当前位置:首页 » 编程软件 » 数据处理脚本

数据处理脚本

发布时间: 2022-04-11 09:36:46

Ⅰ 数据ETL是指什么

对于做过 BI 开发的朋友,ETL 并不陌生,只要涉及到数据源的数据抽取、数据的计算和处理过程的开发,都是 ETL,ETL 就这三个阶段,Extraction 抽取,Transformation 转换,Loading 加载。

从不同数据源抽取数据 EXTRACTION ,按照一定的数据处理规则对数据进行加工和格式转换 TRASFORMATION,最后处理完成的输出到目标数据表中也有可能是文件等等,这个就是 LOADING。

再通俗一点讲,ETL 的过程就跟大家日常做菜一样,需要到菜市场的各个摊位买好菜,把菜买回来要摘一下,洗一洗,切一切最后下锅把菜炒好端到饭桌上。菜市场的各个摊位就是数据源,做好的菜就是最终的输出结果,中间的所有过程像摘菜、洗菜、切菜、做菜就是转换。

在开发的时候,大部分时候会通过 ETL 工具去实现,比如常用的像 KETTLE、PENTAHO、IBM DATASTAGE、INFORNAICA、微软 sql SERVER 里面的 SSIS 等等,在结合基本的 SQL 来实现整个 ETL 过程。

也有的是自己通过程序开发,然后控制一些数据处理脚本跑批,基本上就是程序加 SQL 实现。

哪种方式更好,也是需要看使用场景和开发人员对那种方式使用的更加得心应手。我看大部分软件程序开发人员出身的,碰到数据类项目会比较喜欢用程序控制跑批,这是程序思维的自然延续。纯 BI 开发人员大部分自然就选择成熟的 ETL 工具来开发,当然也有一上来就写程序脚本的,这类 BI 开发人员的师傅基本上是程序人员转过来的。

用程序的好处就是适配性强,可扩展性强,可以集成或拆解到到任何的程序处理过程中,有的时候使用程序开发效率更高。难就难在对维护人员有一定的技术要求,经验转移和可复制性不够。

用 ETL 工具的好处,第一是整个 ETL 的开发过程可视化了,特别是在数据处理流程的分层设计中可以很清晰的管理。第二是链接到不同数据源的时候,各种数据源、数据库的链接协议已经内置了,直接配置就可以,不需要再去写程序去实现。第三是各种转换控件基本上拖拉拽就可以使用,起到简化的代替一部分 SQL 的开发,不需要写代码去实现。第四是可以非常灵活的设计各种 ETL 调度规则,高度配置化,这个也不需要写代码实现。

所以在大多数通用的项目中,在项目上使用 ETL 标准组件开发会比较多一些。

ETL 从逻辑上一般可以分为两层,控制流和数据流,这也是很多 ETL 工具设计的理念,不同的 ETL 工具可能叫法不同。

控制流就是控制每一个数据流与数据流处理的先后流程,一个控制流可以包含多个数据流。比如在数据仓库开发过程中,第一层的处理是ODS层或者Staging 层的开发,第二层是 DIMENSION维度层的开发,后面几层就是DW 事实层、DM数据集市层的开发。通过ETL的调度管理就可以让这几层串联起来形成一个完整的数据处理流程。

数据流就是具体的从源数据到目标数据表的数据转换过程,所以也有 ETL 工具把数据流叫做转换。在数据流的开发设计过程中主要就是三个环节,目标数据表的链接,这两个直接通过 ETL 控件配置就可以了。中间转换的环节,这个时候就可能有很多的选择了,调 SQL 语句、存储过程,或者还是使用 ETL 控件来实现。

有的项目上习惯使用 ETL 控件来实现数据流中的转换,也有的项目要求不使用标准的转换组件使用存储过程来调用。也有的是因为数据仓库本身这个数据库不支持存储过程就只能通过标准的SQL来实现。

我们通常讲的BI数据架构师其实指的就是ETL的架构设计,这是整个BI项目中非常核心的一层技术实现,数据处理、数据清洗和建模都是在ETL中去实现。一个好的ETL架构设计可以同时支撑上百个包就是控制流,每一个控制流下可能又有上百个数据流的处理过程。之前写过一篇技术文章,大家可以搜索下关键字 BIWORK ETL 应该在网上还能找到到这篇文章。这种框架设计不仅仅是ETL框架架构上的设计,还有很深的ETL项目管理和规范性控制器思想,包括后期的运维,基于BI的BI分析,ETL的性能调优都会在这些框架中得到体现。因为大的BI项目可能同时需要几十人来开发ETL,框架的顶层设计就很重要。

Ⅱ mysql数据库 清理数据的脚本!脚本问题!

