遍历被访问图
❶ 对连通图进行一次先深遍历可访问图的全部顶点,对吗
图的遍历从图中某一顶点出发,按某种搜索方法访遍其余顶点,且使每一顶点仅被访问一次.这一过程称为图的遍历.遍历图的基本搜索方法有两种:深度优先搜索DFS(Depth First Search)和广度优先搜索BFS(Broad Fi...
❷ 遍历的图
(Depth-First Traversal)
图的深度优先遍历的递归定义:
假设给定图G的初态是所有顶点均未曾访问过。在G中任选一顶点v为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。
图的深度优先遍历类似于树的前序遍历。采用的搜索方法的特点是尽可能先对纵深方向进行搜索。这种搜索方法称为深度优先搜索(Depth-First Search)。相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。
深度优先搜索的过程
设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。此时,若x不是源点,则回溯到在x之前被访问过的顶点;否则图中所有和源点有路径相通的顶点(即从源点可达的所有顶点)都已被访问过,若图G是连通图,则遍历过程结束,否则继续选择一个尚未被访问的顶点作为新源点,进行新的搜索过程。
算法实现 plate<intmax_size>voidDigraph<max_size>::depth_first(void(*visit)(Vertex&))const/*Post:Thefunction*-firstorder.Uses:-firstorder.*/{boolvisited[max_size];Vertexv;for(allvinG)visited[v]=false;for(allvinG)if(!visited[v])traverse(v,visited,visit);}template<intmax_size>voidDigraph<max_size>::traverse(Vertex&v,boolvisited[],void(*visit)(Vertex&))const/*Pre:visavertexoftheDigraph.Post:Thedepth-firsttraversal,usingfunction*visit,.Uses:traverserecursively.*/{Vertexw;visited[v]=true;(*visit)(v);for(allwadjacenttov)if(!visited[w])traverse(w,visited,visit);} (Width-First Traversal)
基本思想
1、从图中某个顶点V0出发,并访问此顶点;
2、从V0出发,访问V0的各个未曾访问的邻接点W1,W2,…,Wk;然后,依次从W1,W2,…,Wk出发访问各自未被访问的邻接点;
3、重复步骤2,直到全部顶点都被访问为止。
广度优先遍历的性质
与深度优先遍历类似,广度优先遍历也有许多有用的特性:
1、广度优先生成树
在广度优先遍历中,如果将每次“前进”(纵深)路过的(将被访问的)结点和边都记录下来,就得到一个子图,该子图为以出发点为根的树,称为广度优先生成树。这种情况与深度优先遍历类似。
类似地,也可以给广度优先生成树结点定义时间戳。
2、最短路径
显然,从v0出发广度优先遍历图,将得到v0到它的各个可达到的路径。我们这里定义路径上的边的数目为路径长度。与深度优先遍历不同,广度优先遍历得到的v0到各点的路径是最短路径(未考虑边权)。
算法实现 template<intmax_size>voidDigraph<max_size>::breadth_first(void(*visit)(Vertex&))const/*Post:Thefunction*-firstorder.Uses:MethodsofclassQueue.*/{Queueq;boolvisited[max_size];Vertexv,w,x;for(allvinG)visited[v]=false;for(allvinG)if(!visited[v]){q.append(v);while(!q.empty()){q.retrieve(w);if(!visited[w]){visited[w]=true;(*visit)(w);for(allxadjacenttow)q.append(x);}q.serve();}}}与深度优先遍历的比较
广度优先遍历与深度优先遍历的区别在于:广度优先遍历是以层为顺序,将某一层上的所有节点都搜索到了之后才向下一层搜索;而深度优先遍历是将某一条枝桠上的所有节点都搜索到了之后,才转向搜索另一条枝桠上的所有节点。
深度优先遍历从某个顶点出发,首先访问这个顶点,然后找出刚访问这个结点的第一个未被访问的邻结点,然后再以此邻结点为顶点,继续找它的下一个新的顶点进行访问,重复此步骤,直到所有结点都被访问完为止。
广度优先遍历从某个顶点出发,首先访问这个顶点,然后找出这个结点的所有未被访问的邻接点,访问完后再访问这些结点中第一个邻接点的所有结点,重复此方法,直到所有结点都被访问完为止。
