当前位置:首页 » 密码管理 » tep加密

tep加密

发布时间: 2022-09-21 11:19:49

㈠ 已知是用The Enigma Protector加密的,那怎么解密呢

膜拜楼上解密TEP的大牛

㈡ IPV6是什么 IPv6寻址

地址空间如此大的一个原因是将可用地址细分为反映Internet 的拓扑的路由域的层次结构。另一个原因是映射将设备连接到网络的网络适配器(或接口)的地址。IPv6 提供了内在的功能,可以在其最低层(在网络接口层)解析地址,并且还具有自动配置功能。 文本表示形式 以下是用来将IPv6 地址表示为文本字符串的三种常规形式: (一)冒号十六进制形式。 这是首选形式n:n:n:n:n:n:n:n。每个n 都表示八个16 位地址元素之一的十六进制值。例如: 3FFE:FFFF:7654:FEDA:1245:BA98:3210:4562. (二)压缩形式。 由于地址长度要求,地址包含由零组成的长字符串的情况十分常见。为了简化对这些地址的写入,可以使用压缩形式,在这一压缩形式中,多个0 块的单个连续序列由双冒号符号(:)表示。此符号只能在地址中出现一次。例如,多路广播地址FFED:0:0:0:0:BA98:3210:4562 的压缩形式为FFED: BA98:3210:4562。单播地址3FFE:FFFF:0:0:8:800:20C4:0 的压缩形式为3FFE:FFFF:8:800:20C4:0。环回地址0:0:0:0:0:0:0:1 的压缩形式为:1。未指定的地址0:0:0:0:0:0:0:0 的压缩形式为:。 (三)混合形式。 此形式组合 IPv4 和 IPv6 地址。在此情况下,地址格式为 n:n:n:n:n: n:d.d.d.d,其中每个n 都表示六个IPv6 高序位16 位地址元素之一的十六进制值,每个d 都表示IPv4 地址的十进制值。 地址类型 地址中的前导位定义特定的IPv6 地址类型。包含这些前导位的变长字段称作格式前缀(FP)。 IPv6 单播地址被划分为两部分。第一部分包含地址前缀,第二部分包含接口标识符。表示IPv6 地址/前缀组合的简明方式如下所示:ipv6 地址/前缀长度。 以下是具有64 位前缀的地址的示例。 3FFE:FFFF:0:CD30:0:0:0:0/64. 此示例中的前缀是 3FFE:FFFF:0:CD30。该地址还可以以压缩形式写入,如3FFE:FFFF:0:CD30:/64。 IPv6 定义以下地址类型: 单播地址。用于单个接口的标识符。发送到此地址的数据包被传递给标识的接口。通过高序位八位字节的值来将单播地址与多路广播地址区分开来。多路广播地址的高序列八位字节具有十六进制值FF。此八位字节的任何其他值都标识单播地址。 以下是不同类型的单播地址: 链路-本地地址。这些地址用于单个链路并且具有以下形式:FE80: InterfaceID。链路-本地地址用在链路上的各节点之间,用于自动地址配置、邻居发现或未提供路由器的情况。链路-本地地址主要用于启动时以及系统尚未获取较大范围的地址之时。 站点-本地地址。这些地址用于单个站点并具有以下格式:FEC0:SubnetID: InterfaceID。站点-本地地址用于不需要全局前缀的站点内的寻址。 全局IPv6 单播地址。这些地址可用在Internet 上并具有以下格式: 010(FP,3 位)TLA ID(13 位)Reserved(8 位)NLA ID(24 位)SLA ID(16 位)InterfaceID(64 位)。 多路广播地址。一组接口的标识符(通常属于不同的节点)。发送到此地址的数据包被传递给该地址标识的所有接口。多路广播地址类型代替IPv4 广播地址。 任一广播地址。一组接口的标识符(通常属于不同的节点)。发送到此地址的数据包被传递给该地址标识的唯一一个接口。这是按路由标准标识的最近的接口。任一广播地址取自单播地址空间,而且在语法上不能与其他地址区别开来。寻址的接口依据其配置确定单播和任一广播地址之间的差别。 通常,节点始终具有链路-本地地址。它可以具有站点-本地地址和一个或多个全局地址。 IPv6 路由 IPv6 的优点之一就是提供灵活的路由机制。由于分配IPv4 网络ID 所用的方式,要求位于Internet 中枢上的路由器维护大型路由表。这些路由器必须知道所有的路由,以便转发可能定向到Internet 上的任何节点的数据包。通过其聚合地址能力,IPv6 支持灵活的寻址方式,大大减小了路由表的规模。在这一新的寻址结构中,中间路由器必须只跟踪其网络的本地部分,以便适当地转发消息。 邻居发现 邻居发现提供以下一些功能: 路由器发现。这允许主机标识本地路由器。 地址解析。这允许节点为相应的下一跃点地址解析链路层地址(替代地址解析协议[ARP])。 地址自动配置。这允许主机自动配置站点-本地地址和全局地址。 邻居发现将Internet 控制消息协议用于IPv6(ICMPv6)消息,这些消息包括: 路由器广告。在伪定期的基础上或响应路由器请求由路由器发送。IPv6 路由器使用路由器广告来公布其可用性、地址前缀和其他参数。 路由器请求。由主机发送,用于请求链路上的路由器立即发送路由器广告。 邻居请求。由节点发送,以用于地址解析、重复地址检测,或用于确认邻居是否仍可访问。 邻居广告。由节点发送,以响应邻居请求或通知邻居链路层地址中发生了更改。 重定向。由路由器发送,从而为某一发送节点指示指向特定目标的更好的下一跃点地址。 IPv6 自动配置 IPv6 的一个重要目标是支持节点即插即用。也就是说,应该能够将节点插入IPv6 网络并且不需要任何人为干预即可自动配置它。 自动配置的类型 IPv6 支持以下类型的自动配置: 全状态自动配置。此类型的配置需要某种程度的人为干预,因为它需要动态主机配置协议来用于IPv6(DHCPv6)服务器,以便用于节点的安装和管理。 DHCPv6 服务器保留它为之提供配置信息的节点的列表。