步骤如下:
首先使用mysql提供的命令行界面来导入数据库,确保自己的电脑中安装了mysql数据库,可以通过命令行来确认是否安装了mysql数据库,当然,第一步是打开mysql的数据库服务,使用命令行来打开:如下图所示:
启动mysql后,找到需要用到的脚本文件,也就是数据库文件,首先得建立一个数据库,这样才可以导入脚本,如下图所示:
在将脚本拷到本地磁盘的根目录,这样方便进入找到脚本,这里以d盘来说明,使用test.sql:接着来到命令行,使用source
d:/test.sql;来导入数据库,先进入mysql,如下图所示:
首先要在数据库中建立好数据库,然后导入脚本,所以先建立一个数据库,不要脚本是不知道要往哪个数据库中导入脚本的,如下图所示:
然后就可以输入导入.sql文件命令:
mysql>
use
数据库名;
mysql>
source
d:/test.sql;
如下图所示:
看到上面的画面,说明mysql数据库已经导入成功了。

Ⅲ 基于R语言的数据标准化处理脚本

基于R语言的数据标准化处理脚本
数据标准化(Normalization)
将数据按比例缩放,使之落入一个小的特定区间。去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。
数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。
数据无量纲化处理主要解决数据的可比性。数据标准化的方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。
min-max标准化(Min-max normalization)
也叫离差标准化,是对原始数据的线性变换,使结果落在[0,1]区间,转换函数如下:
正向指标:(x-min)/(max-min)
负向指标:(max-x)/(max-min)
其中max为样本数据的最大值,min为样本数据的最小值。这种方法有一个缺陷就是当有新数据加入时,可能导致max和min的变化,需要重新定义。
R语言实现
# 标准化处理
min.max.norm <- function(x){
((x-min(x))/(max(x)-min(x)))
} #正向指标

max.min.norm <- function(x){
((max(x)-x)/(max(x)-min(x)))
} #负向指标

data_1 <- apply(data[,-c(3,4)],2,min.max.norm) #正向指标处理
data_2 <- apply(data[,c(3,4)],2,max.min.norm) #负向指标处理
#注意array只能用在二维及以上

data_t <- cbind(data_1,data_2)

Ⅳ 什么是CGI,什么是CGI脚本

CGI是Common Gateway Interface的缩写,是用于连接主页和应用程序的接口。众所周知,HTML语言的功能是比较贫乏的,难以完成诸如访问数据库等一类的操作,而实际的情况则是经常需要先对数据库进行操作(比如文件检索系统),然后把访问的结果动态地显示在主页上。诸如此类的需求只用HTML是无法做到的,所以CGI便应运而生。CGI是在WebServer端运行的一个可执行程序,由主页的一个热链接激活进行调用,并对该程序的返回结果进行处理,显示在主页上。简而言之,CGI就是为了扩展主页的功能而设立的。随后,诸如IDC、ASP、ISAPI、NSAPI等技术也发展起来了,它们的目的是相同的,只是编写起来更容易、功能更丰富。

Ⅳ shell脚本,对数据处理,求指导,用awk怎么实现

用下面这个命令来执行下就行了

#awk '{k=substr($0,1,5);m[k]+=1;if($0>=l[k]){l[k]=$0};if($0<=o[k] || !o[k]){o[k]=$0}}END{for(a in m) print a,"|",m[a],"|",l[a],"|",o[a]}' 1.txt

如果想定向到别的文件,直接用">"和">>"指向的文件就行了。

上面的完全由awk实现,应该完全满足你的需求吧?

Ⅵ 什么是数据库脚本

数据库脚本,即用于创建数据库对象的语句的集合。Transact-SQL脚本保存为文件,文件名通常以 .sql结尾。

具体使用环境包含:MY-SQL,SQLServer,oracle。

数据库脚本包含:存储过程[Procere],事务[transaction]等,索引[Index],触发器[Trigger],函数[Function]等。

使用脚本的好处:可以提高数据访问的效率,并进行相关的数据处理。

Ⅶ 数据处理方式

什么是大数据:大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),网络随便找找都有。

大数据处理流程:

1.是数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,感觉有些数据没用(刚开始做只想着功能,有些数据没采集, 后来被老大训了一顿)。

2.数据清洗/预处理:就是把收到数据简单处理,比如把ip转换成地址,过滤掉脏数据等。

3.有了数据之后就可以对数据进行加工处理,数据处理的方式很多,总体分为离线处理,实时处理,离线处理就是每天定时处理,常用的有阿里的maxComputer,hive,MapRece,离线处理主要用storm,spark,hadoop,通过一些数据处理框架,可以吧数据计算成各种KPI,在这里需要注意一下,不要只想着功能,主要是把各种数据维度建起来,基本数据做全,还要可复用,后期就可以把各种kpi随意组合展示出来。

