当前位置:首页 » 编程软件 » 量子编程图

量子编程图

发布时间: 2022-11-26 12:23:42

㈠ 量子计算的基本原理

量子的重叠与牵连原理产生了巨大的计算能力。普通计算机中的2位寄存器在某一时间仅能存储4个二进制数(00、01、10、11)中的一个,而量子计算机中的2位量子位(qubit)寄存器可同时存储这四个数,因为每一个量子比特可表示两个值。如果有更多量子比特的话,计算能力就呈指数级提高。 量子位(qubit)是量子计算的理论基石。在常规计算机中,信息单元用二进制的 1 个位来表示,它不是处于“ 0” 态就是处于“ 1” 态. 在二进制量子计算机中,信息单元称为量子位,它除了处于“ 0” 态或“ 1” 态外,还可处于叠加态(super posed state) . 叠加态是“ 0” 态和“ 1” 态的任意线性叠加,它既可以是“ 0” 态又可以是“ 1” 态,“ 0” 态和“ 1” 态各以一定的概率同时存在. 通过测量或与其它物体发生相互作用而呈现出“ 0” 态或 “ 1” 态.任何两态的量子系统都可用来实现量子位,例如氢原子中的电子的基态(gro und state)和第 1 激发态(f irstex cited state)、 质子自旋在任意方向的+ 1/ 2 分量和- 1/ 2 分量、 圆偏振光的左旋和右旋等。
一个量子系统包含若干粒子,这些粒子按照量子力学的规律运动,称此系统处于态空间的某种量子态.态空间由多个本征态(eigenstate) (即基本的量子态)构成,基本量子态简称基本态(basic state)或基矢(basic vector) . 态空间可用Hilbert 空间(线性复向量空间)来表述,即Hilbert 空间可以表述量子系统的各种可能的量子态.为了便于表示和运算,Dirac提出用符号 x〉 来表示量子态,x〉 是一个列向量,称为ket ;它的共轭转置(conjugate t ranspose) 用〈 x 表示,〈 x 是一个行向量,称为bra.一个量子位的叠加态可用二维Hilbert 空间(即二维复向量空间)的单位向量 〉 来描述,其简化的示意图如右图所示. 量子计算将有可能使计算机的计算能力大大超过今天的计算机,但仍然存在很多障碍。大规模量子计算所存在的一个问题是,提高所需量子装置的准确性有困难。
世界上第一台商用量子计算机
加拿大量子计算公司D-Wave于2011年5月11日正式发布了全球第一款商用型量子计算机“D-Wave One”,量子电脑的梦想距离我们又近了一大步。D-Wave公司的口号就是——“Yes,you can have one.”。其实早在2007年初,D-Wave公司就展示了全球第一台商用实用型量子计算机“Orion”(猎户座),不过严格来说当时那套系统还算不上真正意义的量子计算机,只是能用一些量子力学方法解决问题的特殊用途机器。
时隔四年之后,D-Wave One终于脱胎换骨、正式登场。它采用了128-qubit(量子比特)的处理器,四倍于之前的原型机,理论运算速度已经远远超越现有任何超级电子计算机。另外,D-wave公司将会在2013年1月将其升级至512量子比特。不过呢,也别太兴奋,这个大家伙现在还只能处理经过优化的特定任务,通用任务方面还远不是传统硅处理器的对手,而且编程方面也需要重新学习。 另外,为尽可能降低qubit的能级,需要利用低温超导状态下的铌产生qubit,D-Wave 的工作温度需保持在绝对零度附近(20 mK) 。
最后就是价格,2011年,NASA和Google分别以约一千万美元购置了一台512位qubit的D-Wave量子计算机 。这绝对是天价中的天价了,不过也是新技术开端的必然,就像当初的第一台电子计算机ENIAC造价就有40万美元(二十世纪四十年代的40万美元)。

