linux编译clang
A. linux记录死机前的函数调用
线上环境进程崩溃,运维为了不背锅,要求崩溃之后立马将进程拉起。然而发现有个问题:一旦运维将进程拉起之后,之后使用崩溃的 core 文件来进行分析时,符号信息都丢失,看到的都是问号。
但是,如果崩溃之后未被拉起,可以正常的看到符号。
后来发现,贺闷是运维启动进程的 shell 脚本,每次启动之前,会将需要加载的部分业务相关的 so 文件,文件名字修改(名称里加上了时间戳,类似 lib20200423002608_xxxx.so 这种)。名称被修改之后,gdb 自然没法加载加载这个 so 文件。
info shared
在 gdb 里使用 info shared,可以看到这个 so 文件无对应的地址,因为没有对应的 so 文件被加载。线上环境的 gdb版本是 7.2,启动时没有与 so 文件不存在相关的提示。
当然这是后话。
那么在奔溃时,如何将奔溃时的调用栈记录到日志里呢。
可以借助 backtrace 相关的 3 个函数来实现。
#include <execinfo.h>
int backtrace(void *symaddr[], int size);
char **backtrace_symbols(void *const symaddr[], int size);
void backtrace_symbols_fd(void *const *buffer, int size, int fd);
参数和返回值说明:
backtrace 传入一个数组 symaddr,用来保存符号的地址;size 为数组的大小。size 应该足够大,不然会有部分符号丢失。返回值为实际保存的地址数量。
backtrace_symbols 用来根据符号的地址,得到对应的符号。size 为 backtrace 的返回值,表示腔耐实际需要处理的符号数量。
返回的是一个 malloc 得到的字符串数组的起始地址(C 语言中不太严谨的讲,char* 就是字符串),所以最后需要调用者释放内存。
#include <stdlib.h>
#include <string>
#include <execinfo.h>
#include <unistd.h>
void getCallStackInfo(std::string &stackInfo)
{
static const int size = 100; //符号数量,100足够
int nptrs;
void *buffer[size];
char **syms;
nptrs = backtrace(buffer, size); //返回当前调伍拍春用栈实际的符号数量
syms = backtrace_symbols(buffer, nptrs);
if (syms == nullptr)
{
perror("backtrace_symbols");
exit(EXIT_FAILURE);
}
for(int i = 0; i < nptrs; ++i)
{
stackInfo.append(syms[i]);
stackInfo.append("\n");
}
free(syms);
}
void say(int &n)
{
static int call_count = 0;
++n;
++call_count;
printf("call count %d\n", call_count);
if(call_count == 6)
{
std::string stack_info;
getCallStackInfo(stack_info);
printf("%s\n", stack_info.c_str());
return;
}
say(n);
}
int main()
{
int n = 3;
say(n);
return 0;
}
编译运行,clang++ main.cpp -rdynamic -o main.out && ./main.out
call count 1
call count 2
call count 3
call count 4
call count 5
call count 6
./main.out(_Z16getCallStackInfoRNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEEE+0x23) [0x400d53]
./main.out(_Z3sayRi+0x6a) [0x400e8a]
./main.out(_Z3sayRi+0xc1) [0x400ee1]
./main.out(_Z3sayRi+0xc1) [0x400ee1]
./main.out(_Z3sayRi+0xc1) [0x400ee1]
./main.out(_Z3sayRi+0xc1) [0x400ee1]
./main.out(_Z3sayRi+0xc1) [0x400ee1]
./main.out(main+0x1f) [0x400f0f]
/lib64/libc.so.6(__libc_start_main+0xf3) [0x7fe51b555873]
./main.out(_start+0x2e) [0x400c6e]
看到调用栈已经被记录下来,当然符号都是 name mangling 之后的,使用 c++filt _Z3sayRi 可以看到原始名字。
回到记录奔溃时的调用栈到日志里的主题上。通常的奔溃都是由于内存问题,那么可以捕获 SIGSEGV 信号,在信号处理函数中将当前的调用栈记录到日志中就行。写文件可能需要一个 sleep 延时等待日志线程处理完毕。
void sig_log_stack_handler(int sig)
{
std::string stackInfo;
getCallStackInfo(stackInfo);
abort();
}
当然严格的来说,在信号处理器函数里处理 IO 是不符合标准的,会 UB.
