当前位置:首页 » 编程软件 » 单独编译安卓内核

单独编译安卓内核

发布时间: 2022-12-14 14:36:49

㈠ 如何编译新添加的netfilter功能模块

单独编译内核的某个模块可以使用如下命令:
make moles SUBDIRS=yourdir

㈡ 编译android 源码需要sdk环境吗

下面是android学习手册,可以查看编译源码,360手机助手中下载,

编译环境:ubuntu9.10,widnows平台目前不被支持。

1)安装必要的软件环境

$ sudo apt-get install git-core gnupg sun-java5-jdk flex bison gperf libsdl-dev libesd0-dev libwxgtk2.6-dev build-essential zip curl libncurses5-dev zlib1g-dev

官方推荐的就是上面这些,如果在编译过程中发现某些命令找不到,就apt-get它。可能需要的包还有:

$ sudo apt-get install make
$ sudo apt-get install gcc
$ sudo apt-get install g++
$ sudo apt-get install libc6-dev

$ sudo apt-get install patch
$ sudo apt-get install texinfo

$ sudo apt-get install zlib1g-dev
$ sudo apt-get install valgrind
$ sudo apt-get install python2.5(或者更高版本)

需要注意的是,官方文档说如果用sun-java6-jdk可出问题,得要用sun-java5- jdk。经测试发现,如果仅仅make(make不包括make sdk),用sun-java6-jdk是没有问题的。而make sdk,就会有问题,严格来说是在make doc出问题,它需要的javadoc版本为1.5。

因此,我们安装完sun-java6-jdk后最好再安装sun-java5-jdk,或者只安装sun-java5-jdk。这里sun-java6-jdk和sun-java5-jdk都安装,并只修改javadoc.1.gz和javadoc。因为只有这两个是make sdk用到的。这样的话,除了javadoc工具是用1.5版本,其它均用1.6版本:

$ sudo apt-get install sun-java6-jdk

修改javadoc的link:

$ cd /etc/alternatives
$ sudo rm javadoc.1.gz
$ sudo ln -s /usr/lib/jvm/java-1.5.0-sun/man/man1/javadoc.1.gz javadoc.1.gz
$ sudo rm javadoc
$ sudo ln -s /usr/lib/jvm/java-1.5.0-sun/bin/javadoc javadoc

2)设置环境变量

$ emacs ~/.bashrc

在.bashrc中新增或整合PATH变量,如下:

#java 程序开发/运行的一些环境变量

JAVA_HOME=/usr/lib/jvm/java-6-sun
JRE_HOME=${JAVA_HOME}/jre
export ANDROID_JAVA_HOME=$JAVA_HOME
export CLASSPATH=.:${JAVA_HOME}/lib:$JRE_HOME/lib:$CLASSPATH
export JAVA_PATH=${JAVA_HOME}/bin:${JRE_HOME}/bin
export JAVA_HOME;
export JRE_HOME;
export CLASSPATH;
HOME_BIN=~/bin/
export PATH=${PATH}:${JAVA_PATH}:${HOME_BIN};

保存后,同步更新:

source ~/.bashrc

3)安装repo(用来更新android源码)

创建~/bin目录,用来存放repo程序,如下:

$ cd ~
$ mkdir bin

并加到环境变量PATH中,在第2步中已经加入。

下载repo脚本并使其可执行:

$ curlhttp://android.git.kernel.org/repo>~/bin/repo
$ chmod a+x ~/bin/repo

4)初始化repo

repo是android对git的一个封装,简化了一些git的操作。

创建工程目录:

$ mkdir android
$ cd android

repo初始化:

$ repo init -u git://android.git.kernel.org/platform/manifest.git

在此过程中需要输入名字和email地址。初始化成功后,会显示:

repo initialized in /android

在~/android下会有一个.repo的隐藏目录。

5)同步源代码

$ repo sync

这一步要很久很久。

6)编译android源码,并得到~/android/out目录

$ cd ~/andoird
$ make

这一过程很久。

7)在模拟器上运行编译好的android

编译好android之后,emulator在~/android/out/host/linux-x86/bin下,ramdisk.img,system.img和userdata.img则在~/android/out/target/proct/generic下。