它还维护状态信息,以便服务器知道每个在使用中的地址的使用时间长度以及该地址何时可供重新分配。 无状态自动配置。此类型配置适合于小型组织和个体。在此情况下,每一主机根据接收的路由器广告的内容确定其地址。通过使用IEEE EUI-64 标准来定义地址的网络ID 部分,可以合理假定该主机地址在链路上是唯一的。 不管地址是采用何种方式确定的,节点都必须确认其可能地址对于本地链路是唯一的。这是通过将邻居请求消息发送到可能的地址来实现的。如果节点接收到任何响应,它就知道该地址已在使用中并且必须确定其他地址。 IPv6 移动性 移动设备的迅速普及带来了一项新的要求:设备必须能够在IPv6 Internet 上随意更改位置但仍维持现有连接。为提供此功能,需要给移动节点分配一个本地地址,通过此地址总可以访问到它。在移动节点位于本地时,它连接到本地链路并使用其本地地址。在移动节点远离本地时,本地代理(通常是路由器)在该移动节点和正与其进行通信的节点之间传递消息。 IPv6 的安全性问题 现实Internet 上的各种攻击、黑客、网络蠕虫病毒弄得网民人人自危,每天上网开了实时防病毒程序还不够,还要继续使用个人防火墙,打开实时防木马程序才敢上网冲浪。诸多人把这些都归咎于IPv4 网络。现在IPv6 来了,它设计的时候充分研究了以前IPv4 的各种问题,在安全性上得到了大大的提高。但是是不是IPv6 就没有安全问题了?答案是否定的。 目前,病毒和互联网蠕虫是最让人头疼的网络攻击行为。但这种传播方式在IPv6 的网络中就不再适用了,因为IPv6 的地址空间实在是太大了,如果这些病毒或者蠕虫还想通过扫描地址段的方式来找到有可乘之机的其他主机,就犹如大海捞针。在IPv6 的世界中,对IPv6 网络进行类似IPv4 的按照IP 地址段进行网络侦察是不可能了。 所以,在 IPv6 的世界里,病毒、互联网蠕虫的传播将变得非常困难。但是,基于应用层的病毒和互联网蠕虫是一定会存在的,电子邮件的病毒还是会继续传播。此外,还需要注意IPv6 网络中的关键主机的安全。IPv6 中的组发地址定义方式给攻击者带来了一些机会。例如,IPv6 地址FF05:3 是所有的DHCP 服务器,就是说,如果向这个地址发布一个IPv6 报文,这个报文可以到达网络中所有的DHCP 服务器,所以可能会出现一些专门攻击这些服务器的拒绝服务攻击。 IPv4 到IPv6 的过渡技术 另外,不管是IPv4 还是IPv6,都需要使用DNS,IPv6 网络中的DNS 服务器就是一个容易被黑客看中的关键主机。也就是说,虽然无法对整个网络进行系统的网络侦察,但在每个IPv6 的网络中,总有那么几台主机是大家都知道网络名字的,也可以对这些主机进行攻击。而且,因为IPv6 的地址空间实在是太大了,很多IPv6 的网络都会使用动态的DNS 服务。而如果攻击者可以攻占这台动态DNS 服务器,就可以得到大量的在线IPv6 的主机地址。另外,因为IPv6 的地址是128 位,很不好记,网络管理员可能会常常使用一下好记的IPv6 地址,这些好记的IPv6 地址可能会被编辑成一个类似字典的东西,病毒找到IPv6 主机的可能性小,但猜到IPv6 主机的可能性会大一些。而且由于IPv6 和IPv4 要共存相当长一段时间,很多网络管理员会把IPv4 的地址放到IPv6 地址的后32 位中,黑客也可能按照这个方法来猜测可能的在线IPv6 地址。所以,对于关键主机的安全需要特别重视,不然黑客就会从这里入手从而进入整个网络。所以,网络管理员在对主机赋予IPv6 地址时,不应该使用好记的地址,也要尽量对自己网络中的IPv6 地址进行随机化,这样会在很大程度上减少这些主机被黑客发现的机会。 以下这些网络攻击技术,不管是在IPv4 还是在IPv6 的网络中都存在,需要引起高度的重视:报文侦听,虽然IPv6 提供了IPSEC 最为保护报文的工具,但由于公匙和密匙的问题,在没有配置IPsec 的情况下,偷看IPv6 的报文仍然是可能的;应用层的攻击,显而易见,任何针对应用层,如WEB 服务器,数据库服务器等的攻击都将仍然有效;中间人攻击,虽然IPv6 提供了IPsec,还是有可能会遭到中间人的攻击,所以应尽量使用正常的模式来交换密匙;洪水攻击,不论在IPv4 还是在IPv6 的网络中,向被攻击的主机发布大量的网络流量的攻击将是会一直存在的,虽然在IPv6 中,追溯攻击的源头要比在IPv4 中容易一些。 IPv4 到IPv6 的过渡技术 由于Internet 的规模以及目前网络中数量庞大的IPv4 用户和设备,IPv4 到v6 的过渡不可能一次性实现。而且,目前许多企业和用户的日常工作越来越依赖于Internet,它们无法容忍在协议过渡过程中出现的问题。所以IPv4 到 v6 的过渡必须是一个循序渐进的过程,在体验IPv6 带来的好处的同时仍能与网络中其余的IPv4 用户通信。能否顺利地实现从IPv4 到IPv6 的过渡也是 IPv6 能否取得成功的一个重要因素。 实际上,IPv6 在设计的过程中就已经考虑到了IPv4 到IPv6 的过渡问题,并提供了一些特性使过渡过程简化。例如,IPv6 地址可以使用 IPv4 兼容地址,自动由IPv4 地址产生;也可以在IPv4 的网络上构建隧道,连接IPv6 孤岛。目前针对IPv4-v6 过渡问题已经提出了许多机制,它们的实现原理和应用环境各有侧重,这一部分里将对 IPv4-v6 过渡的基本策略和机制做一个系统性的介绍。 在IPv4-v6 过渡的过程中,必须遵循如下的原则和目标: ?保证IPv4 和IPv6 主机之间的互通; ?在更新过程中避免设备之间的依赖性(即某个设备的更新不依赖于其它设备的更新); ?对于网络管理者和终端用户来说,过渡过程易于理解和实现; ?过渡可以逐个进行; ?用户、运营商可以自己决定何时过渡以及如何过渡。 