怎么用云服务器搭建hadoop
Ⅰ 如何部署hadoop分布式文件系统
一、实战环境
系统版本:CentOS 5.8x86_64
java版本:JDK-1.7.0_25
Hadoop版本:hadoop-2.2.0
192.168.149.128namenode (充当namenode、secondary namenode和ResourceManager角色)
192.168.149.129datanode1 (充当datanode、nodemanager角色)
192.168.149.130datanode2 (充当datanode、nodemanager角色)
二、系统准备
1、Hadoop可以从Apache官方网站直接下载最新版本Hadoop2.2。官方目前是提供了linux32位系统可执行文件,所以如果需要在64位系统上部署则需要单独下载src 源码自行编译。(如果是真实线上环境,请下载64位hadoop版本,这样可以避免很多问题,这里我实验采用的是32位版本)
1234 Hadoop
Java
2、我们这里采用三台CnetOS服务器来搭建Hadoop集群,分别的角色如上已经注明。
第一步:我们需要在三台服务器的/etc/hosts里面设置对应的主机名如下(真实环境可以使用内网DNS解析)
[root@node1 hadoop]# cat /etc/hosts
# Do not remove the following line, or various programs
# that require network functionality will fail.
127.0.0.1localhost.localdomain localhost
192.168.149.128node1
192.168.149.129node2
192.168.149.130node3
(注* 我们需要在namenode、datanode三台服务器上都配置hosts解析)
第二步:从namenode上无密码登陆各台datanode服务器,需要做如下配置:
在namenode 128上执行ssh-keygen,一路Enter回车即可。
然后把公钥/root/.ssh/id_rsa.pub拷贝到datanode服务器即可,拷贝方法如下:
ssh--id -i .ssh/id_rsa.pub [email protected]
ssh--id -i .ssh/id_rsa.pub [email protected]
三、Java安装配置
tar -xvzf jdk-7u25-linux-x64.tar.gz &&mkdir -p /usr/java/ ; mv /jdk1.7.0_25 /usr/java/ 即可。
安装完毕并配置java环境变量,在/etc/profile末尾添加如下代码:
export JAVA_HOME=/usr/java/jdk1.7.0_25/
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=$JAVE_HOME/lib/dt.jar:$JAVE_HOME/lib/tools.jar:./
保存退出即可,然后执行source /etc/profile 生效。在命令行执行java -version 如下代表JAVA安装成功。
[root@node1 ~]# java -version
java version "1.7.0_25"
Java(TM) SE Runtime Environment (build 1.7.0_25-b15)
Java HotSpot(TM) 64-Bit Server VM (build 23.25-b01, mixed mode)
(注* 我们需要在namenode、datanode三台服务器上都安装Java JDK版本)
四、Hadoop版本安装
官方下载的hadoop2.2.0版本,不用编译直接解压安装就可以使用了,如下:
第一步解压:
tar -xzvf hadoop-2.2.0.tar.gz &&mv hadoop-2.2.0/data/hadoop/
(注* 先在namenode服务器上都安装hadoop版本即可,datanode先不用安装,待会修改完配置后统一安装datanode)
第二步配置变量:
在/etc/profile末尾继续添加如下代码,并执行source /etc/profile生效。
export HADOOP_HOME=/data/hadoop/
export PATH=$PATH:$HADOOP_HOME/bin/
export JAVA_LIBRARY_PATH=/data/hadoop/lib/native/
(注* 我们需要在namenode、datanode三台服务器上都配置Hadoop相关变量)
五、配置Hadoop
在namenode上配置,我们需要修改如下几个地方:
1、修改vi /data/hadoop/etc/hadoop/core-site.xml 内容为如下:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" Put site-specific property overrides inthisfile. -->
