当前位置:首页 » 云服务器 » 分布式图片服务器搭建

分布式图片服务器搭建

发布时间: 2023-02-22 20:25:51

① hadoop课程设计

1. 大数据专业课程有哪些

首先我们要了解java语言和linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
记住学到这里可以作为你学大数据的一个节点。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

2. hadoop视频教程下载

其实这个课程讲的“微博”项目是《HBase in action》中的例子。其中的源代码都放在 github 上面。

3. 请问哪位有《深入浅出Hadoop实战开发》的视频教程

Hadoop是什么,为什么要学习Hadoop?

Hadoop是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有着高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以流的形式访问(streaming access)文件系统中的数据。
Hadoop 是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。Hadoop 还是可伸缩的,能够处理 PB 级数据。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop带有用Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。本课程的讲解是采用linux平台进行模拟讲解,完全基于真实场景进行模拟现实

亮点一:技术点全面,体系完善
本课程在兼顾Hadoop课程知识体系完善的前提下,把实际开发中应用最多、最深、最实用的技术抽取出来,通过本课程,你将达到技术的新高点,进入云计算的美好世界。在技术方面你将彻底掌握基本的Hadoop集群;Hadoop HDFS原理;Hadoop HDFS基本的命令;Namenode的工作机制;HDFS基本配置管理;MapRece原理; HBase的系统架构;HBase的表结构;HBase如何使用MapRece;MapRece高级编程;split的实现详解;Hive入门;Hive结合MapRece;Hadoop的集群安装等众多知识点。

亮点二:基础+实战=应用,兼顾学与练
课程每阶段都安排了实战应用项目,以此方便学生能更快的掌握知识点的应用,如在第一阶段,课程结合HDFS应用,讲解了图片服务器的设计、以及如何利用Java API去对HDFS操作、在第二阶段;课程结合HBase实现微博项目的各种功能,使学员可以活学活用。在第三阶段:HBase和MapRece结合时下了实现话单查询与统计系统,在第四阶段,Hive实战部分,通过实战数据统计系统,使学员在最短的时间内掌握Hive的高级应用。

亮点三:讲师丰富的电信集团云平台运作经验
讲师robby拥有丰富的电信集团工作经验,目前负责云平台的各方面工作,并拥有多年的企业内部培训经验。讲课内容完全贴近企业需求,绝不纸上谈兵。

更多技术亮点参考课程大纲:(本大纲以章节形式命名要为防止某些章节1章节内容超过1课时)

第1章节:
> Hadoop背景
> HDFS设计目标
> HDFS不适合的场景
> HDFS架构详尽分析
> MapRece的基本原理

第2章节
> Hadoop的版本介绍
> 安装单机版Hadoop
> 安装Hadoop集群

第3章节
> HDFS命令行基本操作
> Namenode的工作机制
> HDFS基本配置管理

第4章节
> HDFS应用实战:图片服务器(1) - 系统设计
> 应用的环境搭建 php + bootstrap + java
> 使用Hadoop Java API实现向HDFS写入文件

第5章节
> HDFS应用实战:图片服务器(2)
> 使用Hadoop Java API实现读取HDFS中的文件
> 使用Hadoop Java API实现获取HDFS目录列表
> 使用Hadoop Java API实现删除HDFS中的文件

第6章节
> MapRece的基本原理
> MapRece的运行过程
> 搭建MapRece的java开发环境
> 使用MapRece的java接口实现WordCount

第7章节
> WordCount运算过程分析
> MapRece的biner
> 使用MapRece实现数据去重
> 使用MapRece实现数据排序
> 使用MapRece实现数据平均成绩计算

第8章节
> HBase详细介绍
> HBase的系统架构
> HBase的表结构,RowKey,列族和时间戳
> HBase中的Master,Region以及Region Server

第9章节
> 使用HBase实现微博应用(1)
> 用户注册,登陆和注销的设计
> 搭建环境 struts2 + jsp + bootstrap + jquery + HBase Java API
> HBase和用户相关的表结构设计
> 用户注册的实现

