当前位置:首页 » 密码管理 » c非对称加密算法

c非对称加密算法

发布时间: 2023-01-30 19:06:58

Ⅰ 对称密钥算法与非对称密钥算法有何区别

对称密钥算法与非对称密钥算法的区别
密码学中两种常见的密码算法为对称密码算法(单钥密码算法)和非对称密码算法(公钥密码算法)。

对称密码算法有时又叫传统密码算法,就是加密密钥能够从解密密钥中推算出来,反过来也成立。在大多数对称算法中,加密解密密钥是相同的。这些算法也叫秘密密钥算法或单密钥算法,它要求发送者和接收者在安全通信之前,商定一个密钥。对称算法的安全性依赖于密钥,泄漏密钥就意味着任何人都能对消息进行加密解密。只要通信需要保密,密钥就必须保密。对称算法的加密和解密表示为:

Ek(M)=C

Dk(C)=M

对称算法可分为两类。一次只对明文中的单个位(有时对字节)运算的算法称为序列算法或序列密码。另一类算法是对明文的一组位进行运算,这些位组称为分组,相应的算法称为分组算法或分组密码。现代计算机密码算法的典型分组长度为64位――这个长度大到足以防止分析破译,但又小到足以方便作用。

这种算法具有如下的特性:

Dk(Ek(M))=M

常用的采用对称密码术的加密方案有5个组成部分(如图所示)

l)明文:原始信息。

2)加密算法:以密钥为参数,对明文进行多种置换和转换的规则和步骤,变换结果为密文。

3)密钥:加密与解密算法的参数,直接影响对明文进行变换的结果。

4)密文:对明文进行变换的结果。

5)解密算法:加密算法的逆变换,以密文为输入、密钥为参数,变换结果为明文。

对称密码术的优点在于效率高(加/解密速度能达到数十兆/秒或更多),算法简单,系统开销小,适合加密大量数据。

尽管对称密码术有一些很好的特性,但它也存在着明显的缺陷,包括:

l)进行安全通信前需要以安全方式进行密钥交换。这一步骤,在某种情况下是可行的,但在某些情况下会非常困难,甚至无法实现。

2)规模复杂。举例来说,A与B两人之间的密钥必须不同于A和C两人之间的密钥,否则给B的消息的安全性就会受到威胁。在有1000个用户的团体中,A需要保持至少999个密钥(更确切的说是1000个,如果她需要留一个密钥给他自己加密数据)。对于该团体中的其它用户,此种倩况同样存在。这样,这个团体一共需要将近50万个不同的密钥!推而广之,n个用户的团体需要N2/2个不同的密钥。

通过应用基于对称密码的中心服务结构,上述问题有所缓解。在这个体系中,团体中的任何一个用户与中心服务器(通常称作密钥分配中心)共享一个密钥。因而,需要存储的密钥数量基本上和团体的人数差不多,而且中心服务器也可以为以前互相不认识的用户充当“介绍人”。但是,这个与安全密切相关的中心服务器必须随时都是在线的,因为只要服务器一掉线,用户间的通信将不可能进行。这就意味着中心服务器是整个通信成败的关键和受攻击的焦点,也意味着它还是一个庞大组织通信服务的“瓶颈”

非对称密钥算法是指一个加密算法的加密密钥和解密密钥是不一样的,或者说不能由其中一个密钥推导出另一个密钥。1、加解密时采用的密钥的差异:从上述对对称密钥算法和非对称密钥算法的描述中可看出,对称密钥加解密使用的同一个密钥,或者能从加密密钥很容易推出解密密钥;②对称密钥算法具有加密处理简单,加解密速度快,密钥较短,发展历史悠久等特点,非对称密钥算法具有加解密速度慢的特点,密钥尺寸大,发展历史较短等特点。

Ⅱ 使用c语言实现对称加密算法、非对称加密算法、HASH算法,谁来提供个思路阿

网络找找

有RSA算法,MD5算法,维尼格算法

这些算法都很好找啊,我空间里面就有一篇RSA的

网络搜索

这些代码本来就难懂,涉及到数学的东西也很多

据说IBM公司DES加密的源代码公布了十几年后才有人弄懂

Ⅲ 名词解释:对称加密和非对称加密

1.需要对加密和解密使用相同密钥的加密算法。由于其速度,对称性加密通常在消息发送方需要加密大量数据时使用。对称性加密也称为密钥加密。
所谓对称,就是采用这种加密方法的双方使用方式用同样的密钥进行加密和解密。密钥实际上是一种算法,通信发送方使用这种算法加密数据,接收方在意同样的算法解密数据。
因此对称式加密本身不是安全的。
常用的对称加密有:
DES、IDEA、RC2、RC4、SKIPJACK算法等

2.非对称加密算法中,加密密钥不同于解密密钥,加密密钥公之于众,谁都可以使用。解密密钥只有解密人自己知道,分别称为公开密钥 (Public key) 和秘密密钥 (Private key)。

Ⅳ 非对称加密算法 (RSA、DSA、ECC、DH)

非对称加密需要两个密钥:公钥(publickey) 和私钥 (privatekey)。公钥和私钥是一对,如果用公钥对数据加密,那么只能用对应的私钥解密。如果用私钥对数据加密,只能用对应的公钥进行解密。因为加密和解密用的是不同的密钥,所以称为非对称加密。

非对称加密算法的保密性好,它消除了最终用户交换密钥的需要。但是加解密速度要远远慢于对称加密,在某些极端情况下,甚至能比对称加密慢上1000倍。

算法强度复杂、安全性依赖于算法与密钥但是由于其算法复杂,而使得加密解密速度没有对称加密解密的速度快。对称密码体制中只有一种密钥,并且是非公开的,如果要解密就得让对方知道密钥。所以保证其安全性就是保证密钥的安全,而非对称密钥体制有两种密钥,其中一个是公开的,这样就可以不需要像对称密码那样传输对方的密钥了。这样安全性就大了很多。