可以看到两种方法最大的区别在于前者从顶点的第一个邻接点一直访问下去再访问顶点的第二个邻接点;后者从顶点开始访问该顶点的所有邻接点再依次向下,一层一层的访问。
❸ 对连通图进行一次先深遍历可访问图的全部顶点,对吗
如果是无向的连通图或者有向的强连通图,是对的,对于无向的非连通图就不可能一次遍历访问到所有顶点了,对于有向的非强连通图则有可能对,有可能不对
❹ 图的遍历方法主要包括
图的遍历方法主要包括深度优先搜索法和广度(宽度)优先搜索法两种算法。
广度优先遍历(Breadth First Search),又称为广度优先搜索,简称BFS。深度优化遍历(Depth First Search),也有称为深度优化搜索,简称为DFS。事实上,我们在树的遍历中早已涉及DFS,层序遍历、中序遍历和后序遍历都属于深度优先遍历的方式,因为这些遍历方式本质上都归结于栈。
图的遍历方法复杂性介绍
① 在图结构中,没有一个“自然”的首结点,图中任意一个顶点都可作为第一个被访问的结点。
② 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需考虑如何选取下一个出发点以访问图中其余的连通分量。
③ 在图结构中,如果有回路存在,那么一个顶点被访问之后,有可能沿回路又回到该顶点。
④ 在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。
❺ 图遍历算法之DFS/BFS
在计算机科学, 图遍历(Tree Traversal,也称图搜索)是一系列图搜索的算法, 是单次访问树结构类型数据(tree data structure)中每个节点以便检查或更新的一系列机制。图遍历算法可以按照节点访问顺序进行分类,根据访问目的或使用场景的不同,算法大致可分为28种:
图遍历即以特定方式访问图中所有节点,给定节点下有多种可能的搜索路径。假定以顺序方式进行(非并行),还未访问的节点就需通过堆栈(LIFO)或队列(FIFO)规则来确定访问先后。由于树结构是一种递归的数据结构,在清晰的定义下,未访问节点可存储在调用堆栈中。本文介绍了图遍历领域最流行的广度优先搜索算法BFS和深度优先搜索算法DFS,对其原理、应用及实现进行了阐述。通常意义上而言,深度优先搜索(DFS)通过递归调用堆栈比较容易实现,广义优先搜索通过队列实现。
深度优先搜索(DFS)是用于遍历或搜索图数据结构的算法,该算法从根节点开始(图搜索时可选择任意节点作为根节点)沿着每个分支进行搜索,分支搜索结束后在进行回溯。在进入下一节点之前,树的搜索尽可能的加深。
DFS的搜索算法如下(以二叉树为例):假定根节点(图的任意节点可作为根节点)标记为 ,
(L) : 递归遍历左子树,并在节点 结束。
(R): 递归遍历右子树,并在节点 结束。
(N): 访问节点 。
这些步骤可以以任意次序排列。如果(L)在(R)之前,则该过程称为从左到右的遍历;反之,则称为从右到左的遍历。根据访问次序的不同,深度优先搜索可分为 pre-order、in-order、out-order以及post-order遍历方式。
(a)检查当前节点是否为空;
(b)展示根节点或当前节点数据;
(c)递归调用pre-order函数遍历左子树;
(d)递归调用pre-order函数遍历右子树。
pre-order遍历属于拓扑排序后的遍历,父节点总是在任何子节点之前被访问。该遍历方式的图示如下:
遍历次序依次为:F -B -A-D- C-E-G- I-H.
(a)检查当前节点是否为空;
(b)递归调用in-order函数遍历左子树;
(c)展示根节点或当前节点数据;
(d)递归调用in-order函数遍历右子树。
在二叉树搜索中,in-order遍历以排序顺序访问节点数据。该遍历方式的图示如下:
遍历次序依次为:A -B - C - D - E - F - G -H-I
(a)检查当前节点是否为空;
(b)递归调用out-order函数遍历右子树;
(c)展示根节点或当前节点数据;
(d)递归调用out-order函数遍历左子树。
该遍历方式与LNR类似,但先遍历右子树后遍历左子树。仍然以图2为例,遍历次序依次为:H- I-G- F- B- E- D- C- A.
(a)检查当前节点是否为空;
(b)递归调用post-order函数遍历左子树;
(c)递归调用post-order函数遍历右子树;
(d)展示根节点或当前节点数据。
post-order遍历图示如下:
遍历次序依次为:A-C-E-D-B-H-I-G-F.
pre-order遍历方式使用场景:用于创建树或图的副本;
in-order遍历使用场景:二叉树遍历;
post-order遍历使用场景:删除树
遍历追踪也称树的序列化,是所访问根节点列表。无论是pre-order,in-order或是post-order都无法完整的描述树特性。给定含有不同元素的树结构,pre-order或post-order与in-order遍历方式结合起来使用才可以描述树的独特性。
树或图形的访问也可以按照节点所处的级别进行遍历。在每次访问下一层级节点之前,遍历所在高层级的所有节点。BFS从根节点(图的任意节点可作为根节点)出发,在移动到下一节点之前访问所有相同深度水平的相邻节点。
BFS的遍历方法图示如下:
遍历次序依次为: F-B-G-A-D-I-C-E-H.