第10章节
> 使用HBase实现微博应用(2)
> 使用session实现用户登录和注销
> “关注"功能的设计
> “关注"功能的表结构设计
> “关注"功能的实现

第11章节
> 使用HBase实现微博应用(3)
> “发微博"功能的设计
> “发微博"功能的表结构设计
> “发微博"功能的实现
> 展现整个应用的运行

第12章节
> HBase与MapRece介绍
> HBase如何使用MapRece

第13章节
> HBase应用实战:话单查询与统计(1)
> 应用的整体设计
> 开发环境搭建
> 表结构设计

第14章节
> HBase应用实战:话单查询与统计(2)
> 话单入库单设计与实现
> 话单查询的设计与实现

第15章节
> HBase应用实战:话单查询与统计(3)
> 统计功能设计
> 统计功能实现

第16章节
> 深入MapRece(1)
> split的实现详解
> 自定义输入的实现
> 实例讲解

第17章节
> 深入MapRece(2)
> Rece的partition
> 实例讲解

第18章节
> Hive入门
> 安装Hive
> 使用Hive向HDFS存入结构化数据
> Hive的基本使用

第19章节
> 使用MySql作为Hive的元数据库
> Hive结合MapRece

第20章节
> Hive应用实战:数据统计(1)
> 应用设计,表结构设计

第21章节
> Hive应用实战:数据统计(2)
> 数据录入与统计的实现

4. 哪个课程题库有hadoop的题

这是在一个平衡Hadoop集群中,为数据节点/任务追踪器提供的规格:
在一个磁盘阵列中要有12到24个1~4TB硬盘
2个频率为2~2.5GHz的四核、六核或八核CPU
64~512GB的内存
有保障的千兆或万兆以太网(存储密度越大,需要的网络吞吐量越高)
名字节点角色负责协调集群上的数据存储,作业追踪器协调数据处理(备用的名字节点不应与集群中的名字节点共存,并且运行在与之相同的硬件环境上。)。Cloudera客户购买在RAID1或10配置上有足够功率和级磁盘数的商用机器来运行名字节点和作业追踪器。

NameNode也会直接需要与群集中的数据块的数量成比列的RAM。一个好的但不精确的规则是对于存储在分布式文件系统里面的每一个1百万的数据块,分配1GB的NameNode内存。于在一个群集里面的100个DataNodes而言,NameNode上的64GB的RAM提供了足够的空间来保证群集的增长。我们也把HA同时配置在NameNode和JobTracker上,
这里就是为NameNode/JobTracker/Standby NameNode节点群的技术细节。驱动器的数量或多或少,将取决于冗余数量的需要。
4–6 1TB 硬盘驱动器 采用 一个 JBOD 配置 (1个用于OS, 2个用于文件系统映像[RAID 1], 1个用于Apache ZooKeeper, 1个用于Journal节点)
2 4-/16-/8-核心 CPUs, 至少运行于 2-2.5GHz
64-128GB 随机存储器
Bonded Gigabit 以太网卡 or 10Gigabit 以太网卡
记住, 在思想上,Hadoop 体系设计为用于一种并行环境。

5. 大数据的课程都有哪些

大数据本身属于交叉学科,涵盖计算机、统计学、数学三个学科的专业知识。所以大数据的课程内容,基本上也是围绕着三个学科展开的。
数理统计方面:数学分析、统计学习、高等代数、离散数学、概率与统计等课程是基本配置。
计算机专业课程:数据结构、数据科学、程序设计、算法分析与设计、数据计算智能、数据库系统、计算机系统基础、并行体系结构与编程、非结构化大数据分析等,也是必备课程。
而想要真正找到工作的话,大数据主流技术框架,也要去补充起来,这才是找工作当中能够获得竞争力的加分项。