RSA、Elgamal、背包算法、Rabin、D-H、ECC (椭圆曲线加密算法)。使用最广泛的是 RSA 算法,Elgamal 是另一种常用的非对称加密算法。

收信者是唯一能够解开加密信息的人,因此收信者手里的必须是私钥。发信者手里的是公钥,其它人知道公钥没有关系,因为其它人发来的信息对收信者没有意义。

客户端需要将认证标识传送给服务器,此认证标识 (可能是一个随机数) 其它客户端可以知道,因此需要用私钥加密,客户端保存的是私钥。服务器端保存的是公钥,其它服务器知道公钥没有关系,因为客户端不需要登录其它服务器。

数字签名是为了表明信息没有受到伪造,确实是信息拥有者发出来的,附在信息原文的后面。就像手写的签名一样,具有不可抵赖性和简洁性。

简洁性:对信息原文做哈希运算,得到消息摘要,信息越短加密的耗时越少。

不可抵赖性:信息拥有者要保证签名的唯一性,必须是唯一能够加密消息摘要的人,因此必须用私钥加密 (就像字迹他人无法学会一样),得到签名。如果用公钥,那每个人都可以伪造签名了。

问题起源:对1和3,发信者怎么知道从网上获取的公钥就是真的?没有遭受中间人攻击?

这样就需要第三方机构来保证公钥的合法性,这个第三方机构就是 CA (Certificate Authority),证书中心。

CA 用自己的私钥对信息原文所有者发布的公钥和相关信息进行加密,得出的内容就是数字证书。

信息原文的所有者以后发布信息时,除了带上自己的签名,还带上数字证书,就可以保证信息不被篡改了。信息的接收者先用 CA给的公钥解出信息所有者的公钥,这样可以保证信息所有者的公钥是真正的公钥,然后就能通过该公钥证明数字签名是否真实了。

RSA 是目前最有影响力的公钥加密算法,该算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥,即公钥,而两个大素数组合成私钥。公钥是可发布的供任何人使用,私钥则为自己所有,供解密之用。

A 要把信息发给 B 为例,确定角色:A 为加密者,B 为解密者。首先由 B 随机确定一个 KEY,称之为私钥,将这个 KEY 始终保存在机器 B 中而不发出来;然后,由这个 KEY 计算出另一个 KEY,称之为公钥。这个公钥的特性是几乎不可能通过它自身计算出生成它的私钥。接下来通过网络把这个公钥传给 A,A 收到公钥后,利用公钥对信息加密,并把密文通过网络发送到 B,最后 B 利用已知的私钥,就能对密文进行解码了。以上就是 RSA 算法的工作流程。

由于进行的都是大数计算,使得 RSA 最快的情况也比 DES 慢上好几倍,无论是软件还是硬件实现。速度一直是 RSA 的缺陷。一般来说只用于少量数据加密。RSA 的速度是对应同样安全级别的对称密码算法的1/1000左右。

比起 DES 和其它对称算法来说,RSA 要慢得多。实际上一般使用一种对称算法来加密信息,然后用 RSA 来加密比较短的公钥,然后将用 RSA 加密的公钥和用对称算法加密的消息发送给接收方。

这样一来对随机数的要求就更高了,尤其对产生对称密码的要求非常高,否则的话可以越过 RSA 来直接攻击对称密码。

和其它加密过程一样,对 RSA 来说分配公钥的过程是非常重要的。分配公钥的过程必须能够抵挡中间人攻击。假设 A 交给 B 一个公钥,并使 B 相信这是A 的公钥,并且 C 可以截下 A 和 B 之间的信息传递,那么 C 可以将自己的公钥传给 B,B 以为这是 A 的公钥。C 可以将所有 B 传递给 A 的消息截下来,将这个消息用自己的密钥解密,读这个消息,然后将这个消息再用 A 的公钥加密后传给 A。理论上 A 和 B 都不会发现 C 在偷听它们的消息,今天人们一般用数字认证来防止这样的攻击。

(1) 针对 RSA 最流行的攻击一般是基于大数因数分解。1999年,RSA-155 (512 bits) 被成功分解,花了五个月时间(约8000 MIPS 年)和224 CPU hours 在一台有3.2G 中央内存的 Cray C916计算机上完成。

RSA-158 表示如下:

2009年12月12日,编号为 RSA-768 (768 bits, 232 digits) 数也被成功分解。这一事件威胁了现通行的1024-bit 密钥的安全性,普遍认为用户应尽快升级到2048-bit 或以上。

RSA-768表示如下:

(2) 秀尔算法
量子计算里的秀尔算法能使穷举的效率大大的提高。由于 RSA 算法是基于大数分解 (无法抵抗穷举攻击),因此在未来量子计算能对 RSA 算法构成较大的威胁。一个拥有 N 量子位的量子计算机,每次可进行2^N 次运算,理论上讲,密钥为1024位长的 RSA 算法,用一台512量子比特位的量子计算机在1秒内即可破解。

DSA (Digital Signature Algorithm) 是 Schnorr 和 ElGamal 签名算法的变种,被美国 NIST 作为 DSS (DigitalSignature Standard)。 DSA 是基于整数有限域离散对数难题的。

简单的说,这是一种更高级的验证方式,用作数字签名。不单单只有公钥、私钥,还有数字签名。私钥加密生成数字签名,公钥验证数据及签名,如果数据和签名不匹配则认为验证失败。数字签名的作用就是校验数据在传输过程中不被修改,数字签名,是单向加密的升级。

