当前位置:首页 » 编程软件 » 编译时产生逻辑地址

编译时产生逻辑地址

发布时间: 2022-05-28 14:02:15

Ⅰ 电脑硬件知识

逻辑地址(Logical Address) 是指由程序产生的与段相关的偏移地址部分。例如,你在进行C语言指针编程中,可以读取指针变量本身值(&操作),实际上这个值就是逻辑地址,它是相对于你当前进程数据段的地址,不和绝对物理地址相干。只有在Intel实模式下,逻辑地址才和物理地址相等(因为实模式没有分段或分页机制,Cpu不进行自动地址转换);逻辑也就是在Intel 保护模式下程序执行代码段限长内的偏移地址(假定代码段、数据段如果完全一样)。应用程序员仅需与逻辑地址打交道,而分段和分页机制对您来说是完全透明的,仅由系统编程人员涉及。应用程序员虽然自己可以直接操作内存,那也只能在操作系统给你分配的内存段操作。线性地址(Linear Address) 是逻辑地址到物理地址变换之间的中间层。程序代码会产生逻辑地址,或者说是段中的偏移地址,加上相应段的基地址就生成了一个线性地址。如果启用了分页机制,那么线性地址可以再经变换以产生一个物理地址。若没有启用分页机制,那么线性地址直接就是物理地址。Intel 80386的线性地址空间容量为4G(2的32次方即32根地址总线寻址)。

物理地址(Physical Address) 是指出现在CPU外部地址总线上的寻址物理内存的地址信号,是地址变换的最终结果地址。如果启用了分页机制,那么线性地址会使用页目录和页表中的项变换成物理地址。如果没有启用分页机制,那么线性地址就直接成为物理地址了。虚拟内存(Virtual Memory) 是指计算机呈现出要比实际拥有的内存大得多的内存量。因此它允许程序员编制并运行比实际系统拥有的内存大得多的程序。这使得许多大型项目也能够在具有有限内存资源的系统上实现。一个很恰当的比喻是:你不需要很长的轨道就可以让一列火车从上海开到北京。你只需要足够长的铁轨(比如说3公里)就可以完成这个任务。采取的方法是把后面的铁轨立刻铺到火车的前面,只要你的操作足够快并能满足要求,列车就能象在一条完整的轨道上运行。这也就是虚拟内存管理需要完成的任务。在linux 0.11内核中,给每个程序(进程)都划分了总容量为64MB的虚拟内存空间。因此程序的逻辑地址范围是0x0000000到0x4000000。有时我们也把逻辑地址称为虚拟地址。因为与虚拟内存空间的概念类似,逻辑地址也是与实际物理内存容量无关的。 逻辑地址与物理地址的“差距”是0xC0000000,是由于虚拟地址->线性地址->物理地址映射正好差这个值。这个值是由操作系统指定的。

下面我主要是通过实际实战来给大家解释说明一下相对路径和绝对路径的区别。

你在自己的电脑上创建了一个名字为WEB的文件夹用于来存放所有的网页文件,WEB文件夹中有一个index.htm的网页文件和一个名字为01的文件夹,其中01文件夹里面有一个名字为1.htm的网页文件。

那么现在我在index.htm上有一个链接描述的连接是指向网页文件1.htm的,那么我们可以通过相对链接的形式来实现,在index.htm文件的源码中链接描述应该是:<a href="01/1.htm">链接描述</a> 其中 01/1.htm 就是1.htm相对于index.htm的路径。那么从1.htm链接向index.htm,这样的路径描述应该怎么写呢?首先请大家看一下代码:<a href="../index.htm">链接描述</a> 大家会看到链接路径中出现了两个点,这里我们使用了父路径,两点的意思是返回上一级文件夹,依次类推,返回多少个上一级文件夹就应该出现多少个两点。到这里相对路径就已经解释完毕了。

下面来解释一下绝对路径的问题。

比如你现在有一个虚拟主机,这个虚拟主机绑定的域名是 www.jianzhan8.cn ,那么你就可以在浏览器里通过输入http://www.jianzhan8.cn 来访问你的网站了。先在我们把上面的例子中的网页文件全部上传到虚拟主机中,那么我们得出index.htm在因特网上的绝对地址是 http://www.jianzhan8.cn/index.htm,网页文件1.htm的绝对地址就是http://www.jianzhan8.cn/01/1.htm,由index.htm链接描述指向1.htm使用绝对路径的代码写法是
<a href="http://www.jianzhan8.cn/01/1.htm">链接描述</a> ,由1.htm链接描述指向index.htm使用绝对路径的代码写法是 <a href="http://www.jianzhan8.cn/index.htm">链接描述</a>。

关于路径使用的建议

如果是站内文件,建议使用相对路径,因为它比绝对路径的代码短,另外相对位置也比较容易找,使网站维护比较方便。至于绝对路径,一般是做外部资源链接的时候才使用的。

有效地址=段地址左移4 + 偏移地址?;物理地址=段地址左移4 + 偏移地址.