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://192.168.149.128:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>/tmp/hadoop-${user.name}</value>
<description>A base forother temporary directories.</description>
</property>
</configuration>
2、修改vi /data/hadoop/etc/hadoop/mapred-site.xml内容为如下:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" Put site-specific property overrides inthisfile. -->
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>192.168.149.128:9001</value>
</property>
</configuration>
3、修改vi /data/hadoop/etc/hadoop/hdfs-site.xml内容为如下:
<?xml version="1.0"encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl"href=\'#\'" /name>
<value>/data/hadoop/data_name1,/data/hadoop/data_name2</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>/data/hadoop/data_1,/data/hadoop/data_2</value>
</property>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
</configuration>
4、在/data/hadoop/etc/hadoop/hadoop-env.sh文件末尾追加JAV_HOME变量:
echo "export JAVA_HOME=/usr/java/jdk1.7.0_25/">> /data/hadoop/etc/hadoop/hadoop-env.sh
5、修改 vi /data/hadoop/etc/hadoop/masters文件内容为如下:
192.168.149.128
6、修改vi /data/hadoop/etc/hadoop/slaves文件内容为如下:
192.168.149.129
192.168.149.130
如上配置完毕,以上的配置具体含义在这里就不做过多的解释了,搭建的时候不明白,可以查看一下相关的官方文档。
如上namenode就基本搭建完毕,接下来我们需要部署datanode,部署datanode相对简单,执行如下操作即可。
1 fori in`seq 129130` ; doscp -r /data/hadoop/ [email protected].$i:/data/ ; done
自此整个集群基本搭建完毕,接下来就是启动hadoop集群了。
Ⅱ hadoop集群搭建在阿里云服务器上 云服务器配置要求是多少
如果是集群的话,我考虑需要流畅运行的话,2核4G配置是可以满足的。因为这个集群形式,用于适用于物联网、车联网、监控、安全风控、即时通讯、消息存储等行业场景,所以数据量是比较大的,所以配置太低了跑不动,会卡死的。
因为hadoop是海量数据的处理能力,所以服务器一定不能太小配置了,跑不动了就没实际用途了。最好使用4核8G内存及以上配置。
因为这方面内容较多,这里也写不开那么多内容,所以你可以留言或到我的博客上搜索相关内容,老魏有写过教程,还不止一篇,都挺详细的内容,可以帮助你入门。
Ⅲ 阿里云云服务器linux可以部署hadoop么
通过命令行下载Hadoop ,我下载的版本是1.2.1,版本稳定且方便学习。
[plain] view plain
wget http://mirror.bit.e.cn/apache/hadoop/common/hadoop-1.2.1/hadoop-1.2.1.tar.gz
下载完成后,将hadoop安装包转移至要安装的目录
[plain] view plain
mv hadoop-1.2.1.tar.gz /usr/hadoop/
cd /usr/hadoop/
解压
[plain] view plain
tar -zxvf hadoop-1.2.1.tar.gz
配置Hadoop
配置文件在 hadoop的conf文件夹下
首先修改 hadoop-env.sh 文件
[plain] view plain
vim hadoop-env.sh
找到 # export JAVA_HOME=…..
