当前位置:首页 » 编程软件 » 套接口编程

套接口编程

发布时间: 2022-08-07 10:46:54

⑴ c#socket编程关于阻塞侦听的问题

1.首先将标志位设为Non-blocking模式,准备在非阻塞模式下调用connect函数
2.调用connect,正常情况下,因为TCP三次握手需要一些时间;而非阻塞调用只要不能立即完成就会返回错误,所以这里会返回EINPROGRESS,表示在建立连接但还没有完成。
3.在读套接口描述符集(fd_set rset)和写套接口描述符集(fd_set
wset)中将当前套接口置位(用FD_ZERO()、FD_SET()宏),并设置好超时时间(struct
timeval *timeout)
4.调用select( socket, &rset, &wset, NULL, timeout )
返回0表示connect超时
如果你设置的超时时间大于75秒就没有必要这样做了,因为内核中对connect有超时限制就是75秒。
网络编程中socket的分量我想大家都很清楚了,socket也就是套接口,在套接口编程中,提到超时的概念,我们一下子就能想到3个:发送超时,接收超时,以及select超时(注:
select函数并不是只用于套接口的,但是套接口编程中用的比较多),在connect到目标主机的时候,这个超时是不由我们来设置的。不过正常情况下这个超时都很长,并且connect又是一个阻塞方法,一个主机不能连接,等着connect返回还能忍受,你的程序要是要试图连接多个主机,恐怕遇到多个不能连接的主机的时候,会塞得你受不了的。我也废话少说,先说说我的方法,如果你觉得你已掌握这种方法,你就不用再看下去了,如果你还不了解,我愿意与你分享。本文是已在linux下的程序为例子,不过拿到Windows中方法也是一样,无非是换几个函数名字罢了。
Linux中要给connect设置超时,应该是有两种方法的。一种是该系统的一些参数,这个方法我不讲,因为我讲不清楚:P,它也不是编程实现的。另外一种方法就是变相的实现connect的超时,我要讲的就是这个方法,原理上是这样的:
1.建立socket
2.将该socket设置为非阻塞模式
3.调用connect()
4.使用select()检查该socket描述符是否可写(注意,是可写)
5.根据select()返回的结果判断connect()结果
6.将socket设置为阻塞模式(如果你的程序不需要用阻塞模式的,这步就省了,不过一般情况下都是用阻塞模式的,这样也容易管理)

⑵ socket网络编程中,listen()创建了一个套接口是什么意思

listen()只是对端口的同时最大连接数做一个限制,而且只有socket()创建socket描述符时type为SOCK_STREAM,即创建有链接通信时才能用到。
比如listen(sock_fd,100)即是限定同时来连接的数量不能超过101.有一个可以马上处理,100个放入某个队列,等待处理。超过的连接请求会收到一个连接错误的返回。