主要分三个方面:IP 层的过渡策略与技术、链路层对IPv6 的支持、IPv6 对上层的影响 对于IPV4 向IPV6 技术的演进策略,业界提出了许多解决方案。特别是 IETF 组织专门成立了一个研究此演变的研究小组NGTRANS,已提交了各种演进策略草案,并力图使之成为标准。纵观各种演进策略,主流技术大致可分如下几类: 双栈策略 实现IPv6 结点与IPv4 结点互通的最直接的方式是在IPv6 结点中加入 IPv4 协议栈。具有双协议栈的结点称作"IPv6/v4 结点",这些结点既可以收发 IPv4 分组,也可以收发IPv6 分组。它们可以使用IPv4 与IPv4 结点互通,也可以直接使用IPv6 与IPv6 结点互通。双栈技术不需要构造隧道,但后文介绍的隧道技术中要用到双栈。IPv6/v4 结点可以只支持手工配置隧道,也可以既支持手工配置也支持自动隧道。 隧道技术 在IPV6 发展初期,必然有许多局部的纯IPV6 网络,这些IPV6 网络被 IPV4 骨干网络隔离开来,为了使这些孤立的"IPV6 岛"互通,就采取隧道技术的方式来解决。利用穿越现存IPV4 因特网的隧道技术将许多个"IPV6 孤岛"连接起来,逐步扩大 IPV6 的实现范围,这就是目前国际 IPV6 试验床 6Bone 的计划。 工作机理:在IPV6 网络与IPV4 网络间的隧道入口处,路由器将IPV6 的数据分组封装入IPV4 中,IPV4 分组的源地址和目的地址分别是隧道入口和出口的IPV4 地址。在隧道的出口处再将IPV6 分组取出转发给目的节点。 隧道技术在实践中有四种具体形式:构造隧道、自动配置隧道、组播隧道以及6to4。 TB(Tunnel Broker,隧道代理) 对于独立的v6 用户,要通过现有的IPv4 网络连接IPv6 网络上,必须使用隧道技术。但是手工配置隧道的扩展性很差,TB 的主要目的就是简化隧道的配置,提供自动的配置手段。对于已经建立起IPv6 的ISP 来说,使用TB 技术为网络用户的扩展提供了一个方便的手段。从这个意义上说,TB 可以看作是一个虚拟的IPv6 ISP,它为已经连接到IPv4 网络上的用户提供连接到IPv6 网络的手段,而连接到IPv4 网络上的用户就是TB 的客户。 双栈转换机制(DSTM) DSTM 的目标是实现新的IPv6 网络与现有的IPv4 网络之间的互通。使用 DSTM,IPv6 网络中的双栈结点与一个IPv4 网络中的IPv4 主机可以互相通信。 DSTM 的基本组成部分包括: ?DHCPv6 服务器,为IPv6 网络中的双栈主机分配一个临时的IPv4 全网唯一地址,同时保留这个临时分配的IPv4 地址与主机IPv6 永久地址之间的映射关系,此外提供IPv6 隧道的隧道末端(TEP)信息; ?动态隧道端口DTI:每个DSTM 主机上都有一个IPv4 端口,用于将IPv4 报文打包到IPv6 报文里; ?DSTM Deamon:与DHCPv6 客户端协同工作,实现IPv6 地址与IPv4 地址之间的解析。 协议转换技术 其主要思想是在V6 节点与V4 节点的通信时需借助于中间的协议转换服务器,此协议转换服务器的主要功能是把网络层协议头进行V6/V4 间的转换,以适应对端的协议类型。 优点:能有效解决V4 节点与V6 节点互通的问题。 缺点:不能支持所有的应用。这些应用层程序包括:①应用层协议中如果包含有IP 地址、端口等信息的应用程序,如果不将高层报文中的IP 地址进行变换,则这些应用程序就无法工作,如FTP、STMP 等。②含有在应用层进行认证、加密的应用程序无法在此协议转换中工作。 SOCKS64 一个是在客户端里引入 SOCKS 库,这个过程称为"socks 化"(socksifying),它处在应用层和socket 之间,对应用层的socket API 和DNS 名字解析API 进行替换; 另一个是SOCKS 网关,它安装在IPv6/v4 双栈结点上,是一个增强型的 SOCKS 服务器,能实现客户端C 和目的端D 之间任何协议组合的中继。当C上的 SOCKS 库发起一个请求后,由网关产生一个相应的线程负责对连接进行中继。 SOCKS 库与网关之间通过SOCKS(SOCKSv5)协议通信,因此它们之间的连接是 "SOCKS 化"的连接,不仅包括业务数据也包括控制信息;而G 和D 之间的连接未作改动,属于正常连接。D 上的应用程序并不知道C 的存在,它认为通信对端是G。 传输层中继(Transport Relay) 与SOCKS64 的工作机理相似,只不过是在传输层中继器进行传输层的"协议翻译",而SOCKS64 是在网络层进行协议翻译。它相对于SOCKS64,可以避免 "IP 分组分片"和"ICMP 报文转换"带来的问题,因为每个连接都是真正的IPV4 或IPV6 连接。但同样无法解决网络应用程序数据中含有网络地址信息所带来的地址无法转换的问题。 应用层代理网关(ALG) ALG 是Application Level Gateway 的简称,与SOCKS64、传输层中继等技术一样,都是在V4 与V6 间提供一个双栈网关,提供"协议翻译"的功能,只不过ALG 是在应用层级进行协议翻译。这样可以有效解决应用程序中带有网络地址的问题,但ALG 必须针对每个业务编写单独的ALG 代理,同时还需要客户端应用也在不同程序上支持ALG 代理,灵活性很差。显然,此技术必须与其它过渡技术综合使用,才有推广意义。 过渡策略总结 双栈、隧道是主流 所有的过渡技术都是基于双栈实现的 不同的过渡策略各有优劣、应用环境不同 网络的演进过程中将是多种过渡技术的综合 根据运营商具体的网络情况进行分析 由不同的组织或个人提出的IPV4 向IPV6 平滑过渡策略技术很多,它们都各有自己的优势和缺陷。因此,最好的解决方案是综合其中的几种过渡技术,取长补短,同时,兼顾各运营商具体的网络设施情况,并考虑成本的因素,为运营商设计一套适合于他自己发展的平滑过渡解决方案。