修改为 export JAVA_HOME=/usr/Java/java8
注意 // 如果忘记java的路径,可以通过命令 echo $JAVA_HOME查看
其次修改 core-site.xml 文件
其实 修改 hadoop-env.sh
[plain] view plain
vim hadoop-env.sh
修改内容为
[html] view plain
<configuration>
<property>
<name>hadoop.tmp.dir</name>
<value>/hadoop</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>/hadoop/name</value>
</property>
<property>
<name>fs.default.name</name>
<value>hdfs://canghong:9000</value>
</property>
</configuration>
然后修改 hdfs-site.xml
[html] view plain
<configuration>
<property>
<name>dfs.data.dir</name>
<value>/hadoop/data</value>
</property>
</configuration>
最后修改 mapred-site.xml
[html] view plain
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>canghong:9001</value>
</property>
</configuration>
配置完成后,告诉系统hadoop的安装目录
[plain] view plain
vim ~/.bashrc
export HADOOP_HOME=/usr/hadoop/hadoop-1.2.1
在 export PATH 中 加入 HADOOP_HOME
export PATH=${JAVA_HOME}/bin:$HADOOP_HOME/bin:$PATH
测试
在命令行输入 hadoop
出现
10015 JobTracker
9670 TaskTracker
9485 DataNode
10380 Jps
9574 SecondaryNameNode
9843 NameNode
则表示成功
格式化文件系统
[plain] view plain
cd /usr/hadoop/hadoop-1.2.1/bin
hadoop namenode -formate
启动
启动 bin下的 start-all.sh
start-all.sh
测试
在命令行 输入 jps 查看hadoop是否正常运行
Ⅳ 使用云计算搭建hadoop集群要用多长时间
这个你可以直接通过租用第三方的运营商的操作帮你解决啊,如果要自建的话,直接网络搜索,云服务大数据解决方案,都可以操作很多方案。 如果找第三方的,华为企业云,是有的。
Ⅳ Linux服务器上搭建hadoop
用不同的账号,当然可以。
我用相同的账号,搭建了两套环境,只要安装hadoop的目录不再同一个目录下就可以。然后就是注意你的/etc/profile尽量不要配置HADOOP_HOME的值,只配置JDK就可以了,不然可能会用冲突,不知道该去找哪个hadoop home 了。
Ⅵ 云计算:请教大家一个问题。就是我的课题要求我搭建一个云服务平台,用hadoop。
首先,不知道这个课题是怎么定出来的,我觉得出这个问题的人只是一味求新,而对新的知识缺乏必要的了解,好了,正题。所有的这些,不是不可以,但是就好像把一个初中生放到国外去生活一样难。先说数据库,hadoop有自己的底层存储hdfs,所有的数据,会存储在hdfs文件系统中,所有,你需要把所有的数据库数据,迁移到hadoop平台,可以用hbase存储。迁移工具可以使用sqoop。好了,再来为是语言,你不是要开发新的系统,而是要迁移系统,我不知道你的需求,可能只需要改动数据读取的方式,就可以实现平台的迁移,例如,以前是jdbc读mysql数据,现在换读hdfs中的数据,所以,需要改系统的代码。好,你不想改系统的代码,对不起,没办法。。。还有就是linux和windows,在windows下开发,不是不可以,不过你需要linux环境模拟工具cygwin。要我说,你接的东西,就是totally shit
Ⅶ 安装hadoop的步骤有哪些
hadoop2.0已经发布了稳定版本了,增加了很多特性,比如HDFSHA、YARN等。最新的hadoop-2.4.1又增加了YARNHA
注意:apache提供的hadoop-2.4.1的安装包是在32位操作系统编译的,因为hadoop依赖一些C++的本地库,
所以如果在64位的操作上安装hadoop-2.4.1就需要重新在64操作系统上重新编译
(建议第一次安装用32位的系统,我将编译好的64位的也上传到群共享里了,如果有兴趣的可以自己编译一下)
前期准备就不详细说了,课堂上都介绍了
1.修改Linux主机名
2.修改IP
3.修改主机名和IP的映射关系
######注意######如果你们公司是租用的服务器或是使用的云主机(如华为用主机、阿里云主机等)
/etc/hosts里面要配置的是内网IP地址和主机名的映射关系
4.关闭防火墙
5.ssh免登陆
6.安装JDK,配置环境变量等
集群规划:
主机名 IP 安装的软件 运行的进程
HA181 192.168.1.181 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA182 192.168.1.182 jdk、hadoop NameNode、DFSZKFailoverController(zkfc)
HA183 192.168.1.183 jdk、hadoop ResourceManager
HA184 192.168.1.184 jdk、hadoop ResourceManager
HA185 192.168.1.185 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA186 192.168.1.186 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
HA187 192.168.1.187 jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain
说明:
1.在hadoop2.0中通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。ActiveNameNode对外提供服务,而StandbyNameNode则不对外提供服务,仅同步activenamenode的状态,以便能够在它失败时快速进行切换。
hadoop2.0官方提供了两种HDFSHA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode
这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当ActiveNameNode挂掉了,会自动切换StandbyNameNode为standby状态
2.hadoop-2.2.0中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-2.4.1解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调
安装步骤:
1.安装配置zooekeeper集群(在HA185上)
1.1解压
tar-zxvfzookeeper-3.4.5.tar.gz-C/app/
1.2修改配置
cd/app/zookeeper-3.4.5/conf/
cpzoo_sample.cfgzoo.cfg
vimzoo.cfg
修改:dataDir=/app/zookeeper-3.4.5/tmp
在最后添加:
server.1=HA185:2888:3888
server.2=HA186:2888:3888
server.3=HA187:2888:3888
保存退出
然后创建一个tmp文件夹
mkdir/app/zookeeper-3.4.5/tmp
再创建一个空文件
touch/app/zookeeper-3.4.5/tmp/myid
最后向该文件写入ID
echo1>/app/zookeeper-3.4.5/tmp/myid
1.3将配置好的zookeeper拷贝到其他节点(首先分别在HA186、HA187根目录下创建一个weekend目录:mkdir/weekend)
scp-r/app/zookeeper-3.4.5/HA186:/app/
scp-r/app/zookeeper-3.4.5/HA187:/app/
注意:修改HA186、HA187对应/weekend/zookeeper-3.4.5/tmp/myid内容
HA186:
echo2>/app/zookeeper-3.4.5/tmp/myid
HA187:
echo3>/app/zookeeper-3.4.5/tmp/myid
2.安装配置hadoop集群(在HA181上操作)
2.1解压
tar-zxvfhadoop-2.4.1.tar.gz-C/weekend/
2.2配置HDFS(hadoop2.0所有的配置文件都在$HADOOP_HOME/etc/hadoop目录下)
#将hadoop添加到环境变量中
vim/etc/profile
exportJAVA_HOME=/app/jdk1.7.0_79
exportHADOOP_HOME=/app/hadoop-2.4.1
exportPATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin
#hadoop2.0的配置文件全部在$HADOOP_HOME/etc/hadoop下
cd/home/hadoop/app/hadoop-2.4.1/etc/hadoop
2.2.1修改hadoop-env.sh
exportJAVA_HOME=/app/jdk1.7.0_79
2.2.2修改core-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1-->
<property>
<name>fs.defaultFS</name>
<value>hdfs://ns1/</value>
</property>
<!--指定hadoop临时目录-->
<property>
<name>hadoop.tmp.dir</name>
<value>/app/hadoop-2.4.1/tmp</value>
</property>
<!--指定zookeeper地址-->
<property>
<name>ha.zookeeper.quorum</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
</configuration>
2.2.3修改hdfs-site.xml
<configuration>
<!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致-->
<property>
<name>dfs.nameservices</name>
<value>ns1</value>
</property>
<!--ns1下面有两个NameNode,分别是nn1,nn2-->
<property>
<name>dfs.ha.namenodes.ns1</name>
<value>nn1,nn2</value>
</property>
<!--nn1的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns1.nn1</name>
<value>HA181:9000</value>
</property>
<!--nn1的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns1.nn1</name>
<value>HA181:50070</value>
</property>
<!--nn2的RPC通信地址-->
<property>
<name>dfs.namenode.rpc-address.ns1.nn2</name>
<value>HA182:9000</value>
</property>
<!--nn2的http通信地址-->
<property>
<name>dfs.namenode.http-address.ns1.nn2</name>
<value>HA182:50070</value>
</property>
<!--指定NameNode的元数据在JournalNode上的存放位置-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal://HA185:8485;HA186:8485;HA187:8485/ns1</value>
</property>
<!--指定JournalNode在本地磁盘存放数据的位置-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/app/hadoop-2.4.1/journaldata</value>
</property>
<!--开启NameNode失败自动切换-->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>true</value>
</property>
<!--配置失败自动切换实现方式-->
<property>
<name>dfs.client.failover.proxy.provider.ns1</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.</value>
</property>
<!--配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>
sshfence
shell(/bin/true)
</value>