⑶ 如何设置socket的Connect超时

1.首先将标志位设为Non-blocking模式,准备在非阻塞模式下调用connect函数
2.调用connect,正常情况下,因为TCP三次握手需要一些时间;而非阻塞调用只要不能立即完成就会返回错误,所以这里会返回EINPROGRESS,表示在建立连接但还没有完成。
3.在读套接口描述符集(fd_set rset)和写套接口描述符集(fd_set
wset)中将当前套接口置位(用FD_ZERO()、FD_SET()宏),并设置好超时时间(struct
timeval *timeout)
4.调用select( socket, &rset, &wset, NULL, timeout )
返回0表示connect超时
如果你设置的超时时间大于75秒就没有必要这样做了,因为内核中对connect有超时限制就是75秒。
网络编程中socket的分量我想大家都很清楚了,socket也就是套接口,在套接口编程中,提到超时的概念,我们一下子就能想到3个:发送超时,接收超时,以及select超时(注:
select函数并不是只用于套接口的,但是套接口编程中用的比较多),在connect到目标主机的时候,这个超时是不由我们来设置的。不过正常情况下这个超时都很长,并且connect又是一个阻塞方法,一个主机不能连接,等着connect返回还能忍受,你的程序要是要试图连接多个主机,恐怕遇到多个不能连接的主机的时候,会塞得你受不了的。我也废话少说,先说说我的方法,如果你觉得你已掌握这种方法,你就不用再看下去了,如果你还不了解,我愿意与你分享。本文是已在Linux下的程序为例子,不过拿到Windows中方法也是一样,无非是换几个函数名字罢了。
Linux中要给connect设置超时,应该是有两种方法的。一种是该系统的一些参数,这个方法我不讲,因为我讲不清楚:P,它也不是编程实现的。另外一种方法就是变相的实现connect的超时,我要讲的就是这个方法,原理上是这样的:
1.建立socket
2.将该socket设置为非阻塞模式
3.调用connect()
4.使用select()检查该socket描述符是否可写(注意,是可写)
5.根据select()返回的结果判断connect()结果
6.将socket设置为阻塞模式(如果你的程序不需要用阻塞模式的,这步就省了,不过一般情况下都是用阻塞模式的,这样也容易管理)
如果你对网络编程很熟悉的话,其实我一说出这个过程你就知道怎么写你的程序了,下面给出我写的一段程序,仅供参考。
/******************************
* Time out for connect()
* Write by Kerl W
******************************/
#include <sys/socket.h>
#include <sys/types.h>
#define TIME_OUT_TIME 20 //connect超时时间20秒
int main(int argc , char **argv)
{
………………
int sockfd = socket(AF_INET, SOCK_STREAM, 0);
if(sockfd < 0) exit(1);
struct sockaddr_in serv_addr;
………//以服务器地址填充结构serv_addr
int error=-1, len;
len = sizeof(int);
timeval tm;
fd_set set;
unsigned long ul = 1;
ioctl(sockfd, FIONBIO, &ul); //设置为非阻塞模式
bool ret = false;
if( connect(sockfd, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) ==
-1)
{
tm.tv_set = TIME_OUT_TIME;
tm.tv_uset = 0;
FD_ZERO(&set);
FD_SET(sockfd, &set);
if( select(sockfd+1, NULL, &set, NULL, &tm) > 0)
{
getsockopt(sockfd, SOL_SOCKET, SO_ERROR, &error, (socklen_t *)&len);
if(error == 0) ret = true;
else ret = false;
} else ret = false;
}
else ret = true;
ul = 0;
ioctl(sockfd, FIONBIO, &ul); //设置为阻塞模式
if(!ret)
{
close( sockfd );
fprintf(stderr , "Cannot Connect the server!n");
return;
}
fprintf( stderr , "Connected!n");
//下面还可以进行发包收包操作
……………
}