椭圆加密算法(ECC)是一种公钥加密算法,最初由 Koblitz 和 Miller 两人于1985年提出,其数学基础是利用椭圆曲线上的有理点构成 Abel 加法群上椭圆离散对数的计算困难性。公钥密码体制根据其所依据的难题一般分为三类:大整数分解问题类、离散对数问题类、椭圆曲线类。有时也把椭圆曲线类归为离散对数类。

ECC 的主要优势是在某些情况下它比其他的方法使用更小的密钥 (比如 RSA),提供相当的或更高等级的安全。ECC 的另一个优势是可以定义群之间的双线性映射,基于 Weil 对或是 Tate 对;双线性映射已经在密码学中发现了大量的应用,例如基于身份的加密。不过一个缺点是加密和解密操作的实现比其他机制花费的时间长。

ECC 被广泛认为是在给定密钥长度的情况下,最强大的非对称算法,因此在对带宽要求十分紧的连接中会十分有用。

比特币钱包公钥的生成使用了椭圆曲线算法,通过椭圆曲线乘法可以从私钥计算得到公钥, 这是不可逆转的过程。

https://github.com/esxgx/easy-ecc

Java 中 Chipher、Signature、KeyPairGenerator、KeyAgreement、SecretKey 均不支持 ECC 算法。

https://www.jianshu.com/p/58c1750c6f22

DH,全称为"Diffie-Hellman",它是一种确保共享 KEY 安全穿越不安全网络的方法,也就是常说的密钥一致协议。由公开密钥密码体制的奠基人 Diffie 和 Hellman 所提出的一种思想。简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的、可以共享的密钥。也就是由甲方产出一对密钥 (公钥、私钥),乙方依照甲方公钥产生乙方密钥对 (公钥、私钥)。

以此为基线,作为数据传输保密基础,同时双方使用同一种对称加密算法构建本地密钥 (SecretKey) 对数据加密。这样,在互通了本地密钥 (SecretKey) 算法后,甲乙双方公开自己的公钥,使用对方的公钥和刚才产生的私钥加密数据,同时可以使用对方的公钥和自己的私钥对数据解密。不单单是甲乙双方两方,可以扩展为多方共享数据通讯,这样就完成了网络交互数据的安全通讯。

具体例子可以移步到这篇文章: 非对称密码之DH密钥交换算法

参考:
https://blog.csdn.net/u014294681/article/details/86705999

https://www.cnblogs.com/wangzxblog/p/13667634.html

https://www.cnblogs.com/taoxw/p/15837729.html

https://www.cnblogs.com/fangfan/p/4086662.html

https://www.cnblogs.com/utank/p/7877761.html

https://blog.csdn.net/m0_59133441/article/details/122686815

https://www.cnblogs.com/muliu/p/10875633.html

https://www.cnblogs.com/wf-zhang/p/14923279.html

https://www.jianshu.com/p/7a927db713e4

https://blog.csdn.net/ljx1400052550/article/details/79587133

https://blog.csdn.net/yuanjian0814/article/details/109815473

Ⅳ 2019-06-10 对称加密 和非对称加密

一、对称加密

AES加密

AES加密是一种高级加密标准,是一种区块加密标准。它是一个对称密码,就是说加密和解密用相同的密钥。WPA/WPA2经常用的加密方式就是AES加密算法。

二、非对称加密

RSA加密算法是一种非对称加密算法,非对称加密算法需要两个密钥:公共密钥和私有密钥。公钥和私钥是配对的,用公钥加密的数据只有配对的私钥才能解密。

RSA对加密数据的长度有限制,一般为密钥的长度值-11,要加密较长的数据,可以采用数据截取的方法,分段加密。

使用场景:

文件或数据在本地使用公钥或私钥加密,加密后的数据传送到服务器,服务器使用同一套密钥中的私钥或者公钥进行解密。

一、Https是什么?

1.HTTPS概念

HTTPS并不是一个单独的协议,而是对工作在一加密连接(SSL/TLS)上的常规HTTP协议。通过在TCP和HTTP之间加入TLS来加密。

2.SSL/TLS协议

SSL协议,是一种安全传输的协议,TLS是SSL v3.0的升级版。

4.HTTPS传输速度

1)通信慢

2)SSL必须进行加密处理,比HTTP消耗更多资源

二、TLS/SSL握手

1.密码学原理

1)对称加密

加密数据用的秘钥和解密数据用的密钥是一样的。

2)不对称加密

私有密钥:一方保管

共有密钥:双方公有

RSA算法。

2.数字证书

1)就是互联网通讯中标志通讯各方身份信息的一串数字,也是一个文件。

2)为什么有数字证书?

3)数字证书的颁发过程?

3.SSL与TLS握手的过程?

使用非对称加密,随机数不能被随便破解

Https双向认证的流程:

a. 客户端向服务端发送SSL版本等信息

b. 服务端给客户端返回SSL版本,同时也返回服务器端的证书

c.  客户端使用服务的返回的信息验证服务器的合法性,

a) 包括:证书是否过期,发型服务器证书的CA是否可靠,返回的公钥能正确解开返回证书中的数字签名,服务器证书上帝域名是否和服务器的实际域名想匹配

b) 验证通过后,将进行通信,否则终止通信

d. 客户端将自己的证书和公钥发送给服务端

e. 验证客户端的证书,通过验证后,会获得客户端的公钥

f. 客户端向服务端发送自己可以支持的对称加密方案给服务端,让服务端进行选择

g. 服务端在客户端提供的加密方案中选择加密程度高的加密方式

h. 将加密方案通过使用之前获取到的公钥进行加密,返回给客户端

i. 客户端收到服务端返回的加密方案后,使用自己的私钥进行解密,获取具体的加密方式,最后,产生加密方式的随机码,用作过程中的密钥,使用之前从客户端证书中获取到的公钥进行加密后,发送嘿服务端

j. 服务端收到客户端发来的消息后,使用私钥对加密信息进行加密,获得对称加密的密钥

k. 对称加密,确保通信安全

总结:https实际上就是在TCP层与http层之间加入了SSL/TLS来为上层的安全保驾护航,主要用到了对称加密,非对称加密,证书等技术进行客户端与服务器的数据加密传输,最终达到保证整个通信的安全性。