注意编译时一定要带上 -rdynamic 选项才有用。如果使用的是 qt creator,这个 -rdynamic 参数时需要传给链接器的,需要在 .pro 文件里加上,加到 QMAKE_CXXFLAGS 是没得用的。
QMAKE_LFLAGS += -rdynamic
B. 目前主流的c语言编译软件是什么
C语言相比其他很多新兴的、复杂的语言,语法还是简单一些,较好实现的。
所以在C语言几十年的发展中出现了各式各样的编译器,还有一些容易被误解为编译器的IDE。
这里列举几个主流的:
GCC
毫无疑问,GCC几乎是unix及linux系统中最通用的编译器套件,几乎所有的linux发行版都预装了GCC作为C语言的默认编译器。除了对C语言的支持,GCC还支持C++、Objective-C等多种语言。GCC早在1987就由Richard Stallman作为GNU计划的一部分发布。
Clang
Clang是近几年新兴的C/C++以及Objective-C的编译器,Apple是其主要投资者,其最初的开发者已加盟Apple。虽说是新兴,但其对C/C++标准的支持不亚于GCC等老牌编译器,并且外部接口和GCC完全兼容,并且因其模块化、错误提示完善等优点已经越来越受到重视。一些如FreeBSD等项目已将clang作为默认编译器。
其实Clang并不是一个完整的编译器,而是作为同一批开发者开发的另一个备受关注的虚拟机(类似于JVM)的llvm的一个前端开发,只是负责将C语言源码编译为llvm IR的中间语言,再由llvm编译为目标代码,这样做可以让其可移植性更好。
Microsoft Visual C++
作为拥有可视化集成编程系统的编译器,VC被很多使用Windows作为开发环境的初学者使用。详见网络的介绍
http://ke..com/view/2070966.htm?fromtitle=vc&fromid=7792954&type=syn#viewPageContent
C. 如何设置来用clang/clang++替换Linux下的默认编译器Gcc
sudo update-alternatives --install /usr/bin/cc cc /usr/bin/clang 100
sudo update-alternatives --install /usr/bin/c++ c++ /usr/bin/clang++ 100
D. 什么是linux kernel有什么作用
Linux内核(英语:Linux kernel)是一种开源的类Unix操作系统宏内核。
工作于平板电脑、智能手机及智能手表的Android操作系统同样通过Linux内核提供的服务完成自身功能。
一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。但是没有软件来操作和控制它,自身是不能工作的。
完成这个控制工作的软件就称为操作系统,在Linux的术语中被称为“内核”,也可以称为“核心”。Linux内核的主要模块(或组件)分以下几个部分:存储管理、CPU和进程管理、文件系统、设备管理和驱动、网络通信,以及系统的初始化(引导)、系统调用等。
整个Linux操作系统家族基于该内核部署在传统计算机平台(如个人计算机和服务器,以Linux发行版的形式)和各种嵌入式平台,如路由器、无线接入点、专用小交换机、机顶盒、FTA接收器、智能电视、数字视频录像机、网络附加存储(NAS)等。
工作于平板电脑、智能手机及智能手表的Android操作系统同样通过Linux内核提供的服务完成自身功能。尽管于桌面电脑的占用率较低,基于Linux的操作系统统治了几乎从移动设备到主机的其他全部领域。截至2017年11月,世界前500台最强的超级计算机全部使用Linux。
(4)linux编译clang扩展阅读:
编程语言
Linux是用C语言中的GCC版(这种C语言有对标准C进行扩展)写的,还有几个用汇编语言(用的是GCC的"AT&T风格")写的目标架构短段。因为要支持扩展的C语言,GCC在很长的时间里是唯一一个能正确编译Linux的编译器。
有许多其他的语言用在一些方面上,主要集中在内核构建过程中(这里指从源代码创建可引导镜像)。包括Perl、Python和多种脚本语言。有一些驱动可能是用C++、Fortran或其他语言写的,但是这样是强烈不建议的。
编译器兼容性
GCC是Linux内核源代码的缺省编译器。在2004年,Intel主张通过修改内核,以便Intel C++编译器能正确编译内核。在2009年,有通过修改内核2.6.22版而成功编译的报告(并带来平均8-9%性能增长)。
自从2010年,已经开始进行使用Clang建造Linux内核的努力,Clang是一个可作为替代的C语言编译器;截止2014年4月12日,官方内核几乎可以完全用Clang编译。致力于这个目标的计划叫做“LLVMLinux”,得名于Clang所基于的LLVM编译器下部构造。
LLVMLinux不意图复制Linux内核或LLVM,因此它是由最终提交给上游计划的补丁构成的一个元计划。使Linux内核可以用Clang编译最大的好处是比GCC有更快的编译速度,内核开发者可以得益于由此而来的更快的工作流程
E. 如何使用Ninja快速编译LLVM和Clang
1,Build llvm/clang/lldb/仔笑lld 3.5.0等组件
1.0 准备:
至少需简戚绝要从llvm.org下载llvm, cfe, lldb, compiler-rt,lld等3.5.0版本的代码。
$tar xf llvm-3.5.0.src.tar.gz
$cd llvm-3.5.0.src
$mkdir -p tools/clang
$mkdir -p tools/clang/tools/extra
$mkdir -p tools/lld
$mkdir -p projects/compiler-rt
$tar xf cfe-3.5.0.src.tar.xz -C tools/clang --strip-components=1
$tar xf compiler-rt-3.5.0.src.tar.xz -C projects/compiler-rt --strip-components=1
$tar xf lldb-3.5.0.src.tar.xz -C tools/clang/tools/extra --strip-components=1
