当前位置:首页 » 操作系统 » 克鲁斯卡尔算法求最小生成树

克鲁斯卡尔算法求最小生成树

发布时间: 2022-08-30 02:23:56

‘壹’ 最小生成树的两种算法

主要有两个:
1.普里姆(Prim)算法
特点:时间复杂度为O(n2).适合于求边稠密的最小生成树。
2.克鲁斯卡尔(Kruskal)算法
特点:时间复杂度为O(eloge)(e为网中边数),适合于求稀疏的网的最小生成树。

‘贰’ 无论用普里姆算法或者是克鲁斯卡尔算法求最小生成树,得出的结果应该一样么

不总是一样的,克鲁斯卡尔算法是精确算法,即每次都能求得最优解,但对于规模较大的最小生成树问题,求解速度较慢。而普里姆算法是近似求解算法,虽然对于大多数最小生成树问题都能求得最优解,但相当一部分求得的是近似最优解。这是我个人见解。

‘叁’ 《离散数学》计算题求解:试求出如图所示赋权图中的最小生成树,并求此最小生成树的权。

求最小生成树的克鲁斯卡尔算法:
①将带权连通图G=<n,m>的各边按权从小到大依次排列,如e1,e2,…,em,其中e1的权最小,em的权最大,m为边数。
②取权最小的两条边构成边集T0,即T0={e1,e2},从e3起,按次序逐个将各边加进集合T0中去,若出现回路则将这条边排除(不加进去),按此法一直进行到em,最后得到n-1条边的集合T0={e1,e2,…,en-1},则T0导出的子图就是图G的最小生成树。

‘肆’ 最小生成树 普里姆算法和克鲁斯卡尔算法

kruskal算法的时间复杂度主要由排序方法决定,其排序算法只与带权边的个数有关,与图中顶点的个数无关,当使用时间复杂度为O(eloge)的排序算法时,克鲁斯卡算法的时间复杂度即为O(eloge),因此当带权图的顶点个数较多而边的条数较少时,使用克鲁斯卡尔算法构造最小生成树效果最好!

克鲁斯卡尔算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,则按照克鲁斯卡尔算法构造最小生成树的过程为:先构造一个只含 n 个顶点,而边集为空的子图,若将该子图中各个顶点看成是各棵树上的根结点,则它是一个含有 n 棵树的一个森林。之后,从网的边集 E 中选取一条权值最小的边,若该条边的两个顶点分属不同的树,则将其加入子图,也就是说,将这两个顶点分别所在的两棵树合成一棵树;反之,若该条边的两个顶点已落在同一棵树上,则不可取,而应该取下一条权值最小的边再试之。依次类推,直至森林中只有一棵树,也即子图中含有 n-1条边为止。

普里姆算法
假设 WN=(V,{E}) 是一个含有 n 个顶点的连通网,TV 是 WN 上最小生成树中顶点的集合,TE 是最小生成树中边的集合。显然,在算法执行结束时,TV=V,而 TE 是 E 的一个子集。在算法开始执行时,TE 为空集,TV 中只有一个顶点,因此,按普里姆算法构造最小生成树的过程为:在所有“其一个顶点已经落在生成树上,而另一个顶点尚未落在生成树上”的边中取一条权值为最小的边,逐条加在生成树上,直至生成树中含有 n-1条边为止。
--以上传自http://hi..com/valyanprogramming/blog/item/1bc960e6095f9726b93820d9.html

1.Kruskal
//题目地址:http://acm.pku.e.cn/JudgeOnline/problem?id=1258

#include<cstdio>
#include<cstdlib>
#include<iostream>
using namespace std;
struct node
{
int v1;
int v2;
int len;
}e[10000];//定义边集
int cmp(const void *a,const void *b)//快排比较函数
{
return ((node*)a)->len-((node*)b)->len;
}
int v[100],a[100][100];//v为点集
void makeset(int n)
{
for(int i=0;i<n;i++)
v[i]=i;
}
int find(int x)
{
int h=x;
while(h!=v[h])
h=v[h];
return h;
}
int main()
{
int n,i,j,r1,r2,p,total;
while(scanf("%d",&n)!=EOF)
{
p=0;
total=0;
makeset(n);
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
scanf("%d",&a[i][j]);
e[p].v1=i;
e[p].v2=j;
e[p].len=a[i][j];
p++;
}
}
qsort(e,p,sizeof(e[0]),cmp);
for(i=0;i<p;i++)
{
r1=find(e[i].v1);
r2=find(e[i].v2);
if(r1!=r2)
{
total+=e[i].len;
v[r1]=r2;
}
}
printf("%d\n",total);
}
system("pause");
return 0;
}

2.Prim
//题目地址同上

#include <iostream>
using namespace std;