Ⅵ 加密基础知识二 非对称加密RSA算法和对称加密

上述过程中,出现了公钥(3233,17)和私钥(3233,2753),这两组数字是怎么找出来的呢?参考 RSA算法原理(二)
首字母缩写说明:E是加密(Encryption)D是解密(Decryption)N是数字(Number)。

1.随机选择两个不相等的质数p和q。
alice选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

2.计算p和q的乘积n。
n = 61×53 = 3233
n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

3.计算n的欧拉函数φ(n)。称作L
根据公式φ(n) = (p-1)(q-1)
alice算出φ(3233)等于60×52,即3120。

4.随机选择一个整数e,也就是公钥当中用来加密的那个数字
条件是1< e < φ(n),且e与φ(n) 互质。
alice就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

5.计算e对于φ(n)的模反元素d。也就是密钥当中用来解密的那个数字
所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。ed ≡ 1 (mod φ(n))
alice找到了2753,即17*2753 mode 3120 = 1

6.将n和e封装成公钥,n和d封装成私钥。
在alice的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

上述故事中,blob为了偷偷地传输移动位数6,使用了公钥做加密,即6^17 mode 3233 = 824。alice收到824之后,进行解密,即824^2753 mod 3233 = 6。也就是说,alice成功收到了blob使用的移动位数。

再来复习一下整个流程:
p=17,q=19
n = 17 19 = 323
L = 16 18 = 144
E = 5(E需要满足以下两个条件:1<E<144,E和144互质)
D = 29(D要满足两个条件,1<D<144,D mode 144 = 1)
假设某个需要传递123,则加密后:123^5 mode 323 = 225
接收者收到225后,进行解密,225^ 29 mode 323 = 123

回顾上面的密钥生成步骤,一共出现六个数字:
p
q
n
L即φ(n)
e
d
这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。那么,有无可能在已知n和e的情况下,推导出d?
(1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。
(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。
(3)n=pq。只有将n因数分解,才能算出p和q。
结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。
可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基网络这样写道:"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

然而,虽然RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何。此外,RSA的缺点还有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。因此, 使用RSA只能加密少量数据,大量的数据加密还要靠对称密码算法

加密和解密是自古就有技术了。经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫无意义的数字苦恼,忽然灵光一闪,翻出一本厚书,将第一个数字对应页码数,第二个数字对应行数,第三个数字对应那一行的某个词。数字变成了一串非常有意义的话:
Eat the beancurd with the peanut. Taste like the ham.

这种加密方法是将原来的某种信息按照某个规律打乱。某种打乱的方式就叫做密钥(cipher code)。发出信息的人根据密钥来给信息加密,而接收信息的人利用相同的密钥,来给信息解密。 就好像一个带锁的盒子。发送信息的人将信息放到盒子里,用钥匙锁上。而接受信息的人则用相同的钥匙打开。加密和解密用的是同一个密钥,这种加密称为对称加密(symmetric encryption)。

如果一对一的话,那么两人需要交换一个密钥。一对多的话,比如总部和多个特工的通信,依然可以使用同一套密钥。 但这种情况下,对手偷到一个密钥的话,就知道所有交流的信息了。 二战中盟军的情报战成果,很多都来自于破获这种对称加密的密钥。

为了更安全,总部需要给每个特工都设计一个不同的密钥。如果是FBI这样庞大的机构,恐怕很难维护这么多的密钥。在现代社会,每个人的信用卡信息都需要加密。一一设计密钥的话,银行怕是要跪了。

对称加密的薄弱之处在于给了太多人的钥匙。如果只给特工锁,而总部保有钥匙,那就容易了。特工将信息用锁锁到盒子里,谁也打不开,除非到总部用唯一的一把钥匙打开。只是这样的话,特工每次出门都要带上许多锁,太容易被识破身份了。总部老大想了想,干脆就把造锁的技术公开了。特工,或者任何其它人,可以就地取材,按照图纸造锁,但无法根据图纸造出钥匙。钥匙只有总部的那一把。

上面的关键是锁和钥匙工艺不同。知道了锁,并不能知道钥匙。这样,银行可以将“造锁”的方法公布给所有用户。 每个用户可以用锁来加密自己的信用卡信息。即使被别人窃听到,也不用担心:只有银行才有钥匙呢!这样一种加密算法叫做非对称加密(asymmetric encryption)。非对称加密的经典算法是RSA算法。它来自于数论与计算机计数的奇妙结合。

1976年,两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。这被称为"Diffie-Hellman密钥交换算法"。这个算法启发了其他科学家。人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应关系即可,这样就避免了直接传递密钥。这种新的加密模式被称为"非对称加密算法"。

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。

1.能“撞”上的保险箱(非对称/公钥加密体制,Asymmetric / Public Key Encryption)

数据加密解密和门锁很像。最开始的时候,人们只想到了那种只能用钥匙“锁”数据的锁。如果在自己的电脑上自己加密数据,当然可以用最开始这种门锁的形式啦,方便快捷,简单易用有木有。

但是我们现在是通信时代啊,双方都想做安全的通信怎么办呢?如果也用这种方法,通信就好像互相发送密码保险箱一样…而且双方必须都有钥匙才能进行加密和解密。也就是说,两个人都拿着保险箱的钥匙,你把数据放进去,用钥匙锁上发给我。我用同样的钥匙把保险箱打开,再把我的数据锁进保险箱,发送给你。

这样看起来好像没什么问题。但是,这里面 最大的问题是:我们两个怎么弄到同一个保险箱的同一个钥匙呢? 好像仅有的办法就是我们两个一起去买个保险箱,然后一人拿一把钥匙,以后就用这个保险箱了。可是,现代通信社会,绝大多数情况下别说一起去买保险箱了,连见个面都难,这怎么办啊?