㈡ MIT 发布量子编程语言 Twist,旨在填补量子软件的空白

麻省理工学院计算机科学与人工智能实验室(CSAIL)的一个研究小组创建了一种新的量子计算编程语言,名为 Twist。Twist 的设计目标是让开发者更容易识别哪些数据是纠缠在一起的,从而创建错误更少、更容易调试的量子计算程序。


Twist 项目地址: https://spectrum.ieee.org/quantum-programming-language-twist


Twist 的基础在于识别量子纠缠。量子纠缠是一种物理现象,指的是量子计算机内两块数据的状态联结在一起。“当你操作处于纠缠状态的一块数据时也可能会影响另一块。你可以用这种特性来实现强大的量子算法,但它也让你写的程序很难直观推理,并容易引入微妙的错误。”上面这段话来自麻省理工学院 CSAIL 计算机科学博士生、Twist 论文的主要作者 Charles Yuan,这篇论文发表在《ACM 编程语言》杂志上。


Charles Yuan 说:“Twist 提供了一些特性,让开发者可以确定哪些数据是纠缠的,哪些不是。”“在程序中加入关于纠缠的信息后,你就可以检查量子算法的实现是否正确。”


该语言的特性之一是一个类型系统,使开发者能够指定他们程序中的哪些表达式和数据片断是纯粹的。据 Yuan 说,一个纯粹的数据片断是没有纠缠的,因此不存在可能由纠缠造成的错误和不直观的效果。Twist 还加入了纯度断言运算符来确认一个表达式不存在与任何其他数据的纠缠关系,与之搭配的还有静态分析和运行时检查,可以用来验证这些断言。


为了评估这种语言,该团队用 Twist 为一组着名的量子算法编写了一些程序,并在量子模拟器上执行了它们。“我们的实验表明,运行这些运行时检查的开销不超过运行基本程序的 3.5%,我们认为这是相当低的数字,相比语言给你的安全保证来说是一个很好的权衡,”Charles Yuan 说。


该团队还在一些程序中引入了一些小错误,并发现 Twist 可以检测到这些错误并拒绝错误的程序。“我们希望,当人们使用我们的语言或为他们的特定用例设计新的量子语言时,他们可以考察一下我们的工作,并认可纯度这个想法和将纠缠作为一种特性的设计,因为这将给他们带来更多信心,让他们确认自己的程序是正确的,而不必运行大量昂贵的模拟和测试,”Charles Yuan 说。


当许多研究人员专注于开发高效和优化的量子硬件时,Twist 旨在填补量子软件的空白。麻省理工学院副教授、Twist 论文的共同作者 Michael Carbin 说:“与我们看到的机器学习和其他高性能计算应用类似的是——在硬件发展的每一个新阶段,我们都会得到一个新的系统和很多潜在的新能力——如果我们能充分利用硬件能力,也许就能获得许多不可思议的机会。但几乎每次都是软件上的问题让人们难以利用硬件能力,也很难在不同的软件系统中部署和广泛使用这些硬件。”“我们正在做的工作是奠定一些基础,并试图找出一些可能提升这些类型设备可编程性的核心抽象。”


然而,该团队在构建 Twist 时面临的挑战之一是缺乏一个关于量子程序特征的标准。“多年来,人们已经开发了一些核心算法来解决个别复杂的任务,如整数因式分解等,但我们如何为它建立一个完整的软件生态系统却依旧是个问号,”Charles Yuan 说。“有了 Twist,我们就能够围绕我们对要在量子计算机上执行的任务的最佳共识来构建语言,并让编程语言对这些任务尽可能具有表达力。”


谈到局限,Twist 只能告诉你一个数据是否与其他数据纠缠在一起,但不能告诉你它们是如何纠缠在一起的。”袁说:“它们纠缠的具体方式将决定一个量子算法是否正确,但数据纠缠的方式有无数种。”给出这种更精细的细节是一个真正的挑战,这也是我们未来需要做的事情。”