㈢ 有没有DLL应用程序加密授权工具,一机一码的防止被人复制软件,

DLL文件是应用程序的拓展,在编写DLL文件时,完全可以在程序中自行编写这样的功能,当然,一般加密EXE文件的软件也可以在DLL文件上使用。

㈣ 广告牌制作用什么软件

那要看你属于那一类了,比如吧,写真的大多用的机型有罗兰、武腾、MIMK、用蒙泰软件的多,进口机都有自己的软件,雕刻机大多以TEP3、精雕文泰的多,设计收图平常以AI、PS、kaozhao、等用的多,不知道这样回答可以不!!

㈤ ipv4如何向ipv6过度模型介绍

由于Internet的规模以及目前网络中数量庞大的IPv4用户和设备,IPv4到v6的过渡不可能一次性实现。而且,目前许多企业和用户的日常工作越来越依赖于Internet,它们无法容忍在协议过渡过程中出现的问题。所以IPv4到v6的过渡必须是一个循序渐进的过程,在体验IPv6带来的好处的同时仍能与网络中其余的IPv4用户通信。能否顺利地实现从IPv4到IPv6的过渡也是IPv6能否取得成功的一个重要因素。 实际上,IPv6在设计的过程中就已经考虑到了IPv4到IPv6的过渡问题,并提供了一些特性使过渡过程简化。例如,IPv6地址可以使用IPv4兼容地址,自动由IPv4地址产生;也可以在IPv4的网络上构建隧道,连接IPv6孤岛。目前针对IPv4-v6过渡问题已经提出了许多机制,它们的实现原理和应用环境各有侧重,这一部分里将对IPv4-v6过渡的基本策略和机制做一个系统性的介绍。 在IPv4-v6过渡的过程中,必须遵循如下的原则和目标: ·保证IPv4和IPv6主机之间的互通; ·在更新过程中避免设备之间的依赖性(即某个设备的更新不依赖于其它设备的更新); ·对于网络管理者和终端用户来说,过渡过程易于理解和实现; ·过渡可以逐个进行; ·用户、运营商可以自己决定何时过渡以及如何过渡。 主要分三个方面:IP层的过渡策略与技术、链路层对IPv6的支持、IPv6对上层的影响 对于IPV4向IPV6技术的演进策略,业界提出了许多解决方案。特别是IETF组织专门成立了一个研究此演变的研究小组NGTRANS,已提交了各种演进策略草案,并力图使之成为标准。纵观各种演进策略,主流技术大致可分如下几类:
双栈策略
实现IPv6结点与IPv4结点互通的最直接的方式是在IPv6结点中加入IPv4协议栈。具有双协议栈的结点称作“IPv6/v4结点”,这些结点既可以收发IPv4分组,也可以收发IPv6分组。它们可以使用IPv4与IPv4结点互通,也可以直接使用IPv6与IPv6结点互通。双栈技术不需要构造隧道,但后文介绍的隧道技术中要用到双栈。 IPv6/v4结点可以只支持手工配置隧道,也可以既支持手工配置也支持自动隧道。
隧道技术
在IPV6发展初期,必然有许多局部的纯IPV6网络,这些IPV6网络被IPV4骨干网络隔离开来,为了使这些孤立的“IPV6岛”互通,就采取隧道技术的方式来解决。利用穿越现存IPV4因特网的隧道技术将许多个“IPV6孤岛”连接起来,逐步扩大IPV6的实现范围,这就是目前国际IPV6试验床6Bone的计划。 工作机理:在IPV6网络与IPV4网络间的隧道入口处,路由器将IPV6的数据分组封装入IPV4中,IPV4分组的源地址和目的地址分别是隧道入口和出口的IPV4地址。在隧道的出口处再将IPV6分组取出转发给目的节点。 隧道技术在实践中有四种具体形式:构造隧道、自动配置隧道、组播隧道以及6to4。
TB(Tunnel Broker,隧道代理)
对于独立的v6用户,要通过现有的IPv4网络连接IPv6网络上,必须使用隧道技术。但是手工配置隧道的扩展性很差,TB的主要目的就是简化隧道的配置,提供自动的配置手段。对于已经建立起IPv6的ISP来说,使用TB技术为网络用户的扩展提供了一个方便的手段。从这个意义上说,TB可以看作是一个虚拟的IPv6 ISP,它为已经连接到IPv4网络上的用户提供连接到IPv6网络的手段,而连接到IPv4网络上的用户就是TB的客户。
双栈转换机制(DSTM)
DSTM的目标是实现新的IPv6网络与现有的IPv4网络之间的互通。使用DSTM,IPv6网络中的双栈结点与一个IPv4网络中的IPv4主机可以互相通信。DSTM的基本组成部分包括: ·DHCPv6服务器,为IPv6网络中的双栈主机分配一个临时的IPv4全网唯一地址,同时保留这个临时分配的IPv4地址与主机IPv6永久地址之间的映射关系,此外提供IPv6隧道的隧道末端(TEP)信息; ·动态隧道端口DTI:每个DSTM主机上都有一个IPv4端口,用于将IPv4报文打包到IPv6报文里; ·DSTM Deamon:与DHCPv6客户端协同工作,实现IPv6地址与IPv4地址之间的解析。
协议转换技术
其主要思想是在V6节点与V4节点的通信时需借助于中间的协议转换服务器,此协议转换服务器的主要功能是把网络层协议头进行V6/V4间的转换,以适应对端的协议类型。 优点:能有效解决V4节点与V6节点互通的问题。 缺点:不能支持所有的应用。这些应用层程序包括:① 应用层协议中如果包含有IP地址、端口等信息的应用程序,如果不将高层报文中的IP地址进行变换,则这些应用程序就无法工作,如FTP、STMP等。② 含有在应用层进行认证、加密的应用程序无法在此协议转换中工作。
SOCKS64
一个是在客户端里引入SOCKS库,这个过程称为“socks化”(socksifying),它处在应用层和socket之间,对应用层的socket API和DNS名字解析API进行替换; 另一个是SOCKS网关,它安装在IPv6/v4双栈结点上,是一个增强型的SOCKS服务器,能实现客户端C和目的端D之间任何协议组合的中继。当C上的SOCKS库发起一个请求后,由网关产生一个相应的线程负责对连接进行中继。SOCKS库与网关之间通过SOCKS(SOCKSv5)协议通信,因此它们之间的连接是“SOCKS化”的连接,不仅包括业务数据也包括控制信息;而G和D之间的连接未作改动,属于正常连接。D上的应用程序并不知道C的存在,它认为通信对端是G。
传输层中继(Transport Relay)
与SOCKS64的工作机理相似,只不过是在传输层中继器进行传输层的“协议翻译”,而SOCKS64是在网络层进行协议翻译。它相对于SOCKS64,可以避免“IP分组分片”和“ICMP报文转换”带来的问题,因为每个连接都是真正的IPV4或IPV6连接。但同样无法解决网络应用程序数据中含有网络地址信息所带来的地址无法转换的问题。
应用层代理网关(ALG)
ALG是Application Level Gateway的简称,与SOCKS64、传输层中继等技术一样,都是在V4与V6间提供一个双栈网关,提供“协议翻译”的功能,只不过ALG是在应用层级进行协议翻译。这样可以有效解决应用程序中带有网络地址的问题,但ALG必须针对每个业务编写单独的ALG代理,同时还需要客户端应用也在不同程序上支持ALG代理,灵活性很差。显然,此技术必须与其它过渡技术综合使用,才有推广意义。
过渡策略总结
双栈、隧道是主流 所有的过渡技术都是基于双栈实现的 不同的过渡策略各有优劣、应用环境不同 网络的演进过程中将是多种过渡技术的综合 根据运营商具体的网络情况进行分析 由不同的组织或个人提出的IPV4向IPV6平滑过渡策略技术很多,它们都各有自己的优势和缺陷。因此,最好的解决方案是综合其中的几种过渡技术,取长补短,同时,兼顾各运营商具体的网络设施情况,并考虑成本的因素,为运营商设计一套适合于他自己发展的平滑过渡解决方案。