6. hadoop 集群教程

要教程?不明白你这个啥意思

7. 有哪些好的hadoop学习资料

1."Hadoop.Operations.pdf.zip"//vdisk.weibo/s/vDOQs6xMAQH62
2."Hadoop权威指南(中文版)(带书签).pdf"Hadoop权威指南(中文版)(带书签).pdf
3."[Hadoop权威指南(第2版)].pdf"[Hadoop权威指南(第2版)].pdf
4."hadoop权威指南第3版2012.rar"hadoop权威指南第3版2012.rar

5.《Hadoop技术内幕:深入解析HadoopCommon和HDFS.pdf"《Hadoop技术内幕:深入解析Hadoop Common和HDFS.pdf
6."Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf"Hadoop技术内幕:深入解析MapRece架构设计与实现原理.pdf

7."Hadoop实战.pdf"Hadoop实战.pdf
8."Hadoop实战-陆嘉恒(高清完整版).pdf"Hadoop实战-陆嘉恒(高清完整版).pdf
9."Hadoop实战(第2版).pdf"Hadoop实战(第2版).pdf
10."HadoopinAction.pdf"Hadoop in Action.pdf

11"Hadoop in practice.pdf"Hadoop in practice.pdf
12"HadoopThe.Definitive.Guide,3Ed.pdf"Hadoop The.Definitive.Guide,3Ed.pdf
13."O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf"O'Reilly.Hadoop.The.Definitive.Guide.3rd.Edition.May.2012.pdf

14."hadoop入门实战手册.pdf"hadoop入门实战手册.pdf
15."Hadoop入门手册.chm"Hadoop入门手册.chm

16."windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc"windows下配置cygwin、hadoop等并运行maprece及maprece程序讲解.doc
17"在Windows上安装Hadoop教程.pdf"在Windows上安装Hadoop教程.pdf

18."Hadoop源代码分析(完整版).pdf"Hadoop源代码分析(完整版).pdf
19."hadoop-api.CHM"hadoop-api.CHM

20."HBase-Hadoop@小米.pptx" HBase-Hadoop@小米.pptx
21."但彬-Hadoop平台的大数据整合.pdf"但彬-Hadoop平台的大数据整合.pdf

22."QCon2013-罗李-Hadoop在阿里.pdf"QCon2013-罗李
23."网络hadoop计算技术发展.pdf"网络hadoop计算技术发展.pdf
24."QCon-吴威-基于Hadoop的海量数据平台.pdf"QCon-吴威-基于Hadoop的海量数据平台.pdf
25."8步安装好你的hadoop.docx"8步安装好你的hadoop.docx
26."hadoop运维经验分享.ppsx"hadoop运维经验分享.ppsx

27."PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar"PPT集萃:20位Hadoop专家分享大数据技术工具与最佳实践.rar
28."Hadoop2.0基本架构和发展趋势.pdf"Hadoop 2.0基本架构和发展趋势.pdf
29."Hadoop与大数据技术大会PPT资料.rar"Hadoop与大数据技术大会PPT资料.rar
30."Hadoop2011云计算大会.rar"Hadoop2011云计算大会.rar

② 二问:把网站图片放到其他服务器,做分布式部署,对SEO有影响吗

一般不这样做,你可以都使用aaa.com,图片用img.aaa.com,js一般不会太多,不需要单独域名,都放在aaa.com下,不会有跨域名的问题。
对SEO,没什么影响。

③ 分布式电商项目最少用多少台服务器

做电商网站的服务器需要企业级高性能的机型。商城网站因为属于在线交易类型的性质,所以在线人数较多,安全性、稳定性、速度都有要求的。

而且分布式要求使用负载均衡、CDN加速、对象存储等多种不同技术合并使用。

这类网站一般图片都比较多且大尺寸。服务器建议用 2核4G内存了。

带宽也用3M以上,1M带宽这样的访问会打开慢的。

看需求了,要看网站的规模,网站的日均流量等等来选择的,如果是前期的小站,或者流量不会集中很高的企业站,就不需要很高配置的服务器了,一般1核2g 1m的就够用

首先得弄明白自己用服务器用来干什么放网站、应用运行或者是用来搭建放游戏等,都有一个自己的用途,弄明白用服务器是用来干嘛的,就可以很明确的知道自己需要的是哪种类型的服务器

尝试根据下面四个问题来评估自己的需求:

1. 服务器运行什么应用?