$tar xf lld-3.5.0.src.tar.xz -C tools/lld --strip-components=1
1.1 【可选】使用clang --stdlib=libc++时,自动添加-lc++abi。
libc++组件可以使用gcc libstdc++的supc++ ABI,也可以使用c++abi,cxxrt等,实际上自动添加-lc++abi是不必要的,这里这么处理,主要是为了方便起见。实际上完全可以在“clang++ -stdlib=libc++”时再手工添加-lc++abi给链接器。
这里涉及到链接时DSO隐式还是显式的问题,早些时候ld在链接库时会自动引入由库引入的依赖动态库,后来因为这个行为的不可控性,所以ld链接器的行为做了修改,需要显式的写明所有需要链接的动态库,才会有手工添加-lc++abi这种情况出现。
拦姿--- llvm-3.0.src/tools/clang/lib/Driver/ToolChain.cpp 2012-03-26 18:49:06.663029075 +0800
+++ llvm-3.0.srcn/tools/clang/lib/Driver/ToolChain.cpp 2012-03-26 19:36:04.260071355 +0800
@@ -251,6 +251,7 @@
switch (Type) {
case ToolChain::CST_Libcxx:
CmdArgs.push_back("-lc++");
+ CmdArgs.push_back("-lc++abi");
break;
case ToolChain::CST_Libstdcxx:
1.2 【必要】给clang++添加-fnolibgcc开关。
这个开关主要用来控制是否连接到libgcc或者libunwind。
注:libgcc不等于libunwind。libgcc_eh以及supc++的一部分跟libunwind功能相当。
注:libgcc_s和compiler_rt的一部分相当。
这个补丁是必要的, 不会对clang的正常使用造成任何影响 ,只有在使用“-fnolibgcc"参数时才会起作用。
之所以进行了很多unwind的引入,主要是为了避免不必要的符号缺失麻烦,这里的处理相对来说是干净的,通过as-needed规避了不必要的引入。
--- llvm-static-3.5.0.bak/tools/clang/lib/Driver/Tools.cpp 2014-09-10 13:46:02.581543888 +0800
+++ llvm-static-3.5.0/tools/clang/lib/Driver/Tools.cpp 2014-09-10 16:03:37.559019321 +0800
@@ -2060,9 +2060,15 @@
".a");
CmdArgs.push_back(Args.MakeArgString(LibClangRT));
- CmdArgs.push_back("-lgcc_s");
- if (TC.getDriver().CCCIsCXX())
- CmdArgs.push_back("-lgcc_eh");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else {
+ CmdArgs.push_back("-lgcc_s");
+ if (TC.getDriver().CCCIsCXX())
+ CmdArgs.push_back("-lgcc_eh");
+ }
}
static void addProfileRT(
@@ -7150,24 +7156,50 @@
bool isAndroid = Triple.getEnvironment() == llvm::Triple::Android;
bool StaticLibgcc = Args.hasArg(options::OPT_static_libgcc) ||
Args.hasArg(options::OPT_static);
+
+
+
if (!D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");
if (StaticLibgcc || isAndroid) {
if (D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");
} else {
if (!D.CCCIsCXX())
CmdArgs.push_back("--as-needed");
- CmdArgs.push_back("-lgcc_s");
+ if (Args.hasArg(options::OPT_fnolibgcc))
+ CmdArgs.push_back("-lunwind");
+ else
+ CmdArgs.push_back("-lgcc_s");
if (!D.CCCIsCXX())
CmdArgs.push_back("--no-as-needed");
}
if (StaticLibgcc && !isAndroid)
- CmdArgs.push_back("-lgcc_eh");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc_eh");
else if (!Args.hasArg(options::OPT_shared) && D.CCCIsCXX())
- CmdArgs.push_back("-lgcc");
+ if (Args.hasArg(options::OPT_fnolibgcc)) {
+ CmdArgs.push_back("--as-needed");
+ CmdArgs.push_back("-lunwind");
+ CmdArgs.push_back("--no-as-needed");
+ } else
+ CmdArgs.push_back("-lgcc");
// According to Android ABI, we have to link with libdl if we are
// linking with non-static libgcc.