$ cd ~/android/out/host/linux-x86/bin

增加环境变量

$ emacs ~/.bashrc

在.bashrc中新增环境变量,如下

#java 程序开发/运行的一些环境变量

export ANDROID_PRODUCT_OUT=~/android/out/target/proct/generic
ANDROID_PRODUCT_OUT_BIN=~/android/out/host/linux-x86/bin
export PATH=${PATH}:${ANDROID_PRODUCT_OUT_BIN}:${ANDROID_PRODUCT_OUT};

最后,同步这些变化:

$ source ~/.bashrc
$ cd ~/android/out/target/proct/generic
$ emulator -system system.img -data userdata.img -ramdisk ramdisk.img

最后进入android桌面,就说明成功了。

8)编译模块

android中的一个应用程序可以单独编译,编译后要重新生成system.img。

在源码目录下执行

$ . build/envsetup.sh (.后面有空格)

就多出一些命令:

- croot: Changes directory to the top of the tree.
- m: Makes from the top of the tree.
- mm: Builds all of the moles in the current directory.
- mmm: Builds all of the moles in the supplied directories.
- cgrep: Greps on all local C/C++ files.
- jgrep: Greps on all local Java files.
- resgrep: Greps on all local res/*.xml files.
- godir: Go to the directory containing a file.

可以加—help查看用法。

我们可以使用mmm来编译指定目录的模块,如编译联系人:

$ mmm packages/apps/Contacts/

编完之后生成两个文件:

out/target/proct/generic/data/app/ContactsTests.apk
out/target/proct/generic/system/app/Contacts.apk

可以使用

$ make snod

重新生成system.img,再运行模拟器。

9)编译SDK

直接执行make是不包括make sdk的。make sdk用来生成SDK,这样,我们就可以用与源码同步的SDK来开发android了。

a)修改/frameworks/base/include/utils/Asset.h

‘UNCOMPRESS_DATA_MAX = 1 * 1024 * 1024’ 改为 ‘UNCOMPRESS_DATA_MAX = 2 * 1024 * 1024’

原因是eclipse编译工程需要大于1.3M的buffer;

b)编译ADT

由于本人不使用eclipse,所以没有进行这步;

c)执行make sdk

注意,这里需要的javadoc版本为1.5,所以你需要在步骤1中同时安装sun-java5-jdk

$ make sdk

编译很慢。编译后生成的SDK存放在out/host/linux-x86/sdk/,此目录下有android-sdk_eng.xxx_linux- x86.zip和android-sdk_eng.xxx_linux-x86目录。android-sdk_eng.xxx_linux-x86就是 SDK目录。

实际上,当用mmm命令编译模块时,一样会把SDK的输出文件清除,因此,最好把android-sdk_eng.xxx_linux-x86移出来。

此后的应用开发,就在该SDK上进行,所以把7)对于~/.bashrc的修改注释掉,增加如下一行:

export PATH=${PATH}:~/android/out/host/linux-x86/sdk/android-sdk_eng.xxx_linux-x86/tools

注意要把xxx换成真实的路径;

d)关于环境变量、android工具的选择

目前的android工具有:

A、我们从网上下载的Android SDK,如果你下载过的话( tools下有许多android工具,lib/images下有img映像)
B、我们用make sdk编译出来的SDK( tools下也有许多android工具,lib/images下有img映像)
C、我们用make编译出来的out目录( tools下也有许多android工具,lib/images下有img映像)

那么我们应该用那些工具和img呢?