于是,人们想到了“撞门”的方法。我这有个可以“撞上”的保险箱,你那里自己也买一个这样的保险箱。通信最开始,我把保险箱打开,就这么开着把保险箱发给你。你把数据放进去以后,把保险箱“撞”上发给我。撞上以后,除了我以外,谁都打不开保险箱了。这就是RSA了,公开的保险箱就是公钥,但是我有私钥,我才能打开。

2.数字签名
这种锁看起来好像很不错,但是锁在运输的过程中有这么一个严重的问题:你怎么确定你收到的开着的保险箱就是我发来的呢?对于一个聪明人,他完全可以这么干:
(a)装作运输工人。我现在把我开着的保险箱运给对方。运输工人自己也弄这么一个保险箱,运输的时候把保险箱换成他做的。
(b)对方收到保险箱后,没法知道这个保险箱是我最初发过去的,还是运输工人替换的。对方把数据放进去,把保险箱撞上。
(c)运输工人往回运的时候,用自己的钥匙打开自己的保险箱,把数据拿走。然后复印也好,伪造也好,弄出一份数据,把这份数据放进我的保险箱,撞上,然后发给我。
从我的角度,从对方的角度,都会觉得这数据传输过程没问题。但是,运输工人成功拿到了数据,整个过程还是不安全的,大概的过程是这样:

这怎么办啊?这个问题的本质原因是,人们没办法获知,保险箱到底是“我”做的,还是运输工人做的。那干脆,我们都别做保险箱了,让权威机构做保险箱,然后在每个保险箱上用特殊的工具刻上一个编号。对方收到保险箱的时候,在权威机构的“公告栏”上查一下编号,要是和保险箱上的编号一样,我就知道这个保险箱是“我”的,就安心把数据放进去。大概过程是这样的:

如何做出刻上编号,而且编号没法修改的保险箱呢?这涉及到了公钥体制中的另一个问题:数字签名。
要知道,刻字这种事情吧,谁都能干,所以想做出只能自己刻字,还没法让别人修改的保险箱确实有点难度。那么怎么办呢?这其实困扰了人们很长的时间。直到有一天,人们发现:我们不一定非要在保险箱上刻规规矩矩的字,我们干脆在保险箱上刻手写名字好了。而且,刻字有点麻烦,干脆我们在上面弄张纸,让人直接在上面写,简单不费事。具体做法是,我们在保险箱上嵌进去一张纸,然后每个出产的保险箱都让权威机构的CEO签上自己的名字。然后,CEO把自己的签名公开在权威机构的“公告栏”上面。比如这个CEO就叫“学酥”,那么整个流程差不多是这个样子:

这个方法的本质原理是,每个人都能够通过笔迹看出保险箱上的字是不是学酥CEO签的。但是呢,这个字体是学酥CEO唯一的字体。别人很难模仿。如果模仿我们就能自己分辨出来了。要是实在分辨不出来呢,我们就请一个笔迹专家来分辨。这不是很好嘛。这个在密码学上就是数字签名。

上面这个签字的方法虽然好,但是还有一个比较蛋疼的问题。因为签字的样子是公开的,一个聪明人可以把公开的签字影印一份,自己造个保险箱,然后把这个影印的字也嵌进去。这样一来,这个聪明人也可以造一个相同签字的保险箱了。解决这个问题一个非常简单的方法就是在看保险箱上的签名时,不光看字体本身,还要看字体是不是和公开的字体完全一样。要是完全一样,就可以考虑这个签名可能是影印出来的。甚至,还要考察字体是不是和其他保险柜上的字体一模一样。因为聪明人为了欺骗大家,可能不影印公开的签名,而影印其他保险箱上的签名。这种解决方法虽然简单,但是验证签名的时候麻烦了一些。麻烦的地方在于我不仅需要对比保险箱上的签名是否与公开的笔迹一样,还需要对比得到的签名是否与公开的笔迹完全一样,乃至是否和所有发布的保险箱上的签名完全一样。有没有什么更好的方法呢?

当然有,人们想到了一个比较好的方法。那就是,学酥CEO签字的时候吧,不光把名字签上,还得带上签字得日期,或者带上这个保险箱的编号。这样一来,每一个保险箱上的签字就唯一了,这个签字是学酥CEO的签名+学酥CEO写上的时间或者编号。这样一来,就算有人伪造,也只能伪造用过的保险箱。这个问题就彻底解决了。这个过程大概是这么个样子:

3 造价问题(密钥封装机制,Key Encapsulation Mechanism)
解决了上面的各种问题,我们要考虑考虑成本了… 这种能“撞”门的保险箱虽然好,但是这种锁造价一般来说要比普通的锁要高,而且锁生产时间也会变长。在密码学中,对于同样“结实”的锁,能“撞”门的锁的造价一般来说是普通锁的上千倍。同时,能“撞”门的锁一般来说只能安装在小的保险柜里面。毕竟,这么复杂的锁,装起来很费事啊!而普通锁安装在多大的保险柜上面都可以呢。如果两个人想传输大量数据的话,用一个大的保险柜比用一堆小的保险柜慢慢传要好的多呀。怎么解决这个问题呢?人们又想出了一个非常棒的方法:我们把两种锁结合起来。能“撞”上的保险柜里面放一个普通锁的钥匙。然后造一个用普通的保险柜来锁大量的数据。这样一来,我们相当于用能“撞”上的保险柜发一个钥匙过去。对方收到两个保险柜后,先用自己的钥匙把小保险柜打开,取出钥匙。然后在用这个钥匙开大的保险柜。这样做更棒的一个地方在于,既然对方得到了一个钥匙,后续再通信的时候,我们就不再需要能“撞”上的保险柜了啊,在以后一定时间内就用普通保险柜就好了,方便快捷嘛。