该团队现在正在开发另一种语言,它建立在 Twist 的基础上,目标是应对其他量子现象(如相位和叠加)。但他们希望 Twist 将为创造更好的量子程序铺平道路。


Charles Yuan 说:“对于一位试图实现量子算法的开发者来说,他们需要语言中内置的工具来告诉他们程序中正在发生一些由纠缠引发的事情。”如果我们能够构建一系列核心语言原则和特性,让开发者可以推理纠缠现象,我们就可以减轻纠缠带来的认知负担,并让开发者写出更符合直觉的程序。”


原文链接:


https://spectrum.ieee.org/quantum-programming-language-twist

㈢ 世界量子计算研究进展

量子计算机遵循量子力学的原理运行,通过量子态的粒子进行运算。相比于传统架构的计算机,量子计算机在计算能力上拥有无法比拟的优势。20世纪80年代以来,经过几次发展浪潮,量子计算重归公众与学术界视野,成为新一轮的研究热门。自2019年谷歌公司宣布“量子优越性”以来,各国竞相开发多量子比特数、高容错率的量子计算机,以期实现通过使用量子计算解决传统架构计算机难以完成的复杂任务。

1.美国费米国家加速器实验室开发出适用于量子计算的超导射频腔体2020年2月,美国费米国家加速器实验室(Fermilab)的研究人员开发出适用于量子计算的超导射频腔体,该腔体仅为手掌大小,可在短时间内将粒子加速至极高的速度以用于量子计算研究。研究人员在阿贡国家实验室的高性能计算机上进行仿真实验,从而预测该腔体的性能,以便改进设计,提高该腔体在量子计算机开发中的作用。

2.国际联合研究团队取得容错量子计算新突破

2020年4月,麻省理工学院、加州大学河滨分校(University of California,Riverside,UC Riverside)、 香港 科技 大学(The Hong Kong University of Science andTechnology,HKUST)和印度理工学院(Indian Institute of Technology,IIT)的研究人员首次在金属材料金中观察到马约拉纳费米子(Majorana Fermion),该发现将推进容错量子计算的研究。马约拉纳费米子是一种特殊的粒子,其反粒子与自身的特性完全相同,可用于创建量子计算中的稳定比特。同时,该粒子还使在固体中实现拓扑量子计算成为可能。本次在金材料中发现的马约拉纳费米子,适用于标准的纳米制造技术,可用于容错量子计算机的量子位构建块。该研究成果为量子计算机性能的提升进一步铺平了道路。

3.美国研究人员开发出新的量子计算控制方法

2020年4月,美国艾姆斯实验室(Ames Laboratory)、布鲁克海文国家实验室(Brookhaven National Laboratory,BNL)和阿拉巴马大学伯明翰分校(The UniversityofAlabama at Birmingham,UAB)的研究人员发现了狄拉克半金属中的光致开关机制。该机制为拓扑材料中电子和原子的运动控制建立了一种新方法,这将使拓扑晶体管和光量子计算机成为可能。借助新的方法,研究人员可通过光线控制狄拉克半金属中的量子态,相比基于电场、磁场和应变场控制的调谐方法,其调谐速率更快,且能耗更低,有利于开发量子计算策略和高速、低能耗的电子产品。

4.美国研究人员证明室温下量子计算的可行性

2020年5月,美国陆军研究实验室与麻省理工学院的研究人员合作证明了室温下量子计算的可行性。研究人员通过计算机模拟证明,可在非线性光学晶体中制造出空腔并将光子暂时捕获在其内部,以此建立量子位,并用晶体腔是否带有光子表示不同的量子态,进而创建量子逻辑门。这一研究成果表明,结合非线性光学晶体的光子电路已成为目前在室温下使用固态系统进行量子计算最具可能性的方法。研究人员预计,该技术的成功演示还需要约十年的持续研究。