首先,我们一般不会用A选项的工具和img,因为一般来说它比较旧,也源码不同步。其次,也不会用C选项的工具和img,因为这些工具和img没有经过SDK的归类处理,会有工具和配置找不到的情况;事实上,make sdk产生的很多工具和img,在make编译出来out目录的时候,已经编译产生了,make sdk只是做了而已。

e)安装、配置ADT
略过;

f)创建Android Virtual Device

编译出来的SDK是没有AVD(Android Virtual Device)的,我们可以通过android工具查看:

$ android list

创建AVD:

$ android create avd -t 1 -n myavd

可以android –help来查看上面命令选项的用法。创建中有一些选项,默认就行了。

再执行android list,可以看到AVD存放的位置。

以后每次运行emulator都要加-avd myavd或@myavd选项:

$ emulator -avd myavd

10)编译linux内核映像

a)准备交叉编译工具链

android代码树中有一个prebuilt项目,包含了我们编译内核所需的交叉编译工具。

b)设定环境变量

$ emacs ~/.bashrc

增加如下两行:

export PATH=$PATH:~/android/prebuilt/linux-x86/toolchain/arm-eabi-4.4.0/bin
export ARCH=arm

保存后,同步变化:

$ source ~/.bashrc

c)获得合适的内核源代码

$ cd ~/android

获得内核源代码仓库

$ git clone git://android.git.kernel.org/kernel/common.git kernel
$ cd kernel
$ git branch

显示

* android-2.6.27

说明你现在在android-2.6.27这个分支上,也是kernel/common.git的默认主分支。

显示所有head分支:

$ git branch -a

显示

* android-2.6.27
remotes/origin/HEAD -> origin/android-2.6.27
remotes/origin/android-2.6.25
remotes/origin/android-2.6.27
remotes/origin/android-2.6.29
remotes/origin/android-goldfish-2.6.27
remotes/origin/android-goldfish-2.6.29

我们选取最新的android-goldfish-2.6.29,其中goldfish是android的模拟器模拟的CPU。

$ git checkout -b android-goldfish-2.6.29 origin/android-goldfish-2.6.29
$ git branch

显示

android-2.6.27
* android-goldfish-2.6.29

我们已经工作在android-goldfish-2.6.29分支上了。

d)设定交叉编译参数

打开kernel目录下的Makefile文件,把CROSS_COMPILE指向刚才下载的prebuilt中的arm-eabi编译器.

CROSS_COMPILE ?= arm-eabi-

LDFLAGS_BUILD_ID = $(patsubst -Wl$(comma)%,%,
$(call ld-option, -Wl$(comma)–build-id,))

这一行注释掉,并且添加一个空的LDFLAGS_BUILD_ID定义,如下:

LDFLAGS_BUILD_ID =

e)编译内核映像

$ cd ~/android/kernel
$ make goldfish_defconfig
$ make

f)测试生成的内核映像

$ emulator -avd myavd -kernel ~/android/kernel/arch/arm/boot/zImage

㈢ linux编译内核时怎么单个编译一个特定模块

从网上找一个编译模块的makefile,放到你的模块的文件夹里面,然后修改里面的路径指定编译的内核,以及目标名称。make就可以了。

㈣ android 源码 怎么只编译 systemui

Google提供的Android包含了原始Android的目标机代码,主机编译工具、仿真环境,下载的代码包经过解压后(这里是Android2.2的源码包),源代码的第一层目录结构如下: -- Makefile -- bionic (bionic C库) -- bootable (启动引导相关代码) -- build (存放系统编译规则及generic等基础开发包配置) -- cts (Android兼容性测试套件标准) -- dalvik (dalvik JAVA虚拟机) -- development (应用程序开发相关) -- external (android使用的一些开源的模组) -- frameworks (核心框架——java及C++语言) -- hardware (主要保护硬解适配层HAL代码) -- libcore -- ndk -- device -- out (编译完成后的代码输出与此目录) -- packages (应用程序包) -- prebuilt (x86和arm架构下预编译的一些资源) -- sdk (sdk及模拟器) -- system (文件系统库、应用及组件——c语言) `-- vendor (厂商定制代码) bionic 目录 -- libc (C库) -- arch-arm (ARM架构,包含系统调用汇编实现) -- arch-x86 (x86架构,包含系统调用汇编实现) -- bionic (由C实现的功能,架构无关) -- docs (文档) -- include (头文件) -- inet -- kernel (Linux内核中的一些头文件) -- netbsd (?netbsd系统相关,具体作用不明) -- private (?一些私有的头文件) -- stdio (stdio实现) -- stdlib (stdlib实现) -- string (string函数实现) -- tools (几个工具) -- tzcode (时区相关代码) -- unistd (unistd实现) `-- zoneinfo (时区信息) -- libdl (libdl实现,dl是动态链接,提供访问动态链接库的功能) -- libm (libm数学库的实现,) -- alpha (apaha架构) -- amd64 (amd64架构) -- arm (arm架构) -- bsdsrc (?bsd的源码) -- i386 (i386架构) -- i387 (i387架构?) -- ia64 (ia64架构) -- include (头文件) -- man (数学函数,后缀名为.3,一些为freeBSD的库文件) -- powerpc (powerpc架构) -- sparc64 (sparc64架构) `-- src (源代码) -- libstdc++ (libstdc++ C++实现库) -- include (头文件) `-- src (源码) -- libthread_db (多线程程序的调试器库) `-- include (头文件) `-- linker (动态链接器) `-- arch (支持arm和x86两种架构) bootable 目录 -- bootloader (适合各种bootloader的通用代码) `-- legacy (估计不能直接使用,可以参考) -- arch_armv6 (V6架构,几个简单的汇编文件) -- arch_msm7k (高通7k处理器架构的几个基本驱动) -- include (通用头文件和高通7k架构头文件) -- libboot (启动库,都写得很简单) -- libc (一些常用的c函数) -- nandwrite (nandwirte函数实现) `-- usbloader (usbloader实现) -- diskinstaller (android镜像打包器,x86可生产iso) `-- recovery (系统恢复相关) -- edify (升级脚本使用的edify脚本语言) -- etc (init.rc恢复脚本) -- minui (一个简单的UI) -- minzip (一个简单的压缩工具) -- mttils (mtd工具) -- res (资源) `-- images (一些图片) -- tools (工具) `-- ota (OTA Over The Air Updates升级工具) `-- updater (升级器) build目录 -- core (核心编译规则) -- history (历史记录) -- libs `-- host (主机端库,有android “cp”功能替换) -- target (目标机编译对象) -- board (开发平台) -- emulator (模拟器) -- generic (通用) -- idea6410 (自己添加的) `-- sim (最简单) `-- proct (开发平台对应的编译规则) `-- security (密钥相关) `-- tools (编译中主机使用的工具及脚本) -- acp (Android "acp" Command) -- apicheck (api检查工具) -- applypatch (补丁工具) -- apriori (预链接工具) -- atree (tree工具) -- bin2asm (bin转换为asm工具) -- check_prereq (检查编译时间戳工具) -- dexpreopt (模拟器相关工具,具体功能不明) -- droiddoc (?作用不明,java语言,网上有人说和JDK5有关) -- fs_config (This program takes a list of files and directories) -- fs_get_stats (获取文件系统状态) -- iself (判断是否ELF格式) -- isprelinked (判断是否prelinked) -- kcm (按键相关) -- lsd (List symbol dependencies) -- releasetools (生成镜像的工具及脚本) -- rgb2565 (rgb转换为565) -- signapk (apk签名工具) -- soslim (strip工具) `-- zipalign (zip archive alignment tool) dalvik目录 dalvik虚拟机 . -- dalvikvm (main.c的目录) -- dexmp (dex反汇编) -- dexlist (List all methods in all concrete classes in a DEX file.) -- dexopt (预验证与优化) -- docs (文档) -- dvz (和zygote相关的一个命令) -- dx (dx工具,将多个java转换为dex) -- hit (?java语言写成) -- libcore (核心库) -- libcore-disabled (?禁用的库) -- libdex (dex的库) -- libnativehelper (Support functions for Android's class libraries) -- tests (测试代码) -- tools (工具) `-- vm (虚拟机实现) development 目录 (开发者需要的一些例程及工具) -- apps (一些核心应用程序) -- BluetoothDebug (蓝牙调试程序) -- CustomLocale (自定义区域设置) -- Development (开发) -- Fallback (和语言相关的一个程序) -- FontLab (字库) -- GestureBuilder (手势动作) -- NinePatchLab (?) -- OBJViewer (OBJ查看器) -- SdkSetup (SDK安装器) -- SpareParts (高级设置) -- Term (远程登录) `-- launchperf (?) -- build (编译脚本模板) -- cmds (有个monkey工具) -- data (配置数据) -- docs (文档) -- host (主机端USB驱动等) -- ide (集成开发环境) -- ndk (本地开发套件——c语言开发套件) -- pdk (Plug Development Kit) -- samples (演示程序) -- AliasActivity () -- ApiDemos (API演示程序) -- BluetoothChat (蓝牙聊天) -- BrowserPlugin (浏览器插件) -- BusinessCard (商业卡) -- Compass (指南针) -- ContactManager (联系人管理器) -- CubeLiveWall** (动态壁纸的一个简单例程) -- FixedGridLayout (像是布局) -- GlobalTime (全球时间) -- HelloActivity (Hello) -- Home (Home) -- JetBoy (jetBoy游戏) -- LunarLander (貌似又是一个游戏) -- MailSync (邮件同步) -- MultiResolution (多分辨率) -- MySampleRss (RSS) -- NotePad (记事本) -- RSSReader (RSS阅读器) -- SearchableDictionary (目录搜索) -- **JNI (JNI例程) -- SkeletonApp (空壳APP) -- Snake (snake程序) -- SoftKeyboard (软键盘) -- Wiktionary (?维基) `-- Wiktionary**(?维基例程) -- scripts (脚本) -- sdk (sdk配置) -- simulator (?模拟器) -- testrunner (?测试用) `-- tools (一些工具)