4.数据展现,数据做出来没用,要可视化,做到MVP,就是快速做出来一个效果,不合适及时调整,这点有点类似于Scrum敏捷开发,数据展示的可以用datav,神策等,前端好的可以忽略,自己来画页面。

数据采集:

1.批数据采集,就是每天定时去数据库抓取数据快照,我们用的maxComputer,可以根据需求,设置每天去数据库备份一次快照,如何备份,如何设置数据源,如何设置出错,在maxComputer都有文档介绍,使用maxComputer需要注册阿里云服务

2.实时接口调用数据采集,可以用logHub,dataHub,流数据处理技术,DataHub具有高可用,低延迟,高可扩展,高吞吐的特点。

高吞吐:最高支持单主题(Topic)每日T级别的数据量写入,每个分片(Shard)支持最高每日8000万Record级别的写入量。

实时性:通过DataHub ,您可以实时的收集各种方式生成的数据并进行实时的处理,

设计思路:首先写一个sdk把公司所有后台服务调用接口调用情况记录下来,开辟线程池,把记录下来的数据不停的往dataHub,logHub存储,前提是设置好接收数据的dataHub表结构

3.前台数据埋点,这些就要根据业务需求来设置了,也是通过流数据传输到数据仓库,如上述第二步。

数据处理:

数据采集完成就可以对数据进行加工处理,可分为离线批处理,实时处理。

1.离线批处理maxComputer,这是阿里提供的一项大数据处理服务,是一种快速,完全托管的TB/PB级数据仓库解决方案,编写数据处理脚本,设置任务执行时间,任务执行条件,就可以按照你的要求,每天产生你需要数据

2.实时处理:采用storm/spark,目前接触的只有storm,strom基本概念网上一大把,在这里讲一下大概处理过程,首先设置要读取得数据源,只要启动storm就会不停息的读取数据源。Spout,用来读取数据。Tuple:一次消息传递的基本单元,理解为一组消息就是一个Tuple。stream,用来传输流,Tuple的集合。Bolt:接受数据然后执行处理的组件,用户可以在其中执行自己想要的操作。可以在里边写业务逻辑,storm不会保存结果,需要自己写代码保存,把这些合并起来就是一个拓扑,总体来说就是把拓扑提交到服务器启动后,他会不停读取数据源,然后通过stream把数据流动,通过自己写的Bolt代码进行数据处理,然后保存到任意地方,关于如何安装部署storm,如何设置数据源,网上都有教程,这里不多说。

数据展现:做了上述那么多,终于可以直观的展示了,由于前端技术不行,借用了第三方展示平台datav,datav支持两种数据读取模式,第一种,直接读取数据库,把你计算好的数据,通过sql查出,需要配置数据源,读取数据之后按照给定的格式,进行格式化就可以展现出来

@jiaoready @jiaoready 第二种采用接口的形式,可以直接采用api,在数据区域配置为api,填写接口地址,需要的参数即可,这里就不多说了。

Ⅷ SQL数据批量处理脚本

update table set a = replace(a,'\\原服务器名\原共享名','\\新服务器名\新共享名')

Ⅸ etl的概念,etl和elt数据处理上的区别

对于做过 BI 开发的朋友,ETL 并不陌生,只要涉及到数据源的数据抽取、数据的计算和处理过程的开发,都是 ETL,ETL 就这三个阶段,Extraction 抽取,Transformation 转换,Loading 加载。

从不同数据源抽取数据 EXTRACTION ,按照一定的数据处理规则对数据进行加工和格式转换 TRASFORMATION,最后处理完成的输出到目标数据表中也有可能是文件等等,这个就是 LOADING。

再通俗一点讲,ETL 的过程就跟大家日常做菜一样,需要到菜市场的各个摊位买好菜,把菜买回来要摘一下,洗一洗,切一切最后下锅把菜炒好端到饭桌上。菜市场的各个摊位就是数据源,做好的菜就是最终的输出结果,中间的所有过程像摘菜、洗菜、切菜、做菜就是转换。

在开发的时候,大部分时候会通过 ETL 工具去实现,比如常用的像 KETTLE、PENTAHO、IBM DATASTAGE、INFORNAICA、微软 SQL SERVER 里面的 SSIS 等等,在结合基本的 SQL 来实现整个 ETL 过程。

也有的是自己通过程序开发,然后控制一些数据处理脚本跑批,基本上就是程序加 SQL 实现。

哪种方式更好,也是需要看使用场景和开发人员对那种方式使用的更加得心应手。我看大部分软件程序开发人员出身的,碰到数据类项目会比较喜欢用程序控制跑批,这是程序思维的自然延续。纯 BI 开发人员大部分自然就选择成熟的 ETL 工具来开发,当然也有一上来就写程序脚本的,这类 BI 开发人员的师傅基本上是程序人员转过来的。