有效地址究竟是=偏移地址
答:LEA r16,mem ;r16←mem的有效地址EA
有效地址的获取
mov bx,0500h
mov si,4ch
lea bx,[bx+si+0f62h] ;BX=14AEH
这里BX得到的是主存单元的有效地址,不是物理地址,也不是该单元的内容。

Ⅱ 操作系统中 区分编译后的形成逻辑地址和链接后的形成的最终逻辑地址 什么意思啊

编译后产生若干个目标模块,编译后的逻辑地址指的是每个模块都从0号单元开始编址,而链接将这些模块链接在一起,形成一个完整的装入模块,此时的逻辑地址会重新编址,也就是说链接后的逻辑地址是将整个模块从0号单元开始编址。

Ⅲ 什么是逻辑地址空间物理存储空间

逻辑地址(Logical Address) 是指由程序产生的与段相关的偏移地址部分。例如,你在进行C语言指针编程中,可以读取指针变量本身值(&操作),实际上这个值就是逻辑地址,它是相对于你当前进程数据段的地址,不和绝对物理地址相干。只有在Intel实模式下,逻辑地址才和物理地址相等(因为实模式没有分段或分页机制,Cpu不进行自动地址转换);逻辑也就是在Intel 保护模式下程序执行代码段限长内的偏移地址(假定代码段、数据段如果完全一样)。应用程序员仅需与逻辑地址打交道,而分段和分页机制对您来说是完全透明的,仅由系统编程人员涉及。应用程序员虽然自己可以直接操作内存,那也只能在操作系统给你分配的内存段操作。线性地址(Linear Address) 是逻辑地址到物理地址变换之间的中间层。程序代码会产生逻辑地址,或者说是段中的偏移地址,加上相应段的基地址就生成了一个线性地址。如果启用了分页机制,那么线性地址可以再经变换以产生一个物理地址。若没有启用分页机制,那么线性地址直接就是物理地址。Intel 80386的线性地址空间容量为4G(2的32次方即32根地址总线寻址)。物理地址(Physical Address) 是指出现在CPU外部地址总线上的寻址物理内存的地址信号,是地址变换的最终结果地址。如果启用了分页机制,那么线性地址会使用页目录和页表中的项变换成物理地址。如果没有启用分页机制,那么线性地址就直接成为物理地址了。虚拟内存(Virtual Memory) 是指计算机呈现出要比实际拥有的内存大得多的内存量。因此它允许程序员编制并运行比实际系统拥有的内存大得多的程序。这使得许多大型项目也能够在具有有限内存资源的系统上实现。一个很恰当的比喻是:你不需要很长的轨道就可以让一列火车从上海开到北京。你只需要足够长的铁轨(比如说3公里)就可以完成这个任务。采取的方法是把后面的铁轨立刻铺到火车的前面,只要你的操作足够快并能满足要求,列车就能象在一条完整的轨道上运行。这也就是虚拟内存管理需要完成的任务。在Linux 0.11内核中,给每个程序(进程)都划分了总容量为64MB的虚拟内存空间。因此程序的逻辑地址范围是0x0000000到0x4000000。有时我们也把逻辑地址称为虚拟地址。因为与虚拟内存空间的概念类似,逻辑地址也是与实际物理内存容量无关的。 逻辑地址与物理地址的“差距”是0xC0000000,是由于虚拟地址->线性地址->物理地址映射正好差这个值。这个值是由操作系统指定的。

