 lisi2 发给张三。然后李四对自己的报价文件通过摘要算法得到一个摘要(假设摘要是 aaa ),再用自己的私钥 lisi1 加密这个摘要就得到了报价文件的数字签名,最后将加密的报价文件和数字签名一起发给张三,张三收到后先用李四发过来的公钥 lisi2 解密数字签名得到摘要 aaa ,然后用自己的私钥 zhangsan1 解密加密的文件得到报价源文件,然后对报价源文件进行摘要算法,看计算得到的结果是不是 aaa ,如果不是 aaa 的话就说明报价文件被篡改了。

在这种情况下,如果王五截获了李四发给张三的文件。王五是无法解密报价文件的。如果王五伪造一份报价文件的话,等张三收到后就会发现报价文件和数字签名不匹配。那王五能不能伪造报价文件的同时也伪造签名呢?因为王五没有李四的私钥,所以没法对伪造的报价文件的摘要进行加密,所以也就没法伪造签名。

结论:
非对称加密虽然能确保加密文件内容不被窃取,但不能保证文件不被篡改。数字签名就是用来验证文件是否被篡改过。

既然非对称加密可以保证文件内容的安全性,数字签名又可以保证文件不被篡改,那还要数字证书有什么用呢?

我们再来设想一下,王五自己也生成了一对用于非对称加密的秘钥,私钥是 wangwu1 ,公钥是 wangwu2 。前面李四将自己的公钥 lisi2 发给张三的过程中被王五给截获了,王五用自己的公钥 wangwu2 替换了李四的公钥 lisi2 ,所以张三最后收到的公钥实际上是王五的,但张三对这并不知情。后面李四发的数字签名和加密的报价文件都被王五截获,并且王五伪造了一份报价文件,同时用自己的私钥加密报价文件的摘要生成伪造的签名并发给张三,张三收到后进行验证发现数字签名和报价文件是匹配的,就以为这份报价文件是真实的。

出现这个问题的关键就在于张三没法确认收到的公钥到底是不是李四发的,这个时候数字证书就起到作用了。李四到权威的数字证书机构申请数字证书,证书里面包含了公钥( lisi2 )和公钥的拥有者( 李四 )等相关信息,然后李四将证书发给张三,张三通过证书里面的信息就可以知道公钥到底是不是李四的了。

那证书在发送过程中有没有可能被王五截获并篡改呢?要知道证书里面还包含CA的数字签名,这个签名是证书机构用他们自己的私钥对证书的摘要进行加密的,而公钥是公开的。所以即便王五截获并篡改了证书内容,他也无法伪造证书机构的签名,张三在收到证书后通过验证签名也会发现证书被篡改了。所以到这一步才能保证数据传输的真正安全。

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:335
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:378
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:612
java用什么软件写 发布:2025-05-18 03:56:19 浏览:32
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:943
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:739
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:803
网卡访问 发布:2025-05-18 03:35:04 浏览:511
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:371