2. 需要支持多少用户访问?

3. 需要多大空间来存储数据?

4. 我的业务有多重要?

从你的需求来看,国内选择那几个比较大的商家合适,至于名字和具体配置选择也是一门学问,老魏会帮助你提供参考意见。

电商
网站的服务器需要企业级高性能的机型。商城网站因为属于在线交易类型的性质,所以在线人数较多,安全性、稳定性、速度都有要求的。

这类网站一般图片都比较多且大尺寸。服务器建议用 2核4G内存了。

带宽也用3M以上,1M带宽这样的访问会打开慢的。

看需求了,要看网站的规模,网站的日均流量等等来选择的,如果是前期的小站,或者流量不会集中很高的企业站,就不需要很高配置的服务器了,一般1核2g 1m的就够用

首先得弄明白自己用服务器用来干什么放网站、应用运行或者是用来搭建放游戏等,都有一个自己的用途,弄明白用服务器是用来干嘛的,就可以很明确的知道自己需要的是哪种类型的服务器

尝试根据下面四个问题来评估自己的需求:

1. 服务器运行什么应用?

2. 需要支持多少用户访问?

3. 需要多大空间来存储数据?

4. 我的业务有多重要?

从你的需求来看,国内选择那几个比较大的商家合适,至于名字和具体配置选择也是一门学问,老魏会帮助你提供参考意见。

④ 分布式怎么做

保证要参加渲染的电脑都装有相同版本的3dsmax软件和vray渲染器,并保证每台电脑软件安装盘符和目录都一样。(如果vray版本不一样,不同电脑渲染的图片效果有差别,动画会严重闪烁)
保证所有电脑在局域网内网络连接通畅,最好都设置成固定IP.
将要分布式渲染的3DSMAX场景所涉及所有外部文件的读取路径都设置为已共享的网络路径,(包括贴图、代理文件、光域网文件、光子图文件、点缓存文件、rpc文件,渲染文件输出路径等)。
把要参加分布式渲染的其他电脑的分布渲染服务器打开:进入该电脑的3DSMAX安装根目录,点击运行"vrayspawner.exe"文件,即可打开该电脑的分布渲染服务器程序,让该电脑能参与分布式渲染。
打开主控电脑(即操作编辑3DSMAX场景的那台电脑)渲染设置面板,将默认渲染器设置为vray渲染器。
进入渲染设置面板的"setting"模块,点开"system"卷积菜单。
在"system"卷积菜单里找到"Distrbuted rendering" ,并勾选它。
左键点击"Distrbuted rendering"后方的"Setting..."按钮,进入分布式渲染服务器管理菜单。
在分布式渲染服务器管理菜单里,点击"Add server"按钮,会弹出Add render server菜单,在该菜单的"Server:"输入框,输入其他已运行vrayspawner.exe文件的电脑的IP地址或电脑名,再点"OK"键,就可将局域网电脑连入主控电脑的分布式渲染管理中,一同渲染同一场景。
依次添加局域网内其他所以渲染电脑完毕后,点分布式渲染服务器管理菜单的"OK"键。就完成了分布式渲染的设置工作。
切换到渲染设置窗口的公用模块,点渲染按钮就可开始分布式渲染。你就会看到渲染窗口里,所有局域网里参与分布式渲染的所有电脑的CPU的每个线程,都在同时渲染同一帧画面。(满屏的cpu名称,飞速渲染,令人激动)
MAYA也支持vray分布式渲染,方法大同小异。