以下参考 数字签名、数字证书、SSL、https是什么关系?
4.数字签名(Digital Signature)
数据在浏览器和服务器之间传输时,有可能在传输过程中被冒充的盗贼把内容替换了,那么如何保证数据是真实服务器发送的而不被调包呢,同时如何保证传输的数据没有被人篡改呢,要解决这两个问题就必须用到数字签名,数字签名就如同日常生活的中的签名一样,一旦在合同书上落下了你的大名,从法律意义上就确定是你本人签的字儿,这是任何人都没法仿造的,因为这是你专有的手迹,任何人是造不出来的。那么在计算机中的数字签名怎么回事呢?数字签名就是用于验证传输的内容是不是真实服务器发送的数据,发送的数据有没有被篡改过,它就干这两件事,是非对称加密的一种应用场景。不过他是反过来用私钥来加密,通过与之配对的公钥来解密。
第一步:服务端把报文经过Hash处理后生成摘要信息Digest,摘要信息使用私钥private-key加密之后就生成签名,服务器把签名连同报文一起发送给客户端。
第二步:客户端接收到数据后,把签名提取出来用public-key解密,如果能正常的解密出来Digest2,那么就能确认是对方发的。
第三步:客户端把报文Text提取出来做同样的Hash处理,得到的摘要信息Digest1,再与之前解密出来的Digist2对比,如果两者相等,就表示内容没有被篡改,否则内容就是被人改过了。因为只要文本内容哪怕有任何一点点改动都会Hash出一个完全不一样的摘要信息出来。

5.数字证书(Certificate Authority)
数字证书简称CA,它由权威机构给某网站颁发的一种认可凭证,这个凭证是被大家(浏览器)所认可的,为什么需要用数字证书呢,难道有了数字签名还不够安全吗?有这样一种情况,就是浏览器无法确定所有的真实服务器是不是真的是真实的,举一个简单的例子:A厂家给你们家安装锁,同时把钥匙也交给你,只要钥匙能打开锁,你就可以确定钥匙和锁是配对的,如果有人把钥匙换了或者把锁换了,你是打不开门的,你就知道肯定被窃取了,但是如果有人把锁和钥匙替换成另一套表面看起来差不多的,但质量差很多的,虽然钥匙和锁配套,但是你却不能确定这是否真的是A厂家给你的,那么这时候,你可以找质检部门来检验一下,这套锁是不是真的来自于A厂家,质检部门是权威机构,他说的话是可以被公众认可的(呵呵)。
同样的, 因为如果有人(张三)用自己的公钥把真实服务器发送给浏览器的公钥替换了,于是张三用自己的私钥执行相同的步骤对文本Hash、数字签名,最后得到的结果都没什么问题,但事实上浏览器看到的东西却不是真实服务器给的,而是被张三从里到外(公钥到私钥)换了一通。那么如何保证你现在使用的公钥就是真实服务器发给你的呢?我们就用数字证书来解决这个问题。数字证书一般由数字证书认证机构(Certificate Authority)颁发,证书里面包含了真实服务器的公钥和网站的一些其他信息,数字证书机构用自己的私钥加密后发给浏览器,浏览器使用数字证书机构的公钥解密后得到真实服务器的公钥。这个过程是建立在被大家所认可的证书机构之上得到的公钥,所以这是一种安全的方式。

常见的对称加密算法有DES、3DES、AES、RC5、RC6。非对称加密算法应用非常广泛,如SSH,
HTTPS, TLS,电子证书,电子签名,电子身份证等等。
参考 DES/3DES/AES区别

Ⅶ 非对称加密算法

如果要给世界上所有算法按重要程度排个序,那我觉得“公钥加密算法”一定是排在最前边的,因为它是现代计算机通信安全的基石,保证了加密数据的安全。

01 对称加密算法

在非对称加密出现以前,普遍使用的是对称加密算法。所谓对称加密,就是加密和解密是相反的操作,对数据进行解密,只要按加密的方式反向操作一遍就可以获得对应的原始数据了,举一个简单的例子,如果要对字符串"abc"进行加密,先获取它们的ANSCII码为:97 98 99;密钥为+2,加密后的数据就是:99 100 101,将密文数据发送出去。接收方收到数据后对数据进行解密,每个数据减2,就得到了原文。当然这只是一个非常简单的例子,真实的对称加密算法会做得非常复杂,但这已经能够说明问题了。

这样的加密方法有什么缺点呢?首先缺点一:密钥传递困难;想想看如果两个人,分别是Bob和Alice,Bob要给Alice发消息,那Bob就要把密钥通过某种方式告诉Alice,有什么可靠的途径呢?打电话、发邮件、写信...等等方式好像都不靠谱,都有被窃取的风险,也只有两人见面后当面交流这一种方式了;缺点二:密钥数量会随着通信人数的增加而急剧增加,密钥管理将会是一个非常困难的事情。

02 非对称加密算法

1976年,两位美国计算机学家,提出了Diffie-Hellman密钥交换算法。这个算法的提出了一种崭新的构思,可以在不直接传递密钥的情况下,完成解密。这个算法启发了其他科学家,让人们认识到,加密和解密可以使用不同的规则,只要这两种规则之间存在某种对应的关系即可,这样就避免了直接传递密钥。这种新的加密模式就是“非对称加密算法”。