图算法相关的R包为igraph,主要包括图的生成、图计算等一系列算法的实现。
使用方法:
参数说明:
示例:
结果展示:
DFS R输出节点排序:
使用方法:
参数含义同dfs
示例:
结果展示:
BFS R输出节点排序:
以寻找两点之间的路径为例,分别展示BFS及DFS的实现。图示例如下:
示例:
输出结果:
示例:
输出结果:
[1] 维基网络: https://en.wikipedia.org/wiki/Tree_traversal
[2] GeeksforGeeks: https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/
[3] http://webdocs.cs.ualberta.ca/~holte/T26/tree-traversal.html
[4]Martin Broadhurst, Graph Algorithm: http://www.martinbroadhurst.com/Graph-algorithms.html#section_1_1
[5]igraph: https://igraph.org/r/doc/dfs.html
[6]igraph: https://igraph.org/r/doc/bfs.html
[7] Depth-First Search and Breadth-First Search in python: https://eddmann.com/posts/depth-first-search-and-breadth-first-search-in-python/
❻ 用C语言编程实现图的遍历算法
图的遍历是指按某条搜索路径访问图中每个结点,使得每个结点均被访问一次,而且仅被访问一次。图的遍历有深度遍历算法和广度遍历算法,最近阿杰做了关于图的遍历的算法,下面是图的遍历深度优先的算法(C语言程序):
#include<stdio.h>
#include<malloc.h>
#define MaxVertexNum 5
#define m 5
#define TRUE 1
#define NULL 0
typedef struct node
{
int adjvex;
struct node *next;
}JD;
typedef struct EdgeNode
{
int vexdata;
JD *firstarc;
}TD;
typedef struct
{
TD ag[m];
int n;
}ALGRAPH;
void DFS(ALGRAPH *G,int i)
{
JD *p;
int visited[80];
printf("visit vertex:%d->",G->ag[i].vexdata);
visited[i]=1;
p=G->ag[i].firstarc;
while(p)
{
if (!visited[p->adjvex])
DFS(G,p->adjvex);
p=p->next;
}
}
void creat(ALGRAPH *G)
{
int i,m1,j;
JD *p,*p1;
printf("please input the number of graph\n");
scanf("%d",&G->n);
for(i=0;i<G->n;i++)
{
printf("please input the info of node %d",i);
scanf("%d",&G->ag[i].vexdata);
printf("please input the number of arcs which adj to %d",i);
scanf("%d",&m1);
printf("please input the adjvex position of the first arc\n");
p=(JD *)malloc(sizeof(JD));
scanf("%d",&p->adjvex);
p->next=NULL;
G->ag[i].firstarc=p;
p1=p;
for(j=2 ;j<=m1;j++)
{
printf("please input the position of the next arc vexdata\n");
p=(JD *)malloc(sizeof(JD));
scanf("%d",&p->adjvex);
p->next=NULL;
p1->next=p;
p1=p;
}
}
}
int visited[MaxVertexNum];
void DFSTraverse(ALGRAPH *G)
{
int i;
for(i=0;i<G->n;i++)
visited[i]=0;
for(i=0;i<G->n;i++)
if(!visited[i])
DFS(G,i);
}
int main()
{
ALGRAPH *G;
printf("下面以临接表存储一个图;\n");
creat(G);
printf("下面以深度优先遍历该图 \n");
DFSTraverse(G);
getchar();
}
❼ 图的图的遍历
常见的图遍历方式有两种:深度优先遍历和广度优先遍历,这两种遍历方式对有向图和无向图均适用。 深度优先遍历的思想类似于树的先序遍历。其遍历过程可以描述为:从图中某个顶点v出发,访问该顶点,然后依次从v的未被访问的邻接点出发继续深度优先遍历图中的其余顶点,直至图中所有与v有路径相通的顶点都被访问完为止。
深度优先遍历算法实现:
为了便于在算法中区分顶点是否已被访问过,需要创建一个一维数组visited[0..n-1](n是图中顶点的数目),用来设置访问标志,其初始值visited(0≤i≤n-1)为"0",表示邻接表中下标值为i的顶点没有被访问过,一旦该顶点被访问,将visited置成"1"。
int visited[0..n-1]={0,0,...0};
void DFS(AdjList adj,int v)
{//v是遍历起始点的在邻接表中的下标值,其下标从0开始
visited[v]=1; visited(adj[v].elem);
for (w=adj[v].firstedge;w;w=w->next)