⑤ 入门、快速搭建Docker分布式项目环境

1.什么是Docker

借用下网上传统虚拟机与Docker的对比图片。

传统虚拟化应用程序中,不仅包含应用程序和必要的二进制文件库,还包含一个完整的操作系统。

而Docker容器仅包含应用程序和相关依赖项,在主机的操作系统用户空间中作为一个独立进程运行,与其他容器共享内核,从而实现了虚拟机的资源隔离和分配,具有更高的可移植性和效率提高。

2.为什么使用Docker

1.更快速的交付和部署

开发者可以使用一个标准的镜像来构建一套开发容器,开发完成之后,运维人员可以直接 使用这个容器来部署代码。

2.高效部署和扩容

Docker 容器几乎可以在任意的平台上运行,包括物理机、虚拟机、公有云、私有云、个人电脑、服务器等。

3.更高的资源利用率

Docker 对系统资源的利用率很高,一台主机上可以同时运行数千个 Docker 容器。容器除了运行其中应用外,基本不消耗额外的系统资源,使得应用的性能很高,同时系统的开销尽量小。传统虚拟机方式运行 10 个不同的应用就要起 10 个虚拟机,而Docker 只需要启动 10 个隔离的应用即可。

4.更简单的管理

使用 Docker,只需要小小的修改,就可以替代以往大量的更新工作。所有的修改都以增量的方式被分发和更新,从而实现自动化并且高效的管理。

3.Docker的工作原理和概念

自己制作镜像然后上传仓库或使用仓库已有的镜像文件拉取到容器中部署。

为了方便Docker的说明,本次例子使用虚拟机安装CentOS 7来演示。CentOS 7的安装请等查看下篇文章或自行网络。

1.安装之前的准备工作

按照顺序,执行如下操作

1、安装必要的一些系统工具

2、添加软件源信息

3、更新并安装Docker-CE

安装准备工作

2.开启Docker服务

运行docker version 如果出现以下情况,说明当前用户没有 root相关操作权限

无root权限

解决思路

先查看有多少镜像

运行docker run hello-world 测试命令,如果出现下方红框内消息,证明安装成功

3.查看docker基本信息和版本

1.构建Nginx基础镜像

查询nginx镜像

镜像拉取

查看对外的访问路径

怎么才能访问刚才启用的nginx

nginx页面内容

我们可以进入容器,看下这个容器是什么样子

查看nginx在哪个位置

我们发现尽管启动了nginx,但是在外部还是不能访问,这是因为docker具有隔离机制,要不然怎么叫做容器化部署呢

Docker内nginx端口

对Nginx进行外网端口映射;

2.构建Tomcat基础镜像

打开容器后,默认安装目录在 /usr/local/

3.创建自己的专属镜像

用Dockerfile来制作镜像

创建一个新的镜像,并起名字为nywlw

查看新的镜像

运行自己创建的容器

4.删除容器实例

5.删除镜像

每天发布更多新鲜有含量的技术文章、总有一款适合你。

⑥ 基于mogileFS搭建分布式文件系统--海量小文件的存储利器

1.简介

分布式文件系统(Distributed File System)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。另外,对等特性允许一些系统扮演客户机和服务器的双重角色。例如,用户可以“发表”一个允许其他客户机访问的目录,一旦被访问,这个目录对客户机来说就像使用本地驱动器一样。

当下我们处在一个互联网飞速发展的信息 社会 ,在海量并发连接的驱动下每天所产生的数据量必然以几何方式增长,随着信息连接方式日益多样化,数据存储的结构也随着发生了变化。在这样的压力下使得人们不得不重新审视大量数据的存储所带来的挑战,例如:数据采集、数据存储、数据搜索、数据共享、数据传输、数据分析、数据可视化等一系列问题。

传统存储在面对海量数据存储表现出的力不从心已经是不争的事实,例如:纵向扩展受阵列空间限制、横向扩展受交换设备限制、节点受文件系统限制。

然而分布式存储的出现在一定程度上有效的缓解了这一问题,之所以称之为缓解是因为分布式存储在面对海量数据存储时也并非十全十美毫无压力,依然存在的难点与挑战例如:节点间通信、数据存储、数据空间平衡、容错、文件系统支持等一系列问题仍处在不断摸索和完善中。