5.瑞士苏黎世联邦理工学院开发出首套直观的量子编程语言

2020年6月,瑞士苏黎世联邦理工学院(Swiss Federal Institute of TechnologyZurich,ETH)的研究人员开发出首套直观的量子编程语言Silq,该语言允许开发者像传统计算机一样简单、可靠且安全地对量子计算机进行编程。Silq语言并未围绕硬件的结构和功能来开发,其主要目标是帮助开发者专注于任务,而不必理解量子计算机体系结构和系统实现的每个细节。研究人员表示,与现有语言相比,Silq语言更紧凑、更快、更直观且更易于理解,能使开发者更好地挖掘量子计算机的潜力。

6.美国麻省理工学院提出一种可同时用于量子计算和量子通信的架构

2020年7月,美国麻省理工学院的研究人员提出一种量子计算架构,可执行量子计算,同时在处理器之间快速共享量子信息。研究人员基于超导量子位创造出一种人造的“巨型原子”,可以调整量子位与波导相互作用的强度,从而可以保护脆弱的量子位免受量子退相干现象或波导管在执行高保真操作时可能会加速的自然衰减的影响。通过巨型原子执行量子计算,量子比特与波导耦合的强度会重新调整,量子位能够以光子的形式将量子数据释放到波导中。在演示实验中,两量子比特纠缠的保真度达到94%。该研究使量子信息处理和量子通信成为一体,有望为研发完整的量子平台开辟新的道路。

7.IBM公司大幅改进其量子计算机性能

2020年8月,IBM公司宣布将其量子计算机的量子体积(量子体积为IBM公司开发的量子计算性能指标)提升至64,相比于2019年的32提升了一倍。该指标的提升意味着量子计算机能执行更快、更复杂的计算。“量子体积”指标用于衡量量子计算机的性能,其影响因素包括量子比特数、门和测量误差、设备交叉通信,以及设备连接和电路编译效率等。为争夺“量子优越性”,即量子计算机性能的优势,IBM公司为其量子计算机定下“量子体积”每年翻番的目标。随着霍尼韦尔公司、IBM公司不断提升其量子计算机的性能,商业硬件公司在量子计算领域的竞争还将进一步白热化。

8.美国哥伦比亚大学将牵头开发量子模拟器

2020年9月,美国哥伦比亚大学(Columbia University)获得美国国家科学基金会(NationalScience Foundation,NSF)拨款100万美元,用于建造量子模拟器。哥伦比亚大学的研究人员将与来自学术界、国家实验室和行业的物理学家、工程师、计算机科学家、数学家和教育家等人士进行合作研究,基于原子的有序阵列构建通用的量子模拟器。该模拟器有望促进通用量子计算机的推出,用于处理传统超级计算机无法运算的复杂问题。

9.美国IonQ公司推出下一代量子计算机硬件路线图和新型量子计算性能指标

2020年12月,美国IonQ公司描述了其扩展下一代离子阱量子计算机的战略和目标,并推出了一种新的量子计算性能指标。该公司的技术战略包括增加量子比特数量、提高量子比特门保真度、使其芯片和系统小型化、降低制造成本、利用纠错技术有效改善本地量子比特质量,以及使用光子网络将多个模块组合成一个更大的系统。此前,业界通常使用IBM公司提出的“量子体积”指标来衡量量子计算机的性能。然而,IonQ公司认为,量子体积度量标准存在缺陷,当量子计算机的性能足够强大时,这一度量标准将存在局限性。因此,该公司推出了自己的度量标准,并称之为与量子体积相关的“算法量子比特”(Algorithmic Qubits)。IonQ公司的相关规划体现了其自主创新的坚定决心。

㈣ 量子计算机的原理是什么

大约到2030年,每个人桌上的电脑主机不会再使用芯片与半导体,而是充满液体。而这正是新一代量子电脑的奇特造型。

也许你已经知道,量子电脑应用的不再是现实世界里的物理定律,而是玄妙的量子原理。它的运算速度可能比目前个人电脑的奔腾Ⅲ芯片快10亿倍,可以在二瞬间搜寻整个国际网络,也可以轻易破解任何安全密码。而且,最重要的一点是,这一切绝非科幻小说。与传统电脑不同的是,量子电脑将以原子而非芯片进行运算。第一台量子电脑可能会是个粗糙、昂贵、只能用一次的科学实验品,但2001年以来的各种实验结果显示,这项科学理论的确管用。