以上代码片段,仅供参考,也是为初学者提供一些提示,主要用到的几个函数,select,
ioctl,
getsockopt都可以找到相关资料,具体用法我这里就不赘述了,你只需要在linux中轻轻的敲一个man
<函数名>就能够看到它的用法。
此外我需要说明的几点是,虽然我们用ioctl把套接口设置为非阻塞模式,不过select本身是阻塞的,阻塞的时间就是其超时的时间由调用select
的时候的最后一个参数timeval类型的变量指针指向的timeval结构变量来决定的,timeval结构由一个表示秒数的和一个表示微秒数(long类型)的成员组成,一般我们设置了秒数就行了,把微妙数设为0(注:1秒等于100万微秒)。而select函数另一个值得一提的参数就是上面我们用到的fd_set类型的变量指针。调用之前,这个变量里面存了要用select来检查的描述符,调用之后,针对上面的程序这里面是可写的描述符,我们可以用宏FD_ISSET来检查某个描述符是否在其中。由于我这里只有一个套接口描述符,我就没有使用FD_ISSET宏来检查调用select之后这个sockfd是否在set里面,其实是需要加上这个判断的。不过我用了getsockopt来检查,这样才可以判断出这个套接口是否是真的连接上了,因为我们只是变相的用select来检查它是否连接上了,实际上select检查的是它是否可写,而对于可写,是针对以下三种条件任一条件满足时都表示可写的:
1)套接口发送缓冲区中的可用控件字节数大于等于套接口发送缓冲区低潮限度的当前值,且或者i)套接口已连接,或者ii)套接口不要求连接(UDP方式的)
2)连接的写这一半关闭。
3)有一个套接口错误待处理。
这样,我们就需要用getsockopt函数来获取套接口目前的一些信息来判断是否真的是连接上了,没有连接上的时候还能给出发生了什么错误,当然我程序中并没有标出那么多状态,只是简单的表示可连接/不可连接。
下面我来谈谈对这个程序测试的结果。我针对3种情形做了测试:
1. 目标机器网络正常的情况
可以连接到目标主机,并能成功以阻塞方式进行发包收包作业。
2. 目标机器网络断开的情况
在等待设置的超时时间(上面的程序中为20秒)后,显示目标主机不能连接。
3. 程序运行前断开目标机器网络,超时时间内,恢复目标机器的网络
在恢复目标主机网络连接之前,程序一只等待,恢复目标主机后,程序显示连接目标主机成功,并能成功以阻塞方式进行发包收包作业。
以上各种情况的测试结果表明,这种设置connect超时的方法是完全可行的。我自己是把这种设置了超时的connect封装到了自己的类库,用在一套监控系统中,到目前为止,运行还算正常。这种编程实现的connect超时比起修改系统参数的那种方法的有点就在于它只用于你的程序之中而不影响系统。

⑷ 网络编程时,套接口ioctl函数的参数struct ifreq定义在哪个文件里

下面的清单介绍了一些最重要的结构,使用 ioctl 套接字命令时常常用到这些结构。
清单 1. struct ifreq (/usr/include/net/if.h)

/* Interface request structure used for socket
* ioctl's. All interface ioctl's must have parameter
* definitions which begin with ifr_name. The
* remainder may be interface specific.
*/
struct ifreq {
#ifndef IFNAMSIZ
#define IFNAMSIZ 16
#endif

⑸ 你了解套接字编程吗

多线程需要了解一点,因为服务器的监听是通过线程来监听的.否则如果你是有界面的程序的话.界面就是无响应状态,但是,对于Client的通讯处理,不需要你使用线程.

示例代码:
TcpListener Listener = new TcpListener(6002);//监听6002端口
Listener.Start(20);//队列

TcpClient client = Listener.AcceptTcpClient(); //接受一个连接,并且交由专门的TcpClient和客户端通讯,Listener只负责监听的功能

实际上通讯的还是2个TcpClient在通讯.Listener只是个接线员.接到客户端的请求之后,就把这个连接发给自己后面的话务员(TcpClient).

⑹ 关于用c语言进行套接字编程

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char *argv[])
{
int server_sockfd;//服务器端套接字
int client_sockfd;//客户端套接字
int len;
struct sockaddr_in my_addr; //服务器网络地址结构体
struct sockaddr_in remote_addr; //客户端网络地址结构体
int sin_size;
char buf[BUFSIZ]; //数据传送的缓冲区
memset(&my_addr,0,sizeof(my_addr)); //数据初始化--清零
my_addr.sin_family=AF_INET; //设置为IP通信
my_addr.sin_addr.s_addr=INADDR_ANY;//服务器IP地址--允许连接到所有本地地址上
my_addr.sin_port=htons(8000); //服务器端口号

/*创建服务器端套接字--IPv4协议,面向连接通信,TCP协议*/
if((server_sockfd=socket(PF_INET,SOCK_STREAM,0))<0)
{
perror("socket");
return 1;
}

/*将套接字绑定到服务器的网络地址上*/
if (bind(server_sockfd,(struct sockaddr *)&my_addr,sizeof(struct sockaddr))<0)
{
perror("bind");
return 1;
}