2.分布式文件系统的一些解决方案

Google Filesystem适合存储海量大个文件,元数据存储与内存中

HDFS(Hadoop Filesystem)GFS的山寨版,适合存储大量大个文件

TFS(Taobao Filesystem)淘宝的文件系统,在名称节点上将元数据存储与关系数据库中,文件数量不在受限于名称节点的内容空间,可以存储海量小文件LustreOracle开发的企业级分布式系统,较重量级MooseFS基于FUSE的格式,可以进行挂载使用MogileFS

擅长存储海量的小数据,元数据存储与关系型数据库中

1.简介

MogileFS是一个开源的分布式文件系统,用于组建分布式文件集群,由LiveJournal旗下DangaInteractive公司开发,Danga团队开发了包括 Memcached、MogileFS、Perlbal等不错的开源项目:(注:Perlbal是一个强大的Perl写的反向代理服务器)。MogileFS是一个开源的分布式文件系统。

目前使用 MogileFS 的公司非常多,比如国外的一些公司,日本前几名的公司基本都在使用这个.

国内所知道的使用 MogileFS 的公司有图片托管网站 yupoo又拍,digg, 薯仔, 豆瓣,1 号店, 大众点评,搜狗,安居客等等网站.基本很多网站容量,图片都超过 30T 以上。

2.MogileFS特性

1) 应用层提供服务,不需要使用核心组件

2)无单点失败,主要有三个组件组成,分为tracker(跟踪节点)、mogstore(存储节点)、database(数据库节点)

3)自动复制文件,复制文件的最小单位不是文件,而是class

4)传输中立,无特殊协议,可以通过NFS或HTTP实现通信

5)简单的命名空间:没有目录,直接存在与存储空间上,通过域来实现

6)不用共享任何数据

3.MogileFS的组成

1)Tracker--跟踪器,调度器

MogileFS的核心,是一个调度器,mogilefsd进程就是trackers进程程序,trackers的主要职责有:删除数据、复制数据、监控、查询等等.这个是基于事件的( event-based ) 父进程/消息总线来管理所有来之于客户端应用的交互(requesting operations to be performed), 包括将请求负载平衡到多个"query workers"中,然后让 mogilefs的子进程去处理.

mogadm,mogtool的所有操作都要跟trackers打交道,Client的一些操作也需要定义好trackers,因此最好同时运行多个trackers来做负载均衡.trackers也可以只运行在一台机器上,使用负载均衡时可以使用搞一些简单的负载均衡解决方案,如haproxy,lvs,nginx等,

tarcker的配置文件为/etc/mogilefs/mogilefsd.conf,监听在TCP的7001端口

2)Database--数据库部分

主要用来存储mogilefs的元数据,所有的元数据都存储在数据库中,因此,这个数据相当重要,如果数据库挂掉,所有的数据都不能用于访问,因此,建议应该对数据库做高可用

3)mogstored--存储节点

数据存储的位置,通常是一个HTTP(webDAV)服务器,用来做数据的创建、删除、获取,任何 WebDAV 服务器都可以, 不过推荐使用 mogstored . mogilefsd可以配置到两个机器上使用不同端口… mogstored 来进行所有的 DAV 操作和流量,IO监测, 并且你自己选择的HTTP服务器(默认为 perlbal)用来做 GET 操作给客户端提供文件.

典型的应用是一个挂载点有一个大容量的SATA磁盘. 只要配置完配置文件后mogstored程序的启动将会使本机成为一个存储节点.当然还需要mogadm这个工具增加这台机器到Cluster中.

配置文件为/etc/mogilefs/mogstored.conf,监听在TCP的7500端口

4.基本工作流程

应用程序请求打开一个文件 (通过RPC 通知到 tracker, 找到一个可用的机器). 做一个 “create_open” 请求.

tracker 做一些负载均衡(load balancing)处理,决定应该去哪儿,然后给应用程序一些可能用的位置。

应用程序写到其中的一个位置去 (如果写失败,他会重新尝试并写到另外一个位置去).