--- llvm-static-3.5.0.bak/tools/clang/include/clang/Driver/Options.td 2014-08-07 12:51:51.000000000 +0800
+++ llvm-static-3.5.0/tools/clang/include/clang/Driver/Options.td 2014-09-10 13:36:34.598511176 +0800
@@ -788,6 +788,7 @@
def fomit_frame_pointer : Flag<["-"], "fomit-frame-pointer">, Group<f_Group>;
def fopenmp : Flag<["-"], "fopenmp">, Group<f_Group>, Flags<[CC1Option, NoArgumentUnused]>;
def fopenmp_EQ : Joined<["-"], "fopenmp=">, Group<f_Group>, Flags<[CC1Option]>;
+def fnolibgcc : Flag<["-"], "fnolibgcc">, Group<f_Group>, Flags<[CC1Option, NoArgumentUnused]>;
def fno_optimize_sibling_calls : Flag<["-"], "fno-optimize-sibling-calls">, Group<f_Group>;
def foptimize_sibling_calls : Flag<["-"], "foptimize-sibling-calls">, Group<f_Group>;
def force__cpusubtype__ALL : Flag<["-"], "force_cpusubtype_ALL">;
1.3 llvm的其他补丁。
llvm/clang将gcc toolchain的路径hard code在代码中,请查阅tools/clang/lib/Driver/ToolChains.cpp。
找到x86_64-redhat-linux之类的字符串。
如果没有你系统特有的gcc tripple string,请自行添加。
这个tripple string主要是给llvm/clang搜索gcc头文件等使用的,不影响本文要构建的toolchain
1.4 构建clang/llvm/lldb
本文使用ninja。顺便说一下,llvm支持configure和cmake两种构建方式。可能是因为工程太大,这两种构建方式的工程文件都有各种缺陷(主要表现在开关选项上,比如configure有,但是cmake却没有等)。llvm-3.4.1就是因为cmake工程文件的错误而导致了3.4.2版本的发布。
综合而言,cmake+ninja的方式是目前最快的构建方式之一,可以将构建时间缩短一半以上。
mkdir build
cd build
cmake \
-G Ninja \
-DCMAKE_INSTALL_PREFIX=/usr \
-DCMAKE_BUILD_TYPE="Release" \
-DCMAKE_CXX_FLAGS="-std=c++11" \
-DBUILD_SHARED_LIBS=OFF \
-DLLVM_ENABLE_PIC=ON \
-DLLVM_TARGETS_TO_BUILD="all" \
-DCLANG_VENDOR="MyOS" ..
ninja
ninja install
如果系统原来就有clang/clang++的可用版本,可以添加:
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
这样就会使用系统的clang++来构建llvm/clang
2,测试clang/clang++。
自己找几个简单的c/cpp/objc等编译测试一下即可。完整测试可以在构建时作ninja check-all
3,libunwind/libc++/libc++abi,一套不依赖libgcc, libstdc++的c++运行库。
3.1 从https://github.com/pathscale/libunwind 获取代码。
libunwind有很多个实现,比如gnu的libunwind, path64的libunwind,还有libcxxabi自带的Unwinder.
这里作下说明:
1),gnu的libunwind会有符号缺失和冲突。
2),libcxxabi自带的Unwinder是给mac和ios用的,也就是只能在darwin体系构建。目前Linux的实现仍然不全,等linux实现完整了或许就不再需要path64的unwind实现了。
暂时建议使用pathscale的unwind实现。
mkdir -p build
cd build
cmake -G Ninja -DCMAKE_C_COMPILER=clang -DCMAKE_C_FLAGS="-m64" ..
ninja
mkdir -p /usr/lib
cp src/libunwind.so /usr/lib
cp src/libunwind.a /usr/lib
3.2 第一次构建libcxx.