/*监听连接请求--监听队列长度为5*/
listen(server_sockfd,5);

sin_size=sizeof(struct sockaddr_in);

/*等待客户端连接请求到达*/
if((client_sockfd=accept(server_sockfd,(struct sockaddr *)&remote_addr,&sin_size))<0)
{
perror("accept");
return 1;
}
printf("accept client %s/n",inet_ntoa(remote_addr.sin_addr));
len=send(client_sockfd,"Welcome to my server/n",21,0);//发送欢迎信息

/*接收客户端的数据并将其发送给客户端--recv返回接收到的字节数,send返回发送的字节数*/
while((len=recv(client_sockfd,buf,BUFSIZ,0))>0))
{
buf[len]='/0';
printf("%s/n",buf);
if(send(client_sockfd,buf,len,0)<0)
{
perror("write");
return 1;
}
}
close(client_sockfd);
close(server_sockfd);
return 0;
}

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int main(int argc, char *argv[])
{
int client_sockfd;
int len;
struct sockaddr_in remote_addr; //服务器端网络地址结构体
char buf[BUFSIZ]; //数据传送的缓冲区
memset(&remote_addr,0,sizeof(remote_addr)); //数据初始化--清零
remote_addr.sin_family=AF_INET; //设置为IP通信
remote_addr.sin_addr.s_addr=inet_addr("127.0.0.1");//服务器IP地址
remote_addr.sin_port=htons(8000); //服务器端口号

/*创建客户端套接字--IPv4协议,面向连接通信,TCP协议*/
if((client_sockfd=socket(PF_INET,SOCK_STREAM,0))<0)
{
perror("socket");
return 1;
}

/*将套接字绑定到服务器的网络地址上*/
if(connect(client_sockfd,(struct sockaddr *)&remote_addr,sizeof(struct sockaddr))<0)
{
perror("connect");
return 1;
}
printf("connected to server/n");
len=recv(client_sockfd,buf,BUFSIZ,0);//接收服务器端信息
buf[len]='/0';
printf("%s",buf); //打印服务器端信息

/*循环的发送接收信息并打印接收信息--recv返回接收到的字节数,send返回发送的字节数*/
while(1)
{
printf("Enter string to send:");
scanf("%s",buf);
if(!strcmp(buf,"quit")
break;
len=send(client_sockfd,buf,strlen(buf),0);
len=recv(client_sockfd,buf,BUFSIZ,0);
buf[len]='/0';
printf("received:%s/n",buf);
}
close(client_sockfd);//关闭套接字
return 0;
}

⑺ 面向连接和无连接方式套接字编程有什么不同

1、关于使用套接字编程的一些基本概念
二元组的定义:<K,R>
三元组的定义:<D,F,A>
五元组的定义:<V,O,G,M,S>
V是值的集合,O是操作的集合,G是构成名字的文法,M是存储的集合,S是从G能构成的名字 几个到M的映射.

(a)半相关与全相关
半相关:在网络中用一个三元组可以在全局唯一标志一个进程: (协议,本地地址,本地端口号)这样一个三元组,叫做一个半相关(half-association),它指定连接的每半部分。
全相关:一个完整的网间进程通信需要由两个进程组成,并且只能使用同一种高层协议。也就是说,不可能通信的一端用TCP协议,而另一端用UDP协议。因此一个完整的网间通信需要一个五元组来标识:(协议,本地地址,本地端口号,远地地址,远地端口号)这样一个五元组,叫做一个相关(association),即两个协议相同的半相关才能组合成一个合适的相关,或完全指定组成一连接。

(b)TCP/IP协议的地址结构为:
struct sockaddr_in
{
short sin_family; /*AF_INET*/
u_short sin_port; /*16位端口号,网络字节顺序*/
struct in_addr sin_addr; /*32位IP地址,网络字节顺序*/
char sin_zero[8]; /*保留*/
}