Ⅳ C语言:全局变量和局部动态变量,编译后逻辑地址就确定了吗

对啊,整个程序运行的地址要在运行时由操作系统来分配的,而逻辑地址则是在编译时就定下了。

Ⅳ 在编译时为内存分配了逻辑地址,之后连接生成了可执行文件,逻辑地址在运行时会发生变化吗

应该不会冲突,每个程序在内存中占用的空间都是独立的,逻辑地址只是在它自己的空间里的相对地址,正常情况下不会有交集。

Ⅵ 在计算机编程中,我们知道在编译器里使用的是逻辑地址,但是CPU访问要用到实际物理地址,那这个地址是

计算机的cpu里面都有一张tlb映射表,是一种缓存

当cpu接收到应用程序传过来的虚拟地址的时候,根据这张表转换成物理地址再去访问。是cpu边执行边换转的。

具体楼主可以搜索一下tlb的相关知识。

Ⅶ C语言,所有变量的逻辑地址都是编译后确定的吗

是的。程序都是在运行阶段分配内存,所有变量的逻辑地址都是在编译后就确定了,但都是相对的偏移地址,只不过全局变量是相对数据段的偏移,局部变量是相对程序栈顶的偏移。

Ⅷ linux 内存管理虚拟空间地址转换虚拟逻辑地址编译问题

一、概念

物理地址(physical address)
用于内存芯片级的单元寻址,与处理器和CPU连接的地址总线相对应。
——这个概念应该是这几个概念中最好理解的一个,但是值得一提的是,虽然可以直接把物理地址理解成插在机器上那根内存本身,把内存看成一个从0字节一直到最大空量逐字节的编号的大数组,然后把这个数组叫做物理地址,但是事实上,这只是一个硬件提供给软件的抽像,内存的寻址方式并不是这样。所以,说它是“与地址总线相对应”,是更贴切一些,不过抛开对物理内存寻址方式的考虑,直接把物理地址与物理的内存一一对应,也是可以接受的。也许错误的理解更利于形而上的抽像。

虚拟内存(virtual memory)
这是对整个内存(不要与机器上插那条对上号)的抽像描述。它是相对于物理内存来讲的,可以直接理解成“不直实的”,“假的”内存,例如,一个0x08000000内存地址,它并不对就物理地址上那个大数组中0x08000000 - 1那个地址元素;
之所以是这样,是因为现代操作系统都提供了一种内存管理的抽像,即虚拟内存(virtual memory)。进程使用虚拟内存中的地址,由操作系统协助相关硬件,把它“转换”成真正的物理地址。这个“转换”,是所有问题讨论的关键。
有了这样的抽像,一个程序,就可以使用比真实物理地址大得多的地址空间。(拆东墙,补西墙,银行也是这样子做的),甚至多个进程可以使用相同的地址。不奇怪,因为转换后的物理地址并非相同的。
——可以把连接后的程序反编译看一下,发现连接器已经为程序分配了一个地址,例如,要调用某个函数A,代码不是call A,而是call 0x0811111111 ,也就是说,函数A的地址已经被定下来了。没有这样的“转换”,没有虚拟地址的概念,这样做是根本行不通的。
打住了,这个问题再说下去,就收不住了。

逻辑地址(logical address)
Intel为了兼容,将远古时代的段式内存管理方式保留了下来。逻辑地址指的是机器语言指令中,用来指定一个操作数或者是一条指令的地址。以上例,我们说的连接器为A分配的0x08111111这个地址就是逻辑地址。
——不过不好意思,这样说,好像又违背了Intel中段式管理中,对逻辑地址要求,“一个逻辑地址,是由一个段标识符加上一个指定段内相对地址的偏移量,表示为 [段标识符:段内偏移量],也就是说,上例中那个0x08111111,应该表示为[A的代码段标识符: 0x08111111],这样,才完整一些”

线性地址(linear address)或也叫虚拟地址(virtual address)
跟逻辑地址类似,它也是一个不真实的地址,如果逻辑地址是对应的硬件平台段式管理转换前地址的话,那么线性地址则对应了硬件页式内存的转换前地址。

-------------------------------------------------------------
CPU将一个虚拟内存空间中的地址转换为物理地址,需要进行两步:首先将给定一个逻辑地址(其实是段内偏移量,这个一定要理解!!!),CPU要利用其段式内存管理单元,先将为个逻辑地址转换成一个线程地址,再利用其页式内存管理单元,转换为最终物理地址。

这样做两次转换,的确是非常麻烦而且没有必要的,因为直接可以把线性地址抽像给进程。之所以这样冗余,Intel完全是为了兼容而已。

2、CPU段式内存管理,逻辑地址如何转换为线性地址
一个逻辑地址由两部份组成,段标识符: 段内偏移量。段标识符是由一个16位长的字段组成,称为段选择符。其中前13位是一个索引号。后面3位包含一些硬件细节,如图:

最后两位涉及权限检查,本贴中不包含。

索引号,或者直接理解成数组下标——那它总要对应一个数组吧,它又是什么东东的索引呢?这个东东就是“段描述符(segment descriptor)”,呵呵,段描述符具体地址描述了一个段(对于“段”这个字眼的理解,我是把它想象成,拿了一把刀,把虚拟内存,砍成若干的截——段)。这样,很多个段描述符,就组了一个数组,叫“段描述符表”,这样,可以通过段标识符的前13位,直接在段描述符表中找到一个具体的段描述符,这个描述符就描述了一个段,我刚才对段的抽像不太准确,因为看看描述符里面究竟有什么东东——也就是它究竟是如何描述的,就理解段究竟有什么东东了,每一个段描述符由8个字节组成,如下图:

这些东东很复杂,虽然可以利用一个数据结构来定义它,不过,我这里只关心一样,就是Base字段,它描述了一个段的开始位置的线性地址。

Intel设计的本意是,一些全局的段描述符,就放在“全局段描述符表(GDT)”中,一些局部的,例如每个进程自己的,就放在所谓的“局部段描述符表(LDT)”中。那究竟什么时候该用GDT,什么时候该用LDT呢?这是由段选择符中的T1字段表示的,=0,表示用GDT,=1表示用LDT。

GDT在内存中的地址和大小存放在CPU的gdtr控制寄存器中,而LDT则在ldtr寄存器中。

好多概念,像绕口令一样。这张图看起来要直观些:

首先,给定一个完整的逻辑地址[段选择符:段内偏移地址],
1、看段选择符的T1=0还是1,知道当前要转换是GDT中的段,还是LDT中的段,再根据相应寄存器,得到其地址和大小。我们就有了一个数组了。
2、拿出段选择符中前13位,可以在这个数组中,查找到对应的段描述符,这样,它了Base,即基地址就知道了。
3、把Base + offset,就是要转换的线性地址了。

还是挺简单的,对于软件来讲,原则上就需要把硬件转换所需的信息准备好,就可以让硬件来完成这个转换了。OK,来看看Linux怎么做的。

Ⅸ C语言的&运算符取的是逻辑地址还是物理地址 每次重新编译运行后 输出变量的地址值都一样 怎么理解

你自定义的变量A,在你编译的时候就已经确定了,所以是一个相对地址。

程序执行时,系统会分配一片内存空间供程序使用,当如果你定义的变量A不是相对地址的话,那么每次分配内存是都要再次申请内存空间,显然是不合理的。

所以变量A是相对地址,你程序内存空间起始地址为0,A的地址就是相对于起始地址,这一定程度上也算是一种逻辑上的地址吧...但是和操作系统的逻辑地址不一样

Ⅹ 高级语言源程序编译后产生的地址是逻辑地址还是物理地址

由于操作系统技术的发展,可重用二进制程序技术使用了内存重定位技术,所以从汇编的角度来看即不是逻辑地址也不是物理地址。而且这个概念有些不同,编译后产生的地址是相对地址,是相对于可执行头部位置的地址。而逻辑地址是指在指令系统内部使用的用来访问内存的一个逻辑表示,通常表现为相对于某个段基地址的偏移量。
当可执行程序被载入内存之后,才会有逻辑地址存在,此时可执行程序被如何加载于何处,地址为多少,由操作系统决定,此时cpu访问程序用的是逻辑地址。一个程序一旦被编译确定之后基本上变量初始化的顺序固定,资源分配位置也固定,设置有编译器使用预分配机制,然后采用相对地址引用。
注意:某些工具书也称二进制可执行文件内所有的相对地址范围是逻辑地址空间,相对地址就是逻辑地址。因为两者的访问方式相似,逻辑地址变换依赖cpu或者附加变换机构(硬件),而二进制程序地址空间变换需要操作系统插手管理。
反汇编分析中常常将二进制内部地址称为逻辑地址,因为反汇编器不能还原原来汇编代码的地址跳转空间特性,因此得到一个相对于二进制数据起点位置的相对地址,而和内存和物理存储都没有关系。

热点内容
如何用方向键控制安卓机 发布:2024-05-17 16:38:11 浏览:197
雨田系统源码 发布:2024-05-17 16:28:06 浏览:585
新手直播脚本 发布:2024-05-17 16:27:25 浏览:846
python双引号单引号 发布:2024-05-17 16:19:31 浏览:947
0xxc语言 发布:2024-05-17 16:17:40 浏览:699
php与java的区别 发布:2024-05-17 16:12:48 浏览:339
registrar服务器地址是什么 发布:2024-05-17 16:11:46 浏览:112
订阅号助手如何找到密码 发布:2024-05-17 15:57:47 浏览:711
搜解压缩 发布:2024-05-17 15:38:32 浏览:764
水泵扬程算法 发布:2024-05-17 15:37:29 浏览:977