㈥ 有谁知道tepleton这个项目怎么样

Tepleton,是基于底层跨链技术的区块链新金融解决方案,是优先服务于金融行业的区块链价值网络,将赋能信托、银行、保险、证券、租赁等前沿金融领域。结合拜占庭容错安全共识的DPoS共识机制,既能有效保证主链上信息和交易快速流通传递,也能通过将Center(中枢)与Area(分区)相互隔离保证整个网络不会受恶意攻击者的破坏,兼具安全性、高性能、一致性的特性。全球范围内首次提出区块链新金融(FinBlockchain)概念,即Finance+Blockchain的缩写,将其定义为“以区块链底层技术为基础的公开、可信、高效、去中心化的新金融时代”。

Tepleton 的技术特点

Tepleton 协议是一个全资产去中心化底层跨链协议。其技术特点,包括,采用结合拜占庭容错的DPoS算法,既能有效保证主链上信息和交易快速流通传递,也能通过Center与Area隔离保证主链不会受恶意破坏者的攻击,兼具安全性、高性能、一致性的特性。

出于在金融领域率先落地应用的考虑,行业PoW共识机制因为较低的性能,网络容易拥堵,导致金融行业在快速结算和高频操纵上的需求无法实现。Tepleton 协议采用结合拜占庭容错的DPoS算法,既能有效保证主链上信息和交易快速流通传递,也能通过Center与Area隔离保证主链不会受恶意破坏者的攻击,兼具安全性、高性能、一致性的特性。Tepleton采用了使用大多数投票(超过三分之二)和锁定机制的最优拜占庭容错,来确保其安全性。蓄意破坏者想要造成安全性问题,必须有三分之一以上的投票权,并且要提交超过两份以上的值。

Tepleton采用Center和Area两个组成部分的架构来建立整个区块链网络的连接。Center是跨链连接的中心,所有跨链的交易都通过Center统一处理。Area则是不同的分区,通过IBC协议和Center连接在一起,不同的链彼此要进行跨链交易,只需要通过Center来代理就能完成。Center和Area都是基于Warren的区块链,WarrenCore 作为共识引擎使得各Area可以正常运行。WarrenCore在节点之间共享块和事务,以及建立规范交易顺序。IBC协议用于Center与Area之间的消息和价值传递。依赖IBC协议及时最终性的特点,IBC协议被用于Center与Area之间通证的流通和消息传递。

Tepleton 的首个Area被定义为Tepleton Center。Tepleton Center是一个多资产加密网络,它能够对网络进行适配和升级。Tepleton Center设定了95个节点。95个节点通过投票选出,共同决定哪些Area可以连接到Center。

由于Area间的可互操作性,Tepleton协议创造了一个极具潜力的金融互联网络。资产由不同的验证人发布和控制,并可以在不依靠需要信任的第三方的情况下,实现了资产的快速结算和承兑,同时也提供了跨链资产无缝的转移和交易的网络条件。Tepleton协议继承了Cosmos的技术优点,同时在性能,响应时间,每秒处理次数等方面进行了改进,从而发展出了更适用于量化的底层技术架构。

对于已经存在的区块链,缺乏Tepleton链间通信需要确认的最终性。为了解决这些公链之间的通信问题,Tepleton设计了作为中继连接的代理链Proxy Area。通过IBC与Center相连,从而实现跨链。

TEP——Tepleton生态的唯一权益证明以及应用场景

Tepleton Token简称TEP,是Tepleton生态的唯一权益通证,将用于未来所有生态中的权益证明与建设的价值流通。Tepleton将首先基于以太坊ERC-20协议发行初始代币,待主网上线后再做映射转换。TEP总量设置共10亿枚,写入智能合约,永不增发,并每季度Tepleton将会拿出整个生态收益的40%用于回购市场上流通的TEP通证,并将回购的通证进行销毁,以确保市场上不会出现通证通货的情况,直至最终TEP剩余总量为5000万。

TEP的是价值载体,每一个应用场景接入或直接使用一定量的TEP,或定义自己的通证,并与TEP进行一定比率的兑换。随着应用场景的逐渐丰富,TEP使用和消耗越来越多,TEP 的价值也越来大。并且TEP具备交易属性,TEP上的每笔同/跨链交易需要支付少量交易费用,其上的Dapp应用也需要使用TEP抵押和购买资源,TEP支持智能合约,能协助量化交易和跨境支付的执行。另外,TEP具有激励机制,通过积极的激励计划,TEP激励矿工主动提供系统验证交易,创造区块,利用经济手段产生积极的反馈可以促进系统的不断发展。通证将作为奖励,激励社区持续为系统做出贡献。

TEP有诸多应用场景,用户可以使用任意主流数字资产进行购买AI量化深脑便捷赚取收益,若使用TEP进行购买,享受相应优惠。允许用户可以使用任意主流数字资产进行购买平台基金赚取收益,但一些限量限时的高收益稳定基金,将限定只能使用TEP购买。另外,使用TEP还有购买量化保险,投资策略收益分发,合作伙伴权益抵押,提供策略的保证金抵押,生态激励等权益。

团队介绍

Jaden Tao

创始人兼CEO

区块链国际新锐,美国UCLA(加州大学洛杉矶分校)商业分析、经济学双硕士学位,世界经济论坛杰出青年社区成员,连续创业者,2016年进入区块链行业,曾任BeiPoP CEO,有丰富的区块链行业认知和项目运营管理经验。STO国际联盟理事长,早期数字货币投资者和布道者,先后参与全球多个优秀项目的早期投资和国际化布局。

Gen Chia

联合创始人兼COO

2015年投身区块链行业,创办Dream City和Idol Dream等区块链公司,均任职CEO或COO,丰富的运营经验,帮助多家公司融资超过千万美元。毕业于新加坡国立大学,获得商业管理及经济学双学位,新加坡国立大学文学暨社会科学院项目研究专员,全球区块链品牌运营社区发起人,提出“社区雪球”理论第一人。新加坡区块链咨询和金融服务联盟(BAFS)创始人,联盟成员遍布全球各国家。区块链跨国合作先锋,曾为数十家国际企业提供跨国金融、咨询服务,曾深度参与多家新加坡、香港公司IPO及投资并购运作。拥有丰富的东南亚政府资源,对区块链技术的社会价值、商业价值和应用价值具有敏锐的嗅觉和独到的认知。