</property>
<!--使用sshfence隔离机制时需要ssh免登陆-->
<property>
<name>dfs.ha.fencing.ssh.private-key-files</name>
<value>/home/hadoop/.ssh/id_rsa</value>
</property>
<!--配置sshfence隔离机制超时时间-->
<property>
<name>dfs.ha.fencing.ssh.connect-timeout</name>
<value>30000</value>
</property>
</configuration>
2.2.4修改mapred-site.xml
<configuration>
<!--指定mr框架为yarn方式-->
<property>
<name>maprece.framework.name</name>
<value>yarn</value>
</property>
</configuration>
2.2.5修改yarn-site.xml
<configuration>
<!--开启RM高可用-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<!--指定RM的clusterid-->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<!--指定RM的名字-->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!--分别指定RM的地址-->
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>HA183</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>HA184</value>
</property>
<!--指定zk集群地址-->
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>HA185:2181,HA186:2181,HA187:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>maprece_shuffle</value>
</property>
</configuration>
2.2.6修改slaves(slaves是指定子节点的位置,因为要在HA181上启动HDFS、在HA183启动yarn,
所以HA181上的slaves文件指定的是datanode的位置,HA183上的slaves文件指定的是nodemanager的位置)
HA185
HA186
HA187
2.2.7配置免密码登陆
#首先要配置HA181到HA182、HA183、HA184、HA185、HA186、HA187的免密码登陆
#在HA181上生产一对钥匙
ssh-keygen-trsa
#将公钥拷贝到其他节点,包括自己
ssh--idHA181
ssh--idHA182
ssh--idHA183
ssh--idHA184
ssh--idHA185
ssh--idHA186
ssh--idHA187
#配置HA183到HA184、HA185、HA186、HA187的免密码登陆
#在HA183上生产一对钥匙
ssh-keygen-trsa
#将公钥拷贝到其他节点
ssh--idHA184
ssh--idHA185
ssh--idHA186
ssh--idHA187
#注意:两个namenode之间要配置ssh免密码登陆,别忘了配置HA182到HA181的免登陆
在HA182上生产一对钥匙
ssh-keygen-trsa
ssh--id-iHA181
2.4将配置好的hadoop拷贝到其他节点
scp-r/app/hadoop-2.5.1/HA182:/app/
scp-r/app/hadoop-2.5.1/HA183:/app/
scp-r/app/hadoop-2.5.1/HA184:/app/
scp-r/app/hadoop-2.5.1/HA185:/app/
scp-r/app/hadoop-2.5.1/HA186:/app/
scp-r/app/hadoop-2.5.1/HA187:/app/
###注意:严格按照下面的步骤
2.5启动zookeeper集群(分别在HA185、HA186、tcast07上启动zk)
cd/app/zookeeper-3.4.5/bin/
./zkServer.shstart
#查看状态:一个leader,两个follower
./zkServer.shstatus
2.6启动journalnode(分别在在HA185、HA186、HA187上执行)
cd/app/hadoop-2.5.1
hadoop-daemon.shstartjournalnode
#运行jps命令检验,HA185、HA186、HA187上多了JournalNode进程
2.7格式化ZKFC(在HA181上执行即可) hdfszkfc-formatZK
2.8格式化HDFS
#在HA181上执行命令:
hdfsnamenode-format
#格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/app/hadoop-2.4.1/tmp,然后将/weekend/hadoop-2.4.1/tmp拷贝到HA182的/weekend/hadoop-2.4.1/下。
scp-rtmp/HA182:/app/hadoop-2.5.1/
##也可以这样,建议hdfsnamenode-bootstrapStandby
2.9启动HDFS(在HA181上执行)
sbin/start-dfs.sh
2.10启动YARN(#####注意#####:是在HA183上执行start-yarn.sh,把namenode和resourcemanager分开是因为性能问题,因为他们都要占用大量资源,所以把他们分开了,他们分开了就要分别在不同的机器上启动)
sbin/start-yarn.sh
到此,hadoop-2.4.1配置完毕,可以统计浏览器访问:
http://192.168.1.181:50070
NameNode'HA181:9000'(active)
http://192.168.1.182:50070
NameNode'HA182:9000'(standby)
验证HDFSHA
首先向hdfs上传一个文件
hadoopfs-put/etc/profile/profile
hadoopfs-ls/
然后再kill掉active的NameNode
kill-9<pidofNN>
通过浏览器访问:http://192.168.1.182:50070
NameNode'HA182:9000'(active)
这个时候HA182上的NameNode变成了active
在执行命令:
hadoopfs-ls/
-rw-r--r--3rootsupergroup19262014-02-0615:36/profile
刚才上传的文件依然存在!!!