㈤ 编译内核时,出现的问题,使用的是安卓原生态编译,只编译kernel

删除kernel-3.10\include下的config文件夹就可以解决。

㈥ 怎么修改Android 的Linux内核

Android 产品中,内核格式是Linux标准的zImage,根文件系统采用ramdisk格式。这两者在Android下是直接合并在一起取名为boot.img,会放在一个独立分区当中。这个分区格式是Android自行制定的格式。

Android开发时,最标准的做法是重新编译于内核和根文件系统,然后调用Android给的命令行文件mkbootimg(out/host/linux-x86/bin/)来打包。

在制作手机ROM时,有时会单独编译内核或抽出根文件进行修改内容,比如我只编译内核,其余的地方不变。这样重新安装巨大的Android开发环境实在不划算。因此很多boot.img解包工具被人开发出来,这一些工具都是把内核和根文件系统从一个现成的boot.img抽取出来,修发后再次打包还原。

一.常见的解包工具

因为boot.img的格式比较简单,它主要分为三大块(有的可能有四块)

因此很多人开发分析工具,有是linux shell脚本,比如repack-zImage,也有人采用perl,还有C语言编写的 unbootimg,

我使用的是在源码位置system/core/mkbootimg/ 下的 mkbootimg。为了简化,蓝点工坊把与mkbootimg中打包工具和解包工具以及所包含的libmincrpty库抽出来,并且重写一个Makefile,作为开源项目。
使用者只需要在linux(需安装gcc,make,一般是标配)或windows(需要安装mingw)的命令行执行make,即可产生可执行文件mkbootimg ,unpackbootimg。