美国麻省理工学院与英国牛津大学是量子电脑研究的先驱,IBM与惠普电脑公司也不落人后。对量子电脑的惊人性能感到担忧的美国政府,更是在洛斯阿拉莫斯国家实验室,不计成本地设立了量子电脑研究基地。

要让原子乖乖地为人类服务这个难题,无论是在理论上,坯是在实践上,都对科学家发出了严峻挑战。因为量子世界是个超乎常理的环境,我们可能永远也猜不出它的“谜底”。量子电脑也有很多匪夷所思的地方,它能够设想无限多个宇宙并列的场面,并由此“算出”可能出现的各种情况。而这意味着,不同的人在不同的时间,通过量子电脑计算得到的,很可能是不同的答案。

量子电脑专家班奈特说,量子电脑的基础,恰恰就是这些怪异的观念。因此,单是创造一个类似量子世界的环境,让原子照常进行计算并提供答案,就足以让科学家伤透脑筋。也许还要好几十年,量子电脑才会出现在我们的书桌上。

其实科学家早已注意到,原子是个天然的计算机。它会旋转,而且很有规律,方向不是朝上就是朝下,这正好与数字科技的“0”与“1”吻合。但原子有一个怪异的特性:一个原子,可以在同一时间向上并向下旋转,直到你用电子显微镜或其他工具测量它,才会迫使它选择一个固定方向。这既是原子的特异功能,也是量子电脑强大力量的来源。

既然原子可以同时向上并向下旋转,它就不能被视为单一的“位元”。科学家称之为“准位元”,就是出于这个原因。这意味着,如果把一群原子聚在一起,它们不会像今天的电脑那样,按照程序进行线性运算,而是同时进行所有可能的运算。这种运算方式的直接好处是计算机的运算速度成指数地加快了。

只要40个原子一起计算,其性能就相当于今天的一部超级电脑。举例来说,如果有一个包含全球电话号码的资料库,要从中寻找一个我们需要的特定号码,现在速度最快的超级电脑,大约要花一个月的时间才能完成任务,而一台量子电脑只需27分钟。

但是,答案那么多,速度那么快,我们怎么取回想要的计算结果呢?前面说过,对原子进行测量可以迫使它选择旋转方向,因此科学家只要测量这些“准位元”,就可以逼迫它们说出答案。

最近,麻省理工学院与mM公司的科学家,终于通过特定方式,做出了原始的量子电脑。虽然它看上去和一个烤面包机没有多大差别,但功能却比烤面包机高明多了。这个实验性质的量子电脑,具有两个“准位元”的计算能力。也就是说,它的威力等于两个原子同时进行运算。目前,科学家们正在朝三个“准位元”的目标努力。

㈤ 科研中量子场论的计算都使用哪来的程序

生成费曼图:FeynArt或者Qgraf

单圈计算振幅以及张量约化:FeynCalc或者FormCalc

用符号计算系统自己计算振幅:FORM和mathematica

双圈图以上的约化:Reze和FIRE

相空间积分:用cuba的蒙卡包(我没用过)

生成费曼规则:FeynRules

自动化树图截面:CalcHep

自动化生成树图或者单圈QCD最终截面:MadGraph,还有一堆类似的我没用过的。另外MadGraph还整合了做Parton Shower和对撞机模拟的包。可以直接得到特定标准模型的散射截面的程序包:MCFM,(还有一堆类似的)画图以及一些统计分析:ROOT管理PDF(部分子分布函数,QCD要用):LHAPDF