必须先构建一次libcxx,以便后面构建libcxxabi。这里构建的libcxx实际上是使用gcc的libgcc/stdc++/supc++的。
打上这个补丁来禁止libgcc的引入:
diff -Nur libcxx/cmake/config-ix.cmake libcxxn/cmake/config-ix.cmake
--- libcxx/cmake/config-ix.cmake 2014-06-25 06:57:50.000000000 +0800
+++ libcxxn/cmake/config-ix.cmake 2014-06-25 09:05:24.980350544 +0800
@@ -28,5 +28,4 @@
check_library_exists(c printf "" LIBCXX_HAS_C_LIB)
check_library_exists(m ccos "" LIBCXX_HAS_M_LIB)
check_library_exists(rt clock_gettime "" LIBCXX_HAS_RT_LIB)
-check_library_exists(gcc_s __gcc_personality_v0 "" LIBCXX_HAS_GCC_S_LIB)
编译安装:
mkdir build
cd build
cmake \
-G Ninja \
-DCMAKE_INSTALL_PREFIX=/usr \
-DCMAKE_C_COMPILER=clang \
-DCMAKE_CXX_COMPILER=clang++ \
..
ninja
ninja install
3.3,测试第一次构建的libcxx。
使用"clang++ -stdlib=libc++ -o test test.cpp -lstdc++"编译简单c++代码,检查是否出错。(如果前面构建clang是已经apply了c++abi的链接补丁,这里会出现找不到c++abi的情况,跳过即可)
使用"ldd test"查看test二进制动态库使用情况。可以发现,test依赖于libgcc_s/libc++/libstdc++。(多少有些不爽了吧?使用了libc++居然还要依赖libstdc++?)
F. linux下Clang和gcc的区别
是两种不同的C++编译器。gcc历史很悠久了,而clang是新兴的编译器,已皮高经兼容gcc,也全燃穗尺面支持C++11标准族团、Objective-C等,当然二者都是cross-platform的。具体的区别可以移步维基网络中gcc和clang词条。
G. 如何设置来用clang/clang++替换Linux下的默认编译器Gcc
我晕, 你到底是在什么发行版? 从提示上来看,要用 apt-get install 来装,说明是 ubuntu/debian之类的linux发行版,你怎么又会去用 rpm 来查询和安装软件? 你不说你是什么发行版,楼上回答的人也不管,直接就让你用rpm,误人子弟啊。
正确的方法是,
sudo apt-get install build-essential
这个才是你的系统应该用的,装好后命令行下运行
gcc -v
就会打印出你使用gcc的版本信息了,然后就可以用了,比如
gcc -o test test.c
就会编译test.c,生成可执行文件 test
然后
./test
就会运行test
我再晕,楼主,提示你没有test.c,你的C源文件呢?我这里是用test.c做例子,你的源文件叫什么名字,你就把test.c换成你的文件的名字啊。另外,你要把你的源文件先保存在linux机器上,比方说放到了 /home/yourname/aaa
那你要先
cd /home/yourname/aaa
然后再
gcc -o test test.c
H. Linux下编写c语言头文件,编译时出现“函数未定义”
出现该错误的原因为编译时只变编译了源文件的一部分,故在链接时无法从编译好的目标代码中找到print函数,所以出错。
根据你的源文件结构,个人推荐先单独编译源文件为多个object文件,再统一链接。
方法如下
gcc-cmain.c#-c参数的作用是让gcc只编译,不链接
gcc-ctest.c
gcc-omainmain.otest.o#将编译好的目标代码链接
当然,以上是在gcc为编译器的前提下执行,如使用clang等其他编译器,方法类似(clang的调用方法与gcc高度兼容)
I. 如何使用clang+arm-linux-gcc编译ARM程序并在模拟器上运
完全可以的,有arm-linux-gcc,你可以自己去编译,这个需要的耐心很大,而且需要选择好各种所需库的版本,否则会出现编译失败;你也可以直接下载网上现成的.建议使用crosstool-ng集成编译环境去编译.
J. linux系统下能用vs2008编译程序吗如果不能的话一般用什么编译器
1、不可以,VS2008编译的结果只能运行于WINDOWS
2 \linuX环境常用编译开发环境:GNU C++,QT
3\更多交流参考我空间文章。