#define M 101
#define maxnum 100001
int dis[M][M];

int prim(int n)
{
bool used[M]={};
int d[M],i,j,k;
for(i=1; i<=n; i++)
d[i] = dis[1][i];
used[1] = true;
int sum=0;
for(i=1; i<n; i++){
int temp=maxnum;
for(j=1; j<=n; j++){
if( !used[j] && d[j]<temp ){
temp = d[j];
k = j;
}
}
used[k] = true;
sum += d[k];
for(j=1; j<=n; j++){
if( !used[j] && dis[k][j]<d[j] )
d[j] = dis[k][j]; // 与Dijksta算法的差别之处
}
}
return sum;
}

int main()
{
int n,i,j;
while( cin>>n ){

for(i=1; i<=n; i++){
for(j=1; j<=n; j++){
scanf("%d",&dis[i][j]);
if( !dis[i][j] )
dis[i][j] = maxnum;
}
}

cout<<prim(n)<<endl;
}
return 0;
}

代码来自网络

‘伍’ 图所示是一个无向带权图,请分别按Prim算法和Kruskal算法求最小生成树.

•普里姆(Prim)算法

基本思想

假设N=(V,E)是一个具有n个顶点的连通网,T=(U,TE)是所求的最小生成树,其中U是T的顶点集,TE是T的边集。

(1)初始U={u0}(u0∈V),TE=φ;

(2)在所有u∈U,v∈V-U的边中选一条代价最小的边(u0,v0)并入集合TE,同时将v0并入U;

(3)重复(2),直到U=V为止。

此时,TE中必含有n-1条边,则T=(V,{TE})为N的最小生成树。

注意:1.最小生成树不唯一。

2.该图从节点最小开始。

‘陆’ 最小生成树怎么求

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。最小生成树可以用kruskal(克鲁斯卡尔)算法或Prim(普里姆)算法求出。

求MST的一般算法可描述为:针对图G,从空树T开始,往集合T中逐条选择并加入n-1条安全边(u,v),最终生成一棵含n-1条边的MST。
当一条边(u,v)加入T时,必须保证T∪{(u,v)}仍是MST的子集,我们将这样的边称为T的安全边。
伪代码

GenerieMST(G){//求G的某棵MST
T〈-¢; //T初始为空,是指顶点集和边集均空
while T未形成G的生成树 do{
找出T的一条安全边(u,v);//即T∪{(u,v)}仍为MST的子集
T=T∪{(u,v)}; //加入安全边,扩充T
}
return T; //T为生成树且是G的一棵MST
}
注意:
下面给出的两种求MST的算法均是对上述的一般算法的求精,两算法的区别仅在于求安全边的方法不同。
为简单起见,下面用序号0,1,…,n-1来表示顶点集,即是:
V(G)={0,1,…,n-1},
G中边上的权解释为长度,并设T=(U,TE)。
求最小生成树的具体算法(pascal):
Prim算法

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点 k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k 加入生成树}
{生成树中增加一条新的边 k 到 closest[k]}
{修正各点的 lowcost 和 closest 值}
for j:=1 to n do
if cost[k,j]<lowcost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;
Kruskal算法

按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点 v 所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset) do inc(i);
if i<=n then find:=i else find:=0;
end;
procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset:=i;{初始化定义 n 个集合,第 I个集合包含一个元素 I}
p:=n-1; q:=1; tot:=0; {p 为尚待加入的边数,q 为边集指针}
sort;
{对所有边按权值递增排序,存于 e中,e.v1 与 e.v2 为边 I 所连接的两个顶点的
序号,e.len 为第 I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset:=vset+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;
C语言代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#defineMAX_VERTEX_NUM20
#defineOK1
#defineERROR0
#defineMAX1000
typedefstructArcell
{
doubleadj;
}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedefstruct
{
charvexs[MAX_VERTEX_NUM];//节点数组
AdjMatrixarcs;//邻接矩阵
intvexnum,arcnum;//图的当前节点数和弧数
}MGraph;
typedefstructPnode//用于普利姆算法
{
charadjvex;//节点
doublelowcost;//权值
}Pnode,Closedge[MAX_VERTEX_NUM];//记录顶点集U到V-U的代价最小的边的辅助数组定义
typedefstructKnode//用于克鲁斯卡尔算法中存储一条边及其对应的2个节点
{
charch1;//节点1
charch2;//节点2
doublevalue;//权值
}Knode,Dgevalue[MAX_VERTEX_NUM];

//-------------------------------------------------------------------------------
intCreateUDG(MGraph&G,Dgevalue&dgevalue);
intLocateVex(MGraphG,charch);
intMinimum(MGraphG,Closedgeclosedge);
voidMiniSpanTree_PRIM(MGraphG,charu);
voidSortdge(Dgevalue&dgevalue,MGraphG);