最简单的方法:首先用FeynRules生成费曼规则,然后再导入CalcHep或者MadGrap,给定具体过程和一些Cut,直接一步步按回车就能得到树图结果。时间上,熟练的话大概就需要一两个小时,如果从头开始学的话大概要三五天吧。比较麻烦的方法:用FeynRules生成费曼规则,再用FeynArt生成费曼图,用FeynCalc把振幅化简好,然后再自己写蒙卡程序作相空间积分。好处是可以算到一圈,虽说新物理的圈图一般不算。熟练的话,把自己之前的程序包改一改就能比较快的搞定,从头开始学可能要搞半个月。最麻烦的方法:用FeynRules生成费曼规则,FeynArt生成费曼图,用Form或者Mathematica手动化简振幅,用REDUZE或者FIRE约化积分,并想办法计算主积分,然后再自己写相空间积分的蒙卡程序。好处是可以算到两圈,虽说新物理没意义了,标准模型的两圈基本上是需要以这样的方法计算的。我已经搞了半年多了,还没出最后结果。

㈥ 量子计算机会怎样改变世界对量子计算机你都有哪些了解

引言:在第一台计算机发明出来之后,计算机的体型就变得越来越小,遇上的速度也越来越高,所以说人们日常生活中也会利用计算机来处理一些比较复杂的事物。而量子计算机的推出也让计算机跨越了一个新的台阶,量子计算机会怎样改变世界呢?

㈦ 量子计算机如果普及了,传统编程语言会不会被淘汰

一、量子计算机和量子

所谓量子计算机,是根据量子理论,以及量子系统所构成的计算机系统,来模拟量子现象,从而使得运算的速度和任务大幅提升。通俗来说,就是让计算机实现量子计算。由于量子力学推论的玄乎,使得其无法被生活在宏观世界的普通人所接受。但随着人们对量子物理学的深入,使得其成为量子计算机真的被造出来了。到了2009年11月15日,全球第一台可以进行编程的通用量子计算机,正式在美国被发明出来。

三、简单的未必会被淘汰

按照上文的说法,普通计算机应该是会被淘汰的。但其实,未必。作为一种技术工具,甚至是一切事物,如果已经存在了很长时间,往往还会继续存在很长时间。这是塔勒布在《反脆弱》一书中指出的。笔和纸很早就被发明出来了,但在电脑和智能手机普及的今天,我们今天还在使用它们。尽管制造笔和纸的工艺,不断变化;尽管各种写字的技能,被赋予不同的含义(速写、书法等),但世界依然有用笔在纸上写字的行为。

㈧ 最大的量子计算机在中国吗

中国科学技术大学潘建伟院士团队近日成功研制出全球超导量子比特数量最多的量子计算原型机“祖冲之号”,宣告全球最大量子比特数的超导量子体系的诞生

量子计算机是全球科技前沿的重大挑战之一,也是世界各国角逐的焦点。超导量子计算已成为最具希望的候选者之一,它的核心目标是增加“可操纵”的量子比特数量,通过提升操纵精度来实现落地应用。
祖冲之号”可操纵的超导量子比特多达62个,而此前谷歌实现“量子优越”的“悬铃木”53个量子比特。研究团队在大尺度晶格上首次实现了量子行走的实验观测,并实现对量子行走构型的精准调控,构建了可编程的双粒子量子行走。

热点内容
购买云服务器并搭建自己网站 发布:2025-05-14 13:20:31 浏览:687
sqlserver建立视图 发布:2025-05-14 13:11:56 浏览:484
搭建httpsgit服务器搭建 发布:2025-05-14 13:09:47 浏览:255
新电脑拿回来我该怎么配置 发布:2025-05-14 13:09:45 浏览:240
视频服务器新建ftp用户 发布:2025-05-14 13:03:09 浏览:225
php花生 发布:2025-05-14 12:54:30 浏览:550
java人才 发布:2025-05-14 12:29:10 浏览:649
如何打开软密码 发布:2025-05-14 12:28:55 浏览:427
七牛存储待遇 发布:2025-05-14 12:27:20 浏览:422
C语言a35a4a5 发布:2025-05-14 11:53:48 浏览:814