(c)套接字类型
TCP/IP的socket提供下列三种类型套接字。

流式套接字(SOCK_STREAM):提供了一个面向连接、可靠的数据传输服务,数据无差错、无重复地发送,且按发送顺序接收。内设流量控制,避免数据流超限;数据被看作是字节流,无长度限制。文件传送协议(FTP)即使用流式套接字。

数据报式套接字(SOCK_DGRAM):提供了一个无连接服务。数据包以独立包形式被发送,不提供无错保证,数据可能丢失或重复,并且接收顺序混乱。网络文件系统(NFS)使用数据报式套接字。

原始式套接字(SOCK_RAW):该接口允许对较低层协议,如IP、ICMP直接访问。常用于检验新的协议实现或访问现有服务中配置的新设备。

(d)基本套接字系统调用
为了更好地说明套接字 编程原理,下面给出几个基本套接字系统调用说明。
(1)创建套接字──socket()
应用程序在使用套接字前,首先必须拥有一个套接字,系统调用socket()向应用程序提供创建套接字的手段,其调用格式如下:

SOCKET socket(int af, int type, int protocol);

该调用要接收三个参数:af、type、protocol。参数af指定通信发生的区域,UNIX系统支持的地址族有:AF_UNIX、AF_INET、AF_NS等,而DOS、WINDOWS中仅支持AF_INET,它是网际网区域。因此,地址族与协议族相同。参数type描述要建立的套接字的类型。参数protocol 说明该套接字使用的特定协议,如果调用者不希望特别指定使用的协议,则置为0,使用默认的连接模式。根据这三个参数建立一个套接字,并将相应的资源分配给它, 同时返回一个整型套接字号。因此,socket()系统调用实际上指定了相关五元组中的“协议”这一元。

(2)指定本地地址──bind()
当一个套接字用socket()创建后,存在一个名字空间(地址族),但它没有被命名。bind()将套接字地址(包括本地主机地址和本地端口地址)与所创建的套接字号联系起来,即将名字赋予套接字,以指定本地半相关。其调用格式如下:

int bind(SOCKET s, const struct sockaddr FAR * name, int namelen);

参数 s 是由 socket() 调用返回的并且未作连接的套接字描述符(套接字号)。参数name是赋给套接字s的本地地址(名字),其长度可变,结构随通信域的不同而不同。namelen表明了name的长度。 如果没有错误发生,bind()返回0。否则返回值SOCKET_ERROR。 地址在建立套接字通信过程中起着重要作用,作为一个网络应用程序设计者对套接字地址结构必须有明确认识。

(3)建立套接字连接──connect()与accept()
这两个系统调用用于完成一个完整相关的建立,其中connect()用于建立连接。无连接的套接字进程也可以调用connect(),但这时在进程之间没有实际的报文交换,调用将从本地操作系统直接返回。这样做的优点是程序员不必为每一数据指定目的地址,而且如果收到的一个数据报,其目的端口未与任何套接字建立“连接”,便能判断该端口不可操作。而accept()用于使服务器等待来自某客户进程的实际连接。 connect()的调用格式如下:

int connect(SOCKET s,const struct sockaddr FAR * name,int namelen);

参数s是欲建立连接的本地套接字描述符。参数name指出说明对方套接字地址结构的指针。对方套接字地址长度由namelen说明。 如果没有错误发生,connect()返回0。否则返回值SOCKET_ERROR。在面向连接的协议中,该调用导致本地系统和外部系统之间连接实际建立。 由于地址族总被包含在套接字地址结构的前两个字节中,并通过socket()调用与某个协议族相关。因此bind()和connect()无须协议作为参数。 accept()的调用格式如下:

SOCKET accept(SOCKET s,struct sockaddr FAR* addr,int FAR* addrlen);