Bruno Miguel Mendes Santos Moreira Monteiro

联合创始人兼CTO

现Tepleton核心开发团队CTO,毕业于波尔图大学计算机、经济学专业,英国伦敦米德尔塞克斯大学金融硕士。先后任职于英国伦敦阿波罗(保险管理)、Shawbrook Bank、TP ICAP(Interdealer Broker) 、Funding Circle、JP Morgan&Chase、Coinbase等公司担任CTO或技术岗位要职。精通英语、葡萄语、法语、意大利语,2013年开始关注加密数字行业,曾发表《区块链底层架构改造设想》、《区块链在量化金融领域的方向提纲》等论文,对区块链底层技术和区块链金融有深度研究。曾独立研发K2rco策略短线获得高达458%的收益,葡萄牙量化交易大师,擅长用代码解决金融领域的难题,区块链顶级金融架构师和底层代码金融安全分控专家。AI量化深脑核心开发团队成员之一。

Taiwo Ogunseye

高级架构师(Senior Technology Architect)

Tepleton核心开发团队高级架构师,2013年接触区块链和比特币,区块链顶级工程师和技术极客,毕业于东伦敦大学和休斯敦大学,分别获得计算机和商业管理硕士学位,先后任职于CollaboGate、Debit、Amazon、Tezos UK、Apple等多家着名公司担任技术要职和技术顾问。曾多次组织参与黑客马拉松,多次取得赛季冠军。比特币的第一个分支Name-coin技术的早期研究专家和建设者,DPoS+拜占庭容错混合机制早期提出者,曾联合创办一个开源的PoolWell。

Belokamensky

技术工程师(Technical Engineer)

毕业于利沃夫商学院, 曾任职于Adidas 、Nike 、Sberbank等全球知名公司。拥有15年的互联网技术开发经验和4年的去中心化开发经验,曾作为技术总监或工程师参与了多家数字货币交易所、钱包和Dapps的开发。主导开发的多款互联网产品曾获得App Store付费排名第一。精通互联网产品及区块链产品前后端设计与开发,对互联网、区块链、大数据、人工智能有深刻的见解。

㈦ 为什么路由器连接不上

网上邻居右键属性 本地连接右键属性 Internet协议(tep/ip)双击 依次输入:192.168.1.---(随意2至3位数)255.255.255.0 192.168.1.1 202.102.134.68 202.102.128.68确定 然后再设置你的路由器

㈧ 手机无线路由器怎么用,我是三星的的S5830 怎么连无线路由器,

一、 无线路由器的设置

TP-LINK无线路由器的设置相对比较简单,在设置过程中,有两个重要的参数需要记住:

SSID:无线基站的名称,本例为“TP-LINK_25A5EE”;

加密方式和密钥:本例为“WPA-PSK/WPA2-PSK”加密,密钥为“11223344”;

1:手机主界面选择“设置”菜单,进入手机设置页面。选择“无线和网络”,打开“无线和网络”设置页面:
2:勾选“WLAN”无线开关,开启手机无线功能,点击“WLAN设置”,扫描无线网络。
3:找到并点击无线路由器的SSID“TP-LINK_25A5EE”,弹出提示,要求输入无线密钥(若未加密,无线会直接连接成功)。输入无线密钥(本例为“11223344”),点击“连接”
4::无线连接成功。 此时手机就已经连接到互联网,您可以尽情的上网冲浪了。
注意事项

1. 手机无线连接不上路由器。有一种可能是手机连接过该无线路由器的无线信号,并在手机中保存该无线网络的配置文件。但是后来修改无线路由器的加密方式或密钥,此时手机就不能自动连接到该信号。需要先删除原有无线配置文件重新连接。下面介绍手机删除无线配置文件的方法。

STEP1:打开“WLAN设置”页面,找到并点击原有保存的无线配置文件(本例为“TP-LINK_25A5EE”),弹出删除配置文件选项。
TEP2:选择“删除”。删除配置文件之后,重新搜素无线信号进行连接。

2. 如果手机无线显示“已连接”但是不能上网,有一种可能是手机的IP地址等参数配置错误。下面介绍手机IP地址的配置方法。推荐使用默认的自动获取IP地址。

1:手机无线连接上无线路由器之后,按键“MENU”菜单键,弹出“高级”按钮。点击“高级’,弹出手机IP地址配置页面。
2:手机默认“使用静态IP”的勾没有勾上,即自动获取IP地址(推荐)。获取到正确的网络参数之后,手机即可正常连接到网络。如果要手动设置静态IP,可以将“使用静态IP”勾选上,并手动设置“IP地址”、“网关”、“网络掩码”以及“DNS”等参数。至此手机的无线连接已经配置完成,您可以尽情的使用上网冲浪。累死我了,

㈨ VM壳怎么脱

单纯的从VM的壳来说 有好多 比如Tmd Wl Tep PEp Vmp Safengine等只要带虚拟化代码的加密壳 都属于VM壳。。如果你说的是VMP 善用论坛搜索功能如果你说的是VM了代码 只能还原或者VM中爆破 追码

㈩ 人机界面与PLC之间的通信控制

S7-200通信最经济的方式就是采用PPI协议和自由口通信协议。对于S7-200之间进行通信,PPI协议又更适合——它比自由口通信的编程更简单!下面就对这个PPI通信进行说明——以2台S7-200通信为例,做一个实例。

设备配置:1台S7-200 CPU 226CN的PLC、 1台S7-200 CPU 224XP的PLC

硬件连接:原则上需要配备1条紫色的Profibus电缆、2个黑色的Profibus-DP接头。如果需要在PLC通信时对所有在线的PLC进行监控/编程操作而不占用另外的通信口(也就是说,假如所有PLC用端口PROT1进行PPI通信,而现在要对所有PLC依次编程/监控,但又不想占用这些PLC的端口PROT0——端口PROT0可能已作它用),那么必须在其中1台PLC采用带编程口的Profibus-DP接头。所以说,带编程口的Profibus-DP接头在整个网络中只需要一个就可以了。这样,也就可以在某一台PLC处对在网的其它PLC进行编程/监控。

引脚分配:

........S7--200 CPU上的通讯端口是符合欧洲标准EN 50170中PROFIBUS标准的RS--485兼容9针D型连接器。下表列出了为通讯端口提供物理连接的连接器,并描述了通讯端口的针脚分配。下面是S7-200的通信接口——D型9孔母头的引脚定义。