二.解/打包工具使用

解包工具:unpackbootimg

常见格式
unpackbootimg -i .\tmp\boot.img -o .\out

这一句命令行表示把boot.img解包,所有文件输出到out目录下

它会解压出如下文件:
boot.img-zImage (内核文件)
boot.img-ramdisk.gz (根文件系统打包文件)
boot.img-cmdline (mkbootimg cmdline参数)
boot.img-pagesize (mkbootimg pagesize参数)

boot.img-base (mkbootimg base参数)

打包工具:mkbootimg (Android自带)

常见的命令格式:
./mkbootimg --cmdline 'no_console_suspend=1 console=null' --kernel zImage --ramdisk boot/boot.img-ramdisk.gz -o boot.img --base 02e00000
这句含义是把内核文件zImage和boot目录下的根文件压缩包 boot.img-ramdisk.gz打包成boot.img.
其中cmdline和base的值均来源于unpackbootimg的结果

㈦ 自己可以编译安卓源码吗

用最新的Ubuntu 16.04,请首先确保自己已经安装了Git.没安装的同学可以通过以下命令进行安装:

sudo apt-get install git git config –global user.email “[email protected]” git config –global user.name “test”

其中[email protected]为你自己的邮箱.

简要说明

android源码编译的四个流程:1.源码下载;2.构建编译环境;3.编译源码;4运行.下文也将按照该流程讲述.

源码下载

由于某墙的原因,这里我们采用国内的镜像源进行下载.
目前,可用的镜像源一般是科大和清华的,具体使用差不多,这里我选择清华大学镜像进行说明.(参考:科大源,清华源)

repo工具下载及安装

通过执行以下命令实现repo工具的下载和安装

mkdir ~/binPATH=~/bin:$PATHcurl https://storage.googleapis.com/git-repo-downloads/repo > ~/bin/repochmod a+x ~/bin/repo

补充说明
这里,我来简单的介绍下repo工具,我们知道AOSP项目由不同的子项目组成,为了方便进行管理,Google采用Git对AOSP项目进行多仓库管理.在聊repo工具之前,我先带你来聊聊多仓库项目:

我们有个非常庞大的项目Pre,该项目由很多个子项目R1,R2,...Rn等组成,为了方便管理和协同开发,我们为每个子项目创立自己的仓库,整个项目的结构如下:


这里写图片描述

执行完该命令后,再使用make命令继续编译.某些情况下,当你执行jack-admin kill-server时可能提示你命令不存在,此时去你去out/host/linux-x86/bin/目录下会发现不存在jack-admin文件.如果我是你,我就会重新repo sync下,然后从头来过.

错误三:使用emulator时,虚拟机停在黑屏界面,点击无任何响应.此时,可能是kerner内核问题,解决方法如下:
执行如下命令:

  • ./out/host/linux-x86/bin/emulator -partition-size 1024 -kernel ./prebuilts/qemu-kernel/arm/kernel-qemu-armv7

  • 通过使用kernel-qemu-armv7内核 解决模拟器等待黑屏问题.而-partition-size 1024 则是解决警告: system partion siez adjusted to match image file (163 MB >66 MB)

    如果你一开始编译的版本是aosp_arm-eng,使用上述命令仍然不能解决等待黑屏问题时,不妨编译aosp_arm64-eng试试.

    结束吧

    到现在为止,你已经了解了整个android编译的流程.除此之外,我也简单的说明android源码的多仓库管理机制.下面,不妨自己动手尝试一下.