参数s为本地套接字描述符,在用做accept() 调用的参数前应该先调用过listen()。addr 指向客户方套接字地址结构的指针, 用来接收连接实体的地址。addr的确切格式由套接字创建时建立的地址族决定。addrlen 为客户方套接字地址的长度(字节数)。如果没有错误发生,accept()返回一个SOCKET类型的值,表示接收到的套接字的描述符。否则返回值INVALID_SOCKET。 accept()用于面向连接服务器。参数addr和addrlen 存放客户方的地址信息。调用前,参数addr 指向一个初始值为空的地址结构,而 addrlen 的初始值为0; 调用accept() 后,服务器等待从编号为s的套接字上接受客户连接请求,而连接请求是由客户方的connect()调用发出的。当有连接请求到达时,accept()调用将请求连接队列上的第一个客户方套接字地址及长度放入addr和addrlen,并创建一个与s有相同特性的新套接字号。新的套接字可用于处理服务器并发请求。

四个套接字系统调用,socket()、bind()、connect()、accept(),可以完成一个完全五元相关的建立。socket()指定五元组中的协议元,它的用法与是否为客户或服务器、是否面向连接无关。bind()指定五元组中的本地二元,即本地主机地址和端口号,其用法与是否面向连接有关:在服务器方,无论是否面向连接,均要调用 bind() ;在客户方,若采用面向连接,则可以不调用bind(),而通过connect()自动完成。若采用无连接,客户方必须使用bind()以获得一个唯一的地址。 以上讨论仅对客户/服务器模式而言,实际上套接字的使用是非常灵活的,唯一需遵循的原则是进程通信之前,必须建立完整的相关。

(4)监听连接──listen()
此调用用于面向连接服务器,表明它愿意接收连接。listen()需在accept()之前调用,其调用格式如下:

int listen(SOCKET s, int backlog);

参数s标识一个本地已建立、尚未连接的套接字号, 服务器愿意从它上面接收请求。 backlog 表示请求连接队列的最大长度, 用于限制排队请求的个数,目前允许的最大值为5。如果没有错误发生,listen()返回0。否则它返回SOCKET_ERROR。 listen()在执行调用过程中可为没有调用过bind() 的套接字s完成所必须的连接,并建立长度为backlog的请求连接队列。 调用listen()是服务器接收一个连接请求的四个步骤中的第三步。它在调用socket() 分配一个流套接字,且调用bind()给s赋于一个名字之后调用,而且一定要在accept()之前调用。

(5)数据传输──send()与recv()
当一个连接建立以后,就可以传输数据了。常用的系统调用有 send() 和recv()。 send() 调用用于在参数s指定的已连接的数据报或流套接字上发送输出数据,格式如下:

int send(SOCKET s, const char FAR *buf, int len, int flags);

参数s为已连接的本地套接字描述符。buf 指向存有发送数据的缓冲区的指针,其长度由 len 指定。flags 指定传输控制方式,如是否发送带外数据等。如果没有错误发生,send()返回总共发送的字节数。否则它返回SOCKET_ERROR。 recv()调用用于在参数s指定的已连接的数据报或流套接字上接收输入数据,格式如下:

int recv(SOCKET s, char FAR *buf, int len, int flags);

参数s 为已连接的套接字描述符。buf指向接收输入数据缓冲区的指针,其长度由len 指定。flags 指定传输控制方式,如是否接收带外数据等。如果没有错误发生,recv()返回总共接收的字节数。如果连接被关闭,返回0。否则它返回SOCKET_ERROR。

(6)输入/输出多路复用──select()
select()调用用来检测一个或多个套接字的状态。对每一个套接字来说,这个调用可以请求读、写或错误状态方面的信息。请求给定状态的套接字集合由一个fd_set结构指示。在返回时,此结构被更新,以反映那些满足特定条件的套接字的子集,同时, select()调用返回满足条件的套接字的数目,其调用格式如下:

int select(int nfds, fd_set FAR * readfds, fd_set FAR * writefds,fd_set FAR * exceptfds, const struct timeval FAR * timeout);