用程序的好处就是适配性强,可扩展性强,可以集成或拆解到到任何的程序处理过程中,有的时候使用程序开发效率更高。难就难在对维护人员有一定的技术要求,经验转移和可复制性不够。

用 ETL 工具的好处,第一是整个 ETL 的开发过程可视化了,特别是在数据处理流程的分层设计中可以很清晰的管理。第二是链接到不同数据源的时候,各种数据源、数据库的链接协议已经内置了,直接配置就可以,不需要再去写程序去实现。第三是各种转换控件基本上拖拉拽就可以使用,起到简化的代替一部分 SQL 的开发,不需要写代码去实现。第四是可以非常灵活的设计各种 ETL 调度规则,高度配置化,这个也不需要写代码实现。

所以在大多数通用的项目中,在项目上使用 ETL 标准组件开发会比较多一些。

ETL 从逻辑上一般可以分为两层,控制流和数据流,这也是很多 ETL 工具设计的理念,不同的 ETL 工具可能叫法不同。

控制流就是控制每一个数据流与数据流处理的先后流程,一个控制流可以包含多个数据流。比如在数据仓库开发过程中,第一层的处理是ODS层或者Staging 层的开发,第二层是 DIMENSION维度层的开发,后面几层就是DW 事实层、DM数据集市层的开发。通过ETL的调度管理就可以让这几层串联起来形成一个完整的数据处理流程。

数据流就是具体的从源数据到目标数据表的数据转换过程,所以也有 ETL 工具把数据流叫做转换。在数据流的开发设计过程中主要就是三个环节,目标数据表的链接,这两个直接通过 ETL 控件配置就可以了。中间转换的环节,这个时候就可能有很多的选择了,调 SQL 语句、存储过程,或者还是使用 ETL 控件来实现。

有的项目上习惯使用 ETL 控件来实现数据流中的转换,也有的项目要求不使用标准的转换组件使用存储过程来调用。也有的是因为数据仓库本身这个数据库不支持存储过程就只能通过标准的SQL来实现。

我们通常讲的BI数据架构师其实指的就是ETL的架构设计,这是整个BI项目中非常核心的一层技术实现,数据处理、数据清洗和建模都是在ETL中去实现。一个好的ETL架构设计可以同时支撑上百个包就是控制流,每一个控制流下可能又有上百个数据流的处理过程。之前写过一篇技术文章,大家可以搜索下关键字 BIWORK ETL 应该在网上还能找到到这篇文章。这种框架设计不仅仅是ETL框架架构上的设计,还有很深的ETL项目管理和规范性控制器思想,包括后期的运维,基于BI的BI分析,ETL的性能调优都会在这些框架中得到体现。因为大的BI项目可能同时需要几十人来开发ETL,框架的顶层设计就很重要。

Ⅹ 数据库脚本作用

数据库脚本的作用:可以提高数据访问的效率,并进行相关的数据处理。
定义:
用于创建数据库对象的语句的集合。Transact-SQL脚本保存为文件,文件名通常以
.sql结尾。
具体使用环境包含:MY-SQL,SQLServer,oracle。
数据库脚本包含:存储过程[Procere],事务[transaction]等,索引[Index],触发器[Trigger],函数[Function]等。
注意事项:
如果其他用户可以修改设计时验证数据库的实例,则可能添加或更改将在生成脚本中结束的对象。生成输出将生成这些对象(例如,DDL
触发器),而且这些对象将在数据库部署者的上下文中运行。这些对象不一定出现在“解决方案资源管理器”或“架构视图”中。当数据库项目与所部署的数据库进行比较时,“架构比较”功能将检测不到任何区别,因为设计时验证数据库中也包含这些对象。
要尽可能降低数据库的风险,应注意以下两点:
1、不要与其他用户共享设计时验证数据库的实例。
2、在部署生成数据库脚本之前对它们进行检查。

热点内容
160android 发布:2025-05-10 03:03:30 浏览:178
pythonstorage 发布:2025-05-10 02:58:38 浏览:499
如何查看电脑配置显卡参数 发布:2025-05-10 02:37:00 浏览:106
证券交易密码在哪里修改 发布:2025-05-10 02:31:56 浏览:839
javafor是什么意思 发布:2025-05-10 02:23:09 浏览:842
学生云服务器可以搭建网站吗 发布:2025-05-10 02:10:36 浏览:441
共享的文件怎么访问权限 发布:2025-05-10 02:02:49 浏览:166
如何选生信分析服务器 发布:2025-05-10 01:53:11 浏览:409
移动ip案例云dns服务器 发布:2025-05-10 01:51:46 浏览:166
侠盗飞车解压密码是多少 发布:2025-05-10 01:45:04 浏览:713