应用程序 (client) 通过”create_close” 告诉tracker文件写到哪里去了.

tracker 将该名称和域命的名空间关联 (通过数据库来做的)

tracker, 在后台, 开始复制文件,知道他满足该文件类别设定的复制规则

然后,应用程序通过 “get_paths” 请求 domain+key (key == “filename”) 文件, tracker基于每一位置的I/O繁忙情况回复(在内部经过 database/memcache/etc 等的一些抉择处理), 该文件可用的完整 URLs地址列表.

应用程序然后按顺序尝试这些URL地址. (tracker’持续监测主机和设备的状态,因此不会返回死连接,默认情况下他对返回列表中的第一个元素做双重检查,除非你不要他这么做..)

1.拓扑图

说明:1.用户通过URL访问前端的nginx

2.nginx根据特定的挑选算法,挑选出后端一台tracker来响应nginx请求

3.tracker通过查找database数据库,获取到要访问的URL的值,并返回给nginx

4.nginx通过返回的值及某种挑选算法挑选一台mogstored发起请求

5.mogstored将结果返回给nginx

6.nginx构建响应报文返回给客户端

2.ip规划

角色运行软件ip地址反向代理nginx192.168.1.201存储节点与调度节点1

mogilefs192.168.1.202存储节点与调度节点2

mogilefs192.168.1.203数据库节点

MariaDB192.168.1.204

3.数据库的安装操作并为授权

关于数据库的编译安装,请参照本人相关博文http://wangfeng7399.blog.51cto.com/3518031/1393146,本处将不再累赘,本处使用的为yum源的安装方式安装mysql

4.安装mogilefs. 安装mogilefs,可以使用yum安装,也可以使用编译安装,本处通过yum安装

5.初始化数据库

可以看到在数据库中创建了一些表

6.修改配置文件,启动服务

7.配置mogilefs

添加存储主机

添加存储设备

添加域

添加class

8.配置192.168.1.203的mogilefs 。切记不要初始化数据库,配置应该与192.168.1.202一样

9.尝试上传数据,获取数据,客户端读取数据

上传数据,在任何一个节点上传都可以

获取数据

客户端查看数据

我们可以通过任何一个节点查看到数据

要想nginx能够实现对后端trucker的反向代理,必须结合第三方模块来实现

1.编译安装nginx

2.准备启动脚本

3.nginx与mofilefs互联

查看效果

5.配置后端truckers的集群

查看效果

大功告成了,后续思路,前段的nginx和数据库都存在单点故障,可以实现高可用集群

⑦ 把网站图片放到其他服务器,做分布式部署,对SEO有影响吗

你好现在的好多大型网站,为了用户体验都是这么部署的,只要是你放页面的服务器做好优化就可以了,当然如果域名不一样的话你发布的文章带有图片他会收录另一个域名地址的,相对流量会减少,再有就是你的网站访问量很大也不必在乎这点流量吧,做好静态优化即可
不明白请留言

热点内容
内置存储卡可以拆吗 发布:2025-05-18 04:16:35 浏览:336
编译原理课时设置 发布:2025-05-18 04:13:28 浏览:378
linux中进入ip地址服务器 发布:2025-05-18 04:11:21 浏览:612
java用什么软件写 发布:2025-05-18 03:56:19 浏览:32
linux配置vim编译c 发布:2025-05-18 03:55:07 浏览:107
砸百鬼脚本 发布:2025-05-18 03:53:34 浏览:944
安卓手机如何拍视频和苹果一样 发布:2025-05-18 03:40:47 浏览:741
为什么安卓手机连不上苹果7热点 发布:2025-05-18 03:40:13 浏览:803
网卡访问 发布:2025-05-18 03:35:04 浏览:511
接收和发送服务器地址 发布:2025-05-18 03:33:48 浏览:372