if (!visited[w->adjvex]) DFS(adj,w->adjvex);
}
对于无向图,这个算法可以遍历到v顶点所在的连通分量中的所有顶点,而与v顶点不在一个连通分量中的所有顶点遍历不到;而对于有向图可以遍历到起始顶点v能够到达的所有顶点。若希望遍历到图中的所有顶点,就需要在上述深度优先遍历算法的基础上,增加对每个顶点访问状态的检测: intvisited[0..n-1]={0,0,...0};voidDFSTraverse(AdjListadj){for(v=0;v<n;v++)if(!visited[v])DFS(adj,v);} 对图的广度优先遍历方法描述为:从图中某个顶点v出发,在访问该顶点v之后,依次访问v的所有未被访问过的邻接点,然后再访问每个邻接点的邻接点,且访问顺序应保持先被访问的顶点其邻接点也优先被访问,直到图中的所有顶点都被访问为止。下面是对一个无向图进行广度优先遍历的过程。
下面我们讨论一下实现广度优先遍历算法需要考虑的几个问题:
(1)在广度优先遍历中,要求先被访问的顶点其邻接点也被优先访问,因此,必须对每个顶点的访问顺序进行记录,以便后面按此顺序访问各顶点的邻接点。应利用一个队列结构记录顶点访问顺序,就可以利用队列结构的操作特点,将访问的每个顶点入队,然后,再依次出队,并访问它们的邻接点;
(2)在广度优先遍历过程中同深度优先遍历一样,为了避免重复访问某个顶点,也需要创建一个一维数组visited[0..n-1](n是图中顶点的数目),用来记录每个顶点是否已经被访问过。
int visited[0..n-1]={0,0,...0};
void BFS(AdjList adj,int v)
{//v是遍历起始点在邻接表中的下标,邻接表中下标从0开始
InitQueue(Q); //Q是队列
visited[v]=1; visite(adj[v].elem); EnQueue(Q,v);
while (!QueueEmpty(Q)) {
DeQueue(Q,v);
for (w=adj[v].firstedge;w;w=w->next)
if (!visited[w->adjvex]) {
visited[w->adjvex]=1;
visite(adj[w->adjvex].elem);
EnQueue(Q,w->adjvex); }
}
}
❽ 使用图遍历的方法判断一个图是否连通,其判断依据是
采用图的深度遍历法,从其中一个结点v出发,直至所有与v有路径相通的结点都被访问到。若此时图中所有点都被访问过,则该图是连通图,反之,说明还有其他连通分量,该图不是一个连通图。
❾ 图遍历的算法
图的遍历方法目前有深度优先搜索法和广度(宽度)优先搜索法两种算法。 深度优先搜索法是树的先根遍历的推广,它的基本思想是:从图G的某个顶点v0出发,访问v0,然后选择一个与v0相邻且没被访问过的顶点vi访问,再从vi出发选择一个与vi相邻且未被访问的顶点vj进行访问,依次继续。如果当前被访问过的顶点的所有邻接顶点都已被访问,则退回到已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点w,从w出发按同样的方法向前遍历,直到图中所有顶点都被访问。其递归算法如下:
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void DFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum; ++v)
visited[v] = FALSE; //访问标志数组初始化
for(v=0; v<G.vexnum; ++v)
if(!visited[v])
DFS(G, v); //对尚未访问的顶点调用DFS
}
void DFS(Graph G, int v){ //从第v个顶点出发递归地深度优先遍历图G
visited[v]=TRUE; VisitFunc(v); //访问第v个顶点
for(w=FirstAdjVex(G,v); w>=0; w=NextAdjVex(G,v,w))
//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
//若w是v的邻接顶点,NextAdjVex返回v的(相对于w的)下一个邻接顶点。
//若w是v的最后一个邻接点,则返回空(0)。
if(!visited[w])
DFS(G, w); //对v的尚未访问的邻接顶点w调用DFS
} 图的广度优先搜索是树的按层次遍历的推广,它的基本思想是:首先访问初始点vi,并将其标记为已访问过,接着访问vi的所有未被访问过的邻接点vi1,vi2,…, vi t,并均标记已访问过,然后再按照vi1,vi2,…, vi t的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依次类推,直到图中所有和初始点vi有路径相通的顶点都被访问过为止。其非递归算法如下:
Boolean visited[MAX_VERTEX_NUM]; //访问标志数组
Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数
void BFSTraverse (Graph G, Status(*Visit)(int v)){
VisitFunc = Visit;
for(v=0; v<G.vexnum, ++v)
visited[v] = FALSE;
initQueue(Q); //置空辅助队列Q
for(v=0; v<G.vexnum; ++v)
if(!visited[v]){
visited[v]=TRUE; VisitFunc(v);
EnQueue(Q, v); //v入队列
while(!QueueEmpty(Q)){
DeQueue(Q, u); //队头元素出队并置为u
for(w=FirstAdjVex(G,u); w>=0; w=NextAdjVex(G,u,w))
if(!Visited[w]){ //w为u的尚未访问的邻接顶点
Visited[w]=TRUE; VisitFunc(w);
EnQueue(Q, w);
}
}
}
}