网络电缆的偏压电阻和终端电阻

为了能够把多个设备很容易地连接到网络中,西门子公司提供两种网络连接器:一种标准网络连接器(引脚分配如表7-7所示)和一种带编程接口的连接器,后者允许您在不影响现有网络连接的情况下,再连接一个编程站或者一个HMI设备到网络中。带编程接口的连接器将S7--200的所有信号(包括电源引脚)传到编程接口。这种连接器对于那些从S7--200取电源的设备(例如TD200)尤为有用。两种连接器都有两组螺钉连接端子,可以用来连接输入连接电缆和输出连接电缆。两种连接器也都有网络偏置和终端匹配的选择开关。典型的网络连接器偏置和终端如图所示:

........处于中间节点的从站在不工作时可以断电。

PROFIBUS电缆的接法
........PROFIBUS电缆,紫色,只有两根线在里面,一根红的一根绿的,然后外面有屏蔽层,接线的时候,要把屏蔽层接好,不能和里面的电线接触到,要分清楚进去的和出去的线分别是哪个,假如是一串的,就是一根总线下去,中间不断地接入分站,这个是很常用的方法,在总线的两头的两个接头,线都要接在进去的那个孔里,不能是出的那个孔,然后这两个两头的接头,要把它们的开关置为ON状态,这时候就只有进去的那个接线是通的,而出去的那个接线是断的,其余中间的接头,都置为OFF,它们的进出两个接线都是通的(我觉得德国人真的是和我们的思维不同,我觉得应该是OFF表示关闭吧,他偏设置ON为关闭,搞不懂)。这就是线的接法,接好了线以后呢,还要用万用表量一量,看这个线是不是通的。假如你这根线上只有一个接头,你量它的收发两个针上面的电阻值,假如是220欧姆,那么就是对的,假如你这根线已经做好了,连了一串的接口,你就要从一端开始逐个检查了。第一个单独接线的接口,是ON状态,然后你把邻近的第一个接口的开关也置为ON,那么这个接口以后的部分就断了(出口的线已经被关掉了啊~)现在测最边上,就是单线接的那个接口,之后的东西一直都是测这个接口,测它的收发两个针,和刚才一样,假如电阻是110欧姆(被并联了),那么这段线路就是通的,然后把中间刚才那个改动为ON的接口改回到OFF,然后是下一个接口改为ON,。。。。。。就这么测下去,哪个的电阻不是110欧姆了,就是那一段的线路出问题了。

........PROFIBUS网络电缆(西门子产品号:6XV1 830-0EH10),波特率为100Kbps以下时也可使用普通双绞线(截面积不小0.22平方毫米)。 原则上绿色接RS485信号负(对应Profibus接头的A1)、红色接RS485信号正(对应Profibus接头的B1)。当然,统一反着接也可以——绿色接RS485信号正(对应Profibus接头的B1)、红色接RS485信号负(对应Profibus接头的A1)。不要交叉就行。

Profibus-DP现场总线电缆电缆:用于Siemens公司支持的Profibus-DP总线系统。

●能够对应12Mbps的高速传送,充分发挥PROFIBUS-DP的功能。

●铝箔PET带和高密度编织的双层屏蔽使抗干扰性能出色,通信的传送质量稳定。

●护套使用了柔软性和耐油、耐热性能良好的无铅聚氯乙烯混合物。

●护套的颜色以紫色(RAL001)为标准色。

........德国LAPP UNITRONICO BUS L2/FIP:实心裸铜丝导体,2芯绞合成对,芯线颜色为红+绿。 铝箔屏蔽后加裸铜丝编织,PVC外护套,阻燃,符合VDE 0472第804部份,B类试验(IEC 332.1),紫色(RAL4001)。
........传输速率决定允许的总线电缆最大长度如下:
PROFIBUS-DP 1.5MBit/s=最长200m
(SIMATIC网) 12.0MBit/s=最长100m
工厂通讯处理层 1.0MBit/s=最长200m
2.5MBit/s=最长200m
........上述参数适用于PROFIBUS-DP及PROFIBUS—FMS总线电缆。

........国产普通屏蔽电缆也可以替代PROFIBUS电缆,没有问题,实践证明是可以用的。这样说吧,使用是没有问题的,但是是要有些请提条件的,比如西门子给出的多大速率下对应多大的通讯距离,西门子DP电缆没有问题,但是国产屏蔽电缆就有可能不能用到这么长的通讯距离。要选用质量好的国产屏蔽电缆。

........为了保证信号的稳定要在DP网络的两端接电阻,3和8脚接220电阻,3和VP引脚接390电阻,8脚和DGND脚接390电阻。如果有RS485连接器,就不用自己加终端电阻,RS485连接器中已经自带终端电阻了。

.......国产屏蔽电缆抗干扰的能力应该要若一些,如果是电磁环境很差的地方,例如有交交变频系统等,建议使用profibus-dp电缆。比较重要的系统中,对通讯安全非常严格的话,建议还是使用西门子的profibus-dp电缆。

........上面是官方提到的硬件连接方式, 在实际中,我们可能因为使用情况不同(临时使用、实验使用、同一个电控柜内使用等),手边没有现成的Profibus电缆和Profibus-DP接头。那么,在这种情况下就需要自己制作了。下面就简单说一下制作方法:

1、不带编程口的通信线制作:

........有多少个PLC就买多少个D型9针公头,然后买需要长度的Profibus电缆(实在没有,买屏蔽双绞线也可以,不过抗干扰性没那么好哟;近距离的话,随便用什么线连接都可以,哪怕是2根单股导线,也没问题)。通过电缆,把这些D型9针公头的3脚依次连接在一起,把这些D型9针公头的8脚也依次连接在一起。接线的时候注意点,不要接错了——笔者就因为疏忽大意接错线,导致查了几个小时的故障才发现接线错了(首先怀疑线错了,用万用表打,没发现问题,晕哟,可能是遇见鬼了;最后把线全拆了,重新焊接即恢复正常)。

........如果通信存在问题,那么建议把这些D型9针公头的5脚也接在一起,强制低电位相等。如果有屏蔽线的话,就接上屏蔽线。屏蔽层接到每台设备的外壳并最后接大地。

........至于终端电阻和偏置电阻,距离短的话,就可以不接了。不过,虽然不接,也得了解其原理——终端电阻和偏置电阻如17楼图示。因为PROFIBUS的连接电缆通常采用TYPE A标准,其中的电缆阻抗值最大为165欧,390/220/390的等效电阻是170,是为了实现阻抗匹配。当没有通讯进行时,终端电阻可以保证信号线间的电压差。通常加载在终端的电压为5V,390/220/390使得两信号线点的电压值分别为1.95和3.05V,是理想的静态电压(差分)。