    ㈧ 深入理解Binder

    之前一直对 Binder 理解不够透彻,仅仅知道一些皮毛,所以最近抽空深入理解一下,并在这里做个小结。

    Binder 是 Android 系统中实现 IPC (进程间通信)的一种机制。Binder 原意是“胶水、粘合剂”,所以可以想象它的用途就是像胶水一样把两个进程紧紧“粘”在一起,从而可以方便地实现 IPC 。

    那么为什么会有进程通信呢?这是因为在 Linux 中进程之间是隔离的,也就是说 A 进程不知道有 B 进程的存在,相应的 B 进程也不知道 A 进程的存在。A 、B 两进程的内存是不共享的,所以 A 进程的数据想要传给 B 进程就需要用到 IPC 。

    在这里再科普一下进程空间的知识点:进程空间可以分为用户空间和内核空间。简单的说,用户空间是用户程序运行的空间,而内核空间就是内核运行的空间了。因为像内核这么底层、至关重要的东西肯定是不会简单地让用户程序随便调用的,所以需要把内核保护起来,就创造了内核空间,让内核运行在内核空间中,这样就不会被用户空间随便干扰到了。两个进程之间的用户空间是不共享的,但是内核空间是共享的。

    所以到这里,有些同学会有个大胆的想法,两个进程间的通信可以利用内核空间来实现啊,因为它们的内核空间是共享的,这样数据不就传过去了嘛。但是接着又来了一个问题:为了保证安全性,用户空间和内核空间也是隔离的。那么如何把数据从发送方的用户空间传到内核空间呢?

    针对这个问题提供了 系统调用 来解决,可以让用户程序调用内核资源。系统调用是用户空间访问内核空间的唯一方式,保证了所有的资源访问都是在内核的控制下进行的,避免了用户程序对系统资源的越权访问,提升了系统安全性和稳定性(这段话来自 《写给 Android 应用工程师的 Binder 原理剖析》 )。我们平时的网络、I/O操作其实都是通过系统调用在内核空间中运行的(也就是 内核态 )。

    至此,关于 IPC 我们有了一个大概的实现方案:A 进程的数据通过系统调用把数据传输到内核空间(即_from_user),内核空间再利用系统调用把数据传输到 B 进程(即 _to_user)。这也正是目前 Linux 中传统 IPC 通信的实现原理,可以看到这其中会有两次数据拷贝。

    (图片来自于 《写给 Android 应用工程师的 Binder 原理剖析》 )

    Linux 中的一些 IPC 方式:

    通过上面的讲解我们可以知道,IPC 是需要内核空间来支持的。Linux 中的管道、socket 等都是在内核中的。但是在 Linux 系统里面是没有 Binder 的。那么 Android 中是如何利用 Binder 来实现 IPC 的呢?

    这就要讲到 Linux 中的 动态内核可加载模块 。动态内核可加载模块是具有独立功能的程序,它可以被单独编译,但是不能独立运行。它在运行时被链接到内核作为内核的一部分运行。这样,Android 系统就可以通过动态添加一个内核模块运行在内核空间,用户进程之间通过这个内核模块作为桥梁来实现通信。(这段话来自 《写给 Android 应用工程师的 Binder 原理剖析》 )在 Android 中,这个内核模块也就是 Binder 驱动。

    另外,Binder IPC 原理相比较上面传统的 Linux IPC 而言,只需要一次数据拷贝就可以完成了。那么究竟是怎么做到的呢?

    其实 Binder 是借助于 mmap (内存映射)来实现的。mmap 用于文件或者其它对象映射进内存,通常是用在有物理介质的文件系统上的。mmap 简单的来说就是可以把用户空间的内存区域和内核空间的内存区域之间建立映射关系,这样就减少了数据拷贝的次数,任何一方的对内存区域的改动都将被反应给另一方。

    所以,Binder 的做法就是建立一个虚拟设备(设备驱动是/dev/binder),然后在内核空间创建一块数据接收的缓存区,这个缓存区会和内存缓存区以及接收数据进程的用户空间建立映射,这样发送数据进程把数据发送到内存缓存区,该数据就会被间接映射到接收进程的用户空间中,减少了一次数据拷贝。具体可以看下图理解

    (图片来自于 《写给 Android 应用工程师的 Binder 原理剖析》 )

    Binder 的优点

    在整个 Binder 通信过程中,可以分为四个部分:

    其中 Client 和 Server 是应用层实现的,而 Binder 驱动和 ServiceManager 是 Android 系统底层实现的。

    具体流程如下:

    (Binder通信过程示意图来自于 《写给 Android 应用工程师的 Binder 原理剖析》 )

    ㈨ android 怎样编译kernel 命令 make

    方法如下:
    在Linux的环境下:
    建立目录:

    mkdir ~/android-kernel cd android-kernel

    下载源代码, 大概有280MB, 慢慢等哈~~~ (当然你要先安装git) git clone git://git.linuxtogo.org/home/groups/mobile-linux/kernel.git
    类似的屏幕信息:
    Initialized empty Git repository in /home/user/android-kernel/kernel/.git/ remote: Counting objects: 908251, done.
    remote: Compressing objects: 100% (153970/153970), done.
    remote: Total 908251 (delta 755115), reused 906063 (delta 753016) Receiving objects: 100% (908251/908251), 281.86 MiB | 292 KiB/s, done. Resolving deltas: 100% (755115/755115), done. Checking out files: 100% (22584/22584), done.
    然后去到htc-msm branch: cd kernel
    git checkout -b htc-msm origin/htc-msm
    屏幕信息:
    Branch htc-msm set up to track remote branch refs/remotes/origin/htc-msm. Switched to a new branch "htc-msm"

    下载ARM的toolchain, 大概64MB左右, 下到~/android-kernel: 下

    :
    http://www.codesourcery.com/gnu_toolchains/arm/portal/package2549/public/arm-none-linux-gnueabi/arm-2008q1-126-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2

    cd ~/android-kernel
    tar xjf arm-2008q1-126-arm-none-linux-gnueabi-i686-pc-linux-gnu.tar.bz2
    编译kernel

    准备缺省的Kaiser 配置文件.config
    cd ~/android-kernel/kernel

    make htckaiser_defconfig ARCH=arm
    然后编译zImage:
    export PATH=~/android-kernel/arm-2008q1/bin:$PATH
    make zImage ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi-
    编译好的在: ~/android-kernel/kernel/arch/arm/boot/zImage

    如果你的机器是多核的, 可以编译的时候用-j <cores/cpus_number>来加速:
    比如, 双核的可以:
    make -j 2 zImage ARCH=arm CROSS_COMPILE=arm-none-linux-gnueabi
    满意请采纳谢谢

    ㈩ 如何单独编译内核模块

    第一点,就是源码树中有相应的头文件和函数的实现,没有源码树,你哪调用去呢?(PC上编译的时候内核有导出符号,系统中有头文件,这样就可以引用内核给你的接口了,但是只能编译你PC上版本的内核可加载的模块)。

    第二个,内核模块中会记录版本号的部分,需要记录版本号的原因是不同的内核版本之间,那些接口和调用可能会有比较大的差异,因此必须要保证你的代码和某个特定的内核对应,这样编译出来的模块就可以(也是只能)在运行这个内核版本的Linux系统中加载,否则一个很简单的异常就会导致内核崩溃,或者你的代码根本无法编译通过(接口名变了)。

    热点内容
    sql创建链接 发布:2025-07-08 00:08:38 浏览:397
    ftp上传中断 发布:2025-07-08 00:08:37 浏览:639
    linux云计算课程 发布:2025-07-08 00:07:23 浏览:22
    安卓网易云怎么发布歌曲 发布:2025-07-07 23:42:29 浏览:625
    安卓内存读取脚本 发布:2025-07-07 23:42:19 浏览:871
    python27汉化 发布:2025-07-07 23:42:18 浏览:721
    源码锁屏 发布:2025-07-07 23:26:52 浏览:941
    手机版编程软件 发布:2025-07-07 22:57:22 浏览:122
    linux下执行sh脚本 发布:2025-07-07 22:49:00 浏览:127
    云盘怎么存储资料 发布:2025-07-07 22:49:00 浏览:915