手动启动那个挂掉的NameNode
sbin/hadoop-daemon.shstartnamenode
通过浏览器访问:http://192.168.1.181:50070
NameNode'HA181:9000'(standby)
验证YARN:
运行一下hadoop提供的demo中的WordCount程序:
hadoopjarshare/hadoop/maprece/hadoop-maprece-examples-2.4.1.jarwordcount/profile/out
OK,大功告成!!!
CID-74d21742-3e4b-4df6-a99c-d52f703b49c0
测试集群工作状态的一些指令:
bin/hdfsdfsadmin-report 查看hdfs的各节点状态信息
bin/hdfshaadmin-getServiceStatenn1 获取一个namenode节点的HA状态
sbin/hadoop-daemon.shstartnamenode单独启动一个namenode进程
./hadoop-daemon.shstartzkfc单独启动一个zkfc进程
Ⅷ vmware和云服务器能一起搭建hadoop集群吗两台虚拟机一台云服务器 该怎么设置呢
理论上可以的,vmware虚拟机和云服务器其实和传统物理服务器用起来没差别。但如果你说的云服务器是公有云,是vmware在你的局域网,不推荐组合起来搭建hadoop,因为互联网的网络延迟比本地高,集群会不稳,非要做的话,vmware虚拟机需要用dnat映射地址到公网
Ⅸ 如何构建最优化的Hadoop集群
本文将逐步介绍这些部分的安装和配置:
•网络体系结构
•操作系统
•硬件要求
•Hadoop软件安装/设置
网络架构
根据我们目前能够拿到的文档,可以认为云内的节点越在物理上接近,越能获得更好的性能。根据经验,网络延时越小,性能越好。
为了减少背景流量,我们为这个云创建了一个虚拟专用网。另外,还为应用服务器们创建了一个子网,作为访问云的入口点。
这个虚拟专用网的预计时延大约是1-2毫秒。这样一来,物理临近性就不再是一个问题,我们应该通过环境测试来验证这一点。
建议的网络架构:
•专用TOR(Top of Rack)交换机
•使用专用核心交换刀片或交换机
•确保应用服务器“靠近”Hadoop
•考虑使用以太网绑定
为了防止数据丢失,Hadoop会将每个数据块复制到多个机器上。想象一下,如果某个数据块的所有拷贝都在同一个机架的不同机器上,而这个机架刚好发生故障了(交换机坏了,或者电源掉了),这得有多悲剧?为了防止出现这种情况,必须要有一个人来记住所有数据节点在网络中的位置,并且用这些知识来确定——把数据的所有拷贝们放在哪些节点上才是最明智的。这个“人”就是Name Node。
另外还有一个假设,即相比不同机架间的机器,同一个机架的机器之间有着更大的带宽和更小的延时。这是因为,机架交换机的上行带宽一般都小于下行带宽。而且(+本站微信networkworldweixin),机架内的延时一般也小于跨机架的延时(但也不绝对)。
机架感知的缺点则是,我们需要手工为每个数据节点设置机架号,还要不断地更新这些信息,保证它们是正确的。要是机架交换机们能够自动向Namenode提供本机架的数据节点列表,那就太棒了。
Ⅹ 怎么在服务器上搭建hadoop集群
前期准备 l 两台linux虚拟机(本文使用redhat5,IP分别为 IP1、IP2) l JDK环境(本文使用jdk1.6,网上很多配置方法,本文省略) l Hadoop安装包(本文使用Hadoop1.0.4) 搭建目标 210作为主机和节点机,211作为节点机。 搭建步骤 1修改hosts文...