参数nfds指明被检查的套接字描述符的值域,此变量一般被忽略。 参数readfds指向要做读检测的套接字描述符集合的指针,调用者希望从中读取数据。 参数 writefds 指向要做写检测的套接字描述符集合的指针。exceptfds指向要检测是否出错的套接字描述符集合的指针。timeout指向select()函数等待的最大时间,如果设为NULL则为阻塞操作。select()返回包含在fd_set结构中已准备好的套接字描述符的总数目,或者是发生错误则返回SOCKET_ERROR。

(7)关闭套接字──closesocket()

⑻ 数据报套接字编程步骤

数据报套接字编程的顺序就是按照正常的数字文件需求来编写。
编程时首先按照操作需求编写初级代码,然后再完成代码的升级编写。

⑼ Linux编程的几个重要知识点

第一阶段:linux基础入门
Linux基础入门主要包括: Linux硬件基础、Linux发展历史、Linux系统安装、xshell连接、xshell优化、SSH远程连接故障问题排查、L inux基础优化、Linux目录结构知识、Linux文件属性、Linux通配符、正则表达式、Linux系统权限等
第二阶段:linux系统管理进阶
linux系统管理进阶包括:Linux定时任务、Linux用户管理、Linux磁盘与文件系统、Linux三剑客之sed命令等。
第三阶段:Linux Shell基础
Linux Shell基础包括:Shell编程基础、Linux三剑客之awk命令等。
第四阶段:Linux网络基础
第五阶段:Linux网络服务
Linux网络服务包括:集群实战架构开始及环境准备、rsync数据同步服务、Linux全网备份项目、nfs网络存储服务精讲、inotify/sersync实时数据同步/nfs存储实时备份项目等。
第六阶段:Linux重要网络服务
Linux重要网络服务包括:http协议/www服务基础、nginx web介绍及基础实践、nginx web、lnmp环境部署/数据库异机迁移/共享数据异机迁移到NFS系统、nginx负载均衡、keepalived高可用等。
第七阶段:Ansible自动化运维与Zabbix监控
Ansible自动化运维与Zabbix监控包括: SSH服务秘钥认证、ansible批量自动化管理集群、 zabbix监控等。
第九阶段:大规模集群高可用服务(Lvs、Keepalived)
第十阶段:Java Tomcat服务及防火墙Iptables
第十一阶段:MySQL DBA高级应用实践
MySQL DBA高级应用实践包括:MySQL数据库入门基础命令、MySQL数据库进阶备份恢复、MySQL数据库深入事务引擎、MySQL数据库优化SQL语句优化、MySQL数据库集群主从复制/读写分离、MySQL数据库高可用/mha/keepalved等。
第十二阶段:高性能数据库Redis和Memcached课程
第十三阶段:Linux大规模集群架构构建(200台)
第十四阶段:Linux Shell编程企业案例实战
第十五阶段:企业级代码发布上线方案(SVN和Git)
第十六阶段企业级Kvm虚拟化与OpenStack云计算
第十七阶段公有云阿里云8大组件构建集群实战
第十八阶段:Docker技术企业应用实践
第十九阶段:Python自动化入门及进阶
第二十阶段:职业规划与高薪就业指导

热点内容
gp数据库库 发布:2024-05-03 22:12:43 浏览:873
压缩点点 发布:2024-05-03 22:12:33 浏览:380
有哪些编程比赛 发布:2024-05-03 22:03:45 浏览:263
怎么根据配置调整游戏分辨率 发布:2024-05-03 22:02:50 浏览:77
小鸟酱265g资源密码多少啊 发布:2024-05-03 21:32:08 浏览:653
三国战纪游戏华为帐号密码是多少 发布:2024-05-03 21:22:54 浏览:950
变频压缩机启动 发布:2024-05-03 21:17:06 浏览:436
建立云存储 发布:2024-05-03 21:04:03 浏览:76
socket编程php 发布:2024-05-03 20:12:50 浏览:208
坦洲邮政局可以解压吗 发布:2024-05-03 20:09:55 浏览:733