算法大致过程是这样的:

(1)乙方 生成两把密钥(公钥和私钥)。公钥是公开的,任何人都可以获得,私钥则是保密的。

(2)甲方获取乙方的公钥,然后用它对信息加密。

(3)乙方得到加密后的信息,用私钥解密。

如果公钥加密的信息只有私钥解得开,那么只要私钥不泄漏,通信就是安全的。

03 RSA非对称加密算法

1977年,三位数学家Rivest、Shamir 和 Adleman 设计了一种算法,可以实现非对称加密。这种算法用他们三个人的名字命名,叫做RSA算法。

从那时直到现在,RSA算法一直是最广为使用的"非对称加密算法"。毫不夸张地说,只要有计算机网络的地方,就有RSA算法。这种算法非常可靠,密钥越长,它就越难破解。根据已经披露的文献,目前被破解的最长RSA密钥是768个二进制位。也就是说,长度超过768位的密钥,还无法破解(至少没人公开宣布)。因此可以认为,1024位的RSA密钥基本安全,2048位的密钥极其安全。

公钥加密 -> 私钥解密

只有私钥持有方可以正确解密,保证通信安全

私钥加密 -> 公钥解密

所有人都可以正确解密,信息一定是公钥所对应的私钥持有者发出的,可以做签名

04 质数的前置知识

RSA的安全性是由大数的质因数分解保证的。下面是一些质数的性质:

1、任意两个质数构成素质关系,比如:11和17;

2、一个数是质数,另一个数只要不是前者的倍数,两者就构成素质关系,比如3和10;

3、如果两个数之中,较大的那个是质数,则两者构成互质关系,比如97和57;

4、1和任意一个自然数都是互质关系,比如1和99;

5、p是大于1的整数,则p和p-1构成互质关系,比如57和56;

6、p是大于1的奇数,则p和p-2构成互质关系,比如17和15

05 RSA密钥生成步骤

举个“栗子“,假如通信双方为Alice和Bob,Alice要怎么生成公钥和私钥呢?

St ep 1:随机选择两个不相等的质数p和q;

Alice选择了3和11。(实际情况中,选择的越大,就越难破解)

S tep 2 :计算p和q的乘积n;

n = 3*11 = 33,将33转化为二进制:100001,这个时候密钥长度就是6位。

Step 3 :计算n的欧拉函数φ(n);

因为n可以写为两个质数相乘的形式,欧拉函数对于可以写成两个质数形式有简单计算方式

φ(n) = (p-1)(q-1)

Step 4 :随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质;

爱丽丝就在1到20之间,随机选择了3

Step 5 :计算e对于φ(n)的模反元素d

所谓模反元素,就是指有一个整数d,可以使得ed被φ(n)除的余数为1

Step 6 :将n和e封装成公钥,n和d封装成私钥;

在上面的例子中,n=33,e=3,d=7,所以公钥就是 (33,3),私钥就是(33, 7)。

密钥生成步骤中,一共出现了六个数字,分别为:

素质的两个数p和q,乘积n,欧拉函数φ(n),随机质数e,模反元素d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的,可以删除。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

(1)ed 1 (mod φ(n))。只有知道e和φ(n),才能算出d。

(2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

(3)n=pq。只有将n因数分解,才能算出p和q。

结论是如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

BUT!

大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。

维基网络这样写道:

"对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有较短的RSA密钥才可能被暴力破解。到现在为止,世界上还没有任何可靠的攻击RSA算法的方式。

只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

06 RSA加密和解密过程

1、加密要用公钥(n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。

所谓"加密",就是算出下式的c:

爱丽丝的公钥是 (33, 3),鲍勃的m假设是5,那么可以算出下面的等式:

于是,c等于26,鲍勃就把26发给了爱丽丝。

2、解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的26以后,就用自己的私钥(33, 7) 进行解密。下面的等式一定成立(至于为什么一定成立,证明过程比较复杂,略):

也就是说,c的d次方除以n的余数为m。现在,c等于26,私钥是(33, 7),那么,爱丽丝算出:

因此,爱丽丝知道了鲍勃加密前的原文就是5。

至此,加密和解密的整个过程全部完成。整个过程可以看到,加密和解密使用不用的密钥,且不用担心密钥传递过程中的泄密问题,这一点上与对称加密有很大的不同。由于非对称加密要进行的计算步骤复杂,所以通常情况下,是两种算法混合使用的。

07 一些其它的

在Part 5的第五步,要求一定要解出二元一次方程的一对正整数解,如果不存在正整数解,这该怎么办?

扩展欧几里得算法给出了解答:

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by;

第五步其实等价于:ed - kφ(n) = 1, e与φ(n)又互质,形式上完全与扩展欧几里得算法的一致,所以一定有整数解存在。

Reference:

http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html

Ⅷ 给出一种非对称加密算法以及它的的C源代码。

#include <iostream.h>
#include <math.h>
#include <stdio.h>

typedef int Elemtype;
Elemtype p,q,e;
Elemtype fn;
Elemtype m,c;
int flag = 0;
typedef void (*Msghandler) (void);
struct MsgMap {
char ch;
Msghandler handler;
};
/* 公钥 */
struct PU {
Elemtype e;
Elemtype n;
} pu;
/* 私钥 */
struct PR {
Elemtype d;
Elemtype n;
} pr;
/* 判定一个数是否为素数 */
bool test_prime(Elemtype m) {
if (m <= 1) {
return false;
}
else if (m == 2) {
return true;
}
else {
for(int i=2; i<=sqrt(m); i++) {
if((m % i) == 0) {
return false;
break;
}
}
return true;
}
}
/* 将十进制数据转化为二进制数组 */
void switch_to_bit(Elemtype b, Elemtype bin[32]) {
int n = 0;
while( b > 0) {
bin[n] = b % 2;
n++;
b /= 2;
}
}
/* 候选菜单,主界面 */
void Init() {
cout<<"*********************************************"<<endl;
cout<<"*** Welcome to use RSA encoder ***"<<endl;
cout<<"*** a.about ***"<<endl;
cout<<"*** e.encrypt ***"<<endl;
cout<<"*** d.decrypt ***"<<endl;
cout<<"*** s.setkey ***"<<endl;
cout<<"*** q.quit ***"<<endl;
cout<<"**********************************by*Terry***"<<endl;
cout<<"press a key:"<<endl;
}
/* 将两个数排序,大的在前面*/
void order(Elemtype &in1, Elemtype &in2) {
Elemtype a = ( in1 > in2 ? in1 : in2);
Elemtype b = ( in1 < in2 ? in1 : in2);
in1 = a;
in2 = b;
}
/* 求最大公约数 */
Elemtype gcd(Elemtype a, Elemtype b) {
order(a,b);
int r;
if(b == 0) {
return a;
}
else {
while(true) {
r = a % b;
a = b;
b = r;
if (b == 0) {
return a;
break;
}
}
}

}
/* 用扩展的欧几里得算法求乘法逆元 */
Elemtype extend_euclid(Elemtype m, Elemtype bin) {
order(m,bin);
Elemtype a[3],b[3],t[3];
a[0] = 1, a[1] = 0, a[2] = m;
b[0] = 0, b[1] = 1, b[2] = bin;
if (b[2] == 0) {
return a[2] = gcd(m, bin);
}
if (b[2] ==1) {
return b[2] = gcd(m, bin);
}
while(true) {
if (b[2] ==1) {
return b[1];
break;
}
int q = a[2] / b[2];
for(int i=0; i<3; i++) {
t[i] = a[i] - q * b[i];
a[i] = b[i];
b[i] = t[i];
}
}
}
/* 快速模幂算法 */
Elemtype molar_multiplication(Elemtype a, Elemtype b, Elemtype n) {
Elemtype f = 1;
Elemtype bin[32];
switch_to_bit(b,bin);
for(int i=31; i>=0; i--) {
f = (f * f) % n;
if(bin[i] == 1) {
f = (f * a) % n;
}
}
return f;
}
/* 产生密钥 */
void proce_key() {
cout<<"input two primes p and q:";
cin>>p>>q;
while (!(test_prime(p)&&test_prime(q))){
cout<<"wrong input,please make sure two number are both primes!"<<endl;
cout<<"input two primes p and q:";
cin>>p>>q;
};
pr.n = p * q;
pu.n = p * q;
fn = (p - 1) * (q - 1);
cout<<"fn = "<<fn<<endl;
cout<<"input e :";
cin>>e;
while((gcd(fn,e)!=1)) {
cout<<"e is error,try again!";
cout<<"input e :";
cin>>e;
}
pr.d = (extend_euclid(fn,e) + fn) % fn;
pu.e = e;
flag = 1;
cout<<"PR.d: "<<pr.d<<" PR.n: "<<pr.n<<endl;
cout<<"PU.e: "<<pu.e<<" PU.n: "<<pu.n<<endl;
}
/* 加密 */
void encrypt() {
if(flag == 0) {
cout<<"setkey first:"<<endl;
proce_key();
}
cout<<"input m:";
cin>>m;
c = molar_multiplication(m,pu.e,pu.n);
cout<<"c is:"<<c<<endl;
}
/* 解密 */
void decrypt() {
if(flag == 0) {
cout<<"setkey first:"<<endl;
proce_key();
}
cout<<"input c:";
cin>>c;
m = molar_multiplication(c,pr.d,pr.n);
cout<<"m is:"<<m<<endl;
}
/* 版权信息 */
void about() {
cout<<"*********************************************"<<endl;
cout<<"*** by Terry ***"<<endl;
cout<<"*** right 2010,All rights reserved by ***"<<endl;
cout<<"*** Terry,technology supported by weizuo !***"<<endl;
cout<<"*** If you have any question, please mail ***"<<endl;
cout<<"*** to [email protected] ! ***"<<endl;
cout<<"*** Computer of science and engineering ***"<<endl;
cout<<"*** XiDian University 2010-4-29 ***"<<endl;
cout<<"*********************************************"<<endl;
cout<<endl<<endl;
Init();
}
/* 消息映射 */
MsgMap Messagemap[] = {
,
,
,
,

};
/* 主函数,提供循环 */
void main() {
Init();
char d;
while((d = getchar())!='q') {
int i = 0;
while(Messagemap[i].ch) {
if(Messagemap[i].ch == d) {
Messagemap[i].handler();
break;
}
i++;
}
}
}

本程序由520huiqin编写,详情见参考资料

热点内容
c语言数组的删除 发布:2024-05-06 20:52:33 浏览:397
机械战警用什么配置好看 发布:2024-05-06 20:27:12 浏览:435
win10添加python环境变量 发布:2024-05-06 20:27:12 浏览:313
并联臂算法 发布:2024-05-06 20:02:11 浏览:623
cf跟dnf哪个需求配置高 发布:2024-05-06 20:01:23 浏览:657
什么配置皮筋能打老鼠吗 发布:2024-05-06 19:54:32 浏览:742
压缩机油压差报警 发布:2024-05-06 19:45:08 浏览:336
打游戏脚本好不好 发布:2024-05-06 19:44:00 浏览:235
七日杀如何转移服务器 发布:2024-05-06 19:43:04 浏览:429
唐plusdmi买哪个配置 发布:2024-05-06 19:36:48 浏览:148