........官方的PROFIBUS接头有进线和出线2个口,采用官方的PROFIBUS接头接线时需要注意:“首站”和“末站”都接进线。

........其实“首站”和“末站”接出也能通信的,但是为了保证通讯的稳定,“首站”和“末站”都要把终端电阻置为ON,这时如果还把“首站”和“末站”接出线,那么“首站”和“末站”都被终端掉了。所以西门子规定:“首站”和“末站”都接进线。

2、带编程口的通信线制作:

........先制作不带编程口的通信线,然后再找一个D型9孔母头,与其中一台PLC的D型9针公头一对一连接:1-1,2-2,3-3,4-4,5-5,6-6,7-7,8-8,9-9。PLC编程电缆(多主站电缆)连接那个D型9孔母头。这样,电脑就可以监控那台PLC了。同时,因为同时也连接到了网内所有PLC,所以也可以监控网内所有PLC。

........注意:无论是否采用西门子原装的总线电缆和接头,如果是不带编程口,那么就只能监控到1台PLC而监控不到在网的其它PLC————例如,1台PLC采用端口PORT1与其他PLC进行通信,而编程电缆连接到了这台PLC的端口PORT0,那么在电脑上是无法监控到在网的其它PLC的。因为,电脑的编程电缆的通信线3,8脚和在网的其它PLC都不存在物理连接嘛。

采用了不带编程口的通信线,PLC插在不是联网那个通信口上监控,只能看到1台PLC:

采用了带编程口的通信线,PLC插在联网那个通信口上监控,能看到在网的所有PLC:

不过,最好只搜索设定的波特率就可以了,不要搜索所有波特率,否则可能出现问题:

要监控在网的哪台PLC,需要打开相应的PLC程序,然后搜索出所有的PLC,再把光标置于相应的PLC上,点击“确定”。然后可以下载和监控那台PLC:

如果电脑上当前PLC程序和“通信”的当前地址的PLC的程序不同,是无法监控该PLC的。

如果电脑上当前PLC程序“系统块”中的地址和“通信”的当前地址不同,那么将无法下载:

下面就来针对dingqw1234网友的要求做一个实例:1台CPU 226CN 作为主站,1台CPU 224XP作为从站,要把CPU 224XP的输入点数据全部传到CPU 226CN里面。

一、硬件连接:

........按照上面所说的方法,用到编程口的通信电缆把CPU 226CN和CPU 224XP的端口PORT1连接起来。当然,这个连接口可以随意组合,不过,根据不同的情况,可能会影响到程序的编制——如果同一台PLC的2个编程口的地址不同(要连接多个通信设备或不同的用途,就需要把2个通信口设置为不同的地址),那么就可能会影响到程序的编制。

二、PLC地址分配:

........编程软件TEP 7 MicroWIN分配的地址固定是0;程序中PLC的默认地址为2,这个我们要修改;因为该系统中没有其它设备,例如人机界面/触摸屏,这里就把CPU 226CN的PROT0口的地址设为1,把CPU 226CN的PROT1口的地址设为2,把CPU 224XP的PROT0口的地址设为3,把CPU 224XP的PROT1口的地址设为4。

........当然,每个PLC的2个端口可以设置为相同的地址,这样的好处是:当一个通信口坏掉时,可以插到另外一个通信口,而不用更改主站PLC的程序。

........把每个PLC的2个端口设置为不相同的地址,笔者认为这样做没有什么好处(如果你知道,请告诉笔者,多谢!),只有坏处:当一个通信口坏掉时,插到另外一个通信口,需要更改与这台PLC通信的主站PLC的程序。不过这个例子中笔者这样分配地址,是做个实验而已。

三、编程:

........针对上面的控制要求,从站CPU 224XP就不需要编程了,只需要把CPU 224XP的PROT0口的地址设为3,把CPU 224XP的PROT1口的地址设为4并下载系统块就可以了。这个步骤就不赘述了,地址设置方法请参阅对CPU 226CN的设置。

........下面是对主站CPU 226CN进行编程和系统块地址设置的步骤。该例中,采用PPI协议进行通信(比自由口通信要简单得多),而且采用指令向导来编程(比直接设置特殊存储器SMB、调用NETR和NETW指令要简单得多)。

........点“设置PG/PC接口”,选中“PC/PPI Cable(PPI)”,点“属性”,在“本地连接”中选择你的编程程电缆的类型——COM1、COM2或是USB;在PPI中勾选“高级PPI”——非西门子官方电缆就不要选了,即使选了也不支持。点击“确定”——“确定”。

........把编程电缆插到每个PLC,对每个PLC设置指定的地址和设置统一的波特率——如果电缆质量不好,非原装电缆,波特率设置不要过高。先点“通信”,然后双击“双击刷新”。搜索到PLC地址后,设置好当前PLC地址。然后修改系统块中的PLC端口,按照预设的地址进行修改。最后下载系统块,把PLC相应端口设置为预设的地址。这个操作比较简单,我就不在贴图赘述了。

........把编程电缆插回到D型9孔母头。点击“通信”,取消勾选“搜索所有波特率”,然后双击“双击刷新”:

把光标移动到要监控/下载的PLC上面。如果要编226CN主站,移到地址2,如上图。

点击“工具”——“指令向导”,选择“NETR/NETW”,点击“下一步”:

选择需要配置的操作数量(这个例子为1),点击“下一步”:

选择主站的通信口(本例为端口1),点击“下一步”:

选择读还是写(本例为读),选择读几个数据(本例读2个数据,IB0-IB1;对于226CN的输入,应当读3个数据,IB0-IB2,共24个输入),选择PLC的地址(本例为4):

说明:

如果您在配置NETR,指定以下内容:

- 数据存储在本地 PLC 中的位置。有效操作数:VB、IB、QB、MB、LB。
- 从远程 PLC 读取数据的位置。有效操作数:VB、IB、QB、MB、LB。

如果您在配置 NETW,指定以下内容:

- 数据存储在本地 PLC 中的位置。有效操作数:VB、IB、QB、MB、LB。

- 向远程 PLC 写入数据的位置。有效操作数:VB、IB、QB、MB、LB。

点击“下一步”:

至此,向导完成。

然后在组程序中调用生成的加密子程序:

然后,下载该程序到PLC中即可。

然后监控程序,如果错误输出为1,那么是有问题的,表示通信不成功。如下图,M0.1的值为1:

只有错误输出为0,通信才是成功的(网络读写成功),如下图:

通信成功以后,重站PLC的输入就被读取到主站的VB存储器中了:

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:335
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:378
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:612
java用什么软件写 发布:2025-05-18 03:56:19 浏览:32
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:943
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:739
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:803
网卡访问 发布:2025-05-18 03:35:04 浏览:510
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:371