//-------------------------------------------------------------------------------
intCreateUDG(MGraph&G,Dgevalue&dgevalue)//构造无向加权图的邻接矩阵
{
inti,j,k;
cout<<"请输入图中节点个数和边/弧的条数:";
cin>>G.vexnum>>G.arcnum;
cout<<"请输入节点:";
for(i=0;i<G.vexnum;++i)
cin>>G.vexs[i];
for(i=0;i<G.vexnum;++i)//初始化数组
{
for(j=0;j<G.vexnum;++j)
{
G.arcs[i][j].adj=MAX;
}
}
cout<<"请输入一条边依附的定点及边的权值:"<<endl;
for(k=0;k<G.arcnum;++k)
{
cin>>dgevalue[k].ch1>>dgevalue[k].ch2>>dgevalue[k].value;
i=LocateVex(G,dgevalue[k].ch1);
j=LocateVex(G,dgevalue[k].ch2);
G.arcs[i][j].adj=dgevalue[k].value;
G.arcs[j][i].adj=G.arcs[i][j].adj;
}
returnOK;
}
intLocateVex(MGraphG,charch)//确定节点ch在图G.vexs中的位置
{
inta;
for(inti=0;i<G.vexnum;i++)
{
if(G.vexs[i]==ch)
a=i;
}
returna;
}
voidMiniSpanTree_PRIM(MGraphG,charu)//普利姆算法求最小生成树
{
inti,j,k;
Closedgeclosedge;
k=LocateVex(G,u);
for(j=0;j<G.vexnum;j++)
{
if(j!=k)
{
closedge[j].adjvex=u;
closedge[j].lowcost=G.arcs[k][j].adj;
}
}
closedge[k].lowcost=0;
for(i=1;i<G.vexnum;i++)
{
k=Minimum(G,closedge);
cout<<"("<<closedge[k].adjvex<<","<<G.vexs[k]<<","<<closedge[k].lowcost<<")"<<endl;
closedge[k].lowcost=0;
for(j=0;j<G.vexnum;++j)
{
if(G.arcs[k][j].adj<closedge[j].lowcost)
{
closedge[j].adjvex=G.vexs[k];
closedge[j].lowcost=G.arcs[k][j].adj;
}
}
}
}
intMinimum(MGraphG,Closedgeclosedge)//求closedge中权值最小的边,并返回其顶点在vexs中的位置
{
inti,j;
doublek=1000;
for(i=0;i<G.vexnum;i++)
{
if(closedge[i].lowcost!=0&&closedge[i].lowcost<k)
{
k=closedge[i].lowcost;
j=i;
}
}
returnj;
}
voidMiniSpanTree_KRSL(MGraphG,Dgevalue&dgevalue)//克鲁斯卡尔算法求最小生成树
{
intp1,p2,i,j;
intbj[MAX_VERTEX_NUM];//标记数组
for(i=0;i<G.vexnum;i++)//标记数组初始化
bj[i]=i;
Sortdge(dgevalue,G);//将所有权值按从小到大排序
for(i=0;i<G.arcnum;i++)
{
p1=bj[LocateVex(G,dgevalue[i].ch1)];
p2=bj[LocateVex(G,dgevalue[i].ch2)];
if(p1!=p2)
{
cout<<"("<<dgevalue[i].ch1<<","<<dgevalue[i].ch2<<","<<dgevalue[i].value<<")"<<endl;
for(j=0;j<G.vexnum;j++)
{
if(bj[j]==p2)
bj[j]=p1;
}
}
}
}
voidSortdge(Dgevalue&dgevalue,MGraphG)//对dgevalue中各元素按权值按从小到大排序
{
inti,j;
doubletemp;
charch1,ch2;
for(i=0;i<G.arcnum;i++)
{
for(j=i;j<G.arcnum;j++)
{
if(dgevalue[i].value>dgevalue[j].value)
{
temp=dgevalue[i].value;
dgevalue[i].value=dgevalue[j].value;
dgevalue[j].value=temp;
ch1=dgevalue[i].ch1;
dgevalue[i].ch1=dgevalue[j].ch1;
dgevalue[j].ch1=ch1;
ch2=dgevalue[i].ch2;
dgevalue[i].ch2=dgevalue[j].ch2;
dgevalue[j].ch2=ch2;
}
}
}
}
voidmain()
{
inti,j;
MGraphG;
charu;
Dgevaluedgevalue;
CreateUDG(G,dgevalue);
cout<<"图的邻接矩阵为:"<<endl;
for(i=0;i<G.vexnum;i++)
{
for(j=0;j<G.vexnum;j++)
cout<<G.arcs[i][j].adj<<"";
cout<<endl;
}
cout<<"=============普利姆算法===============\n";
cout<<"请输入起始点:";
cin>>u;
cout<<"构成最小代价生成树的边集为:\n";
MiniSpanTree_PRIM(G,u);
cout<<"============克鲁斯科尔算法=============\n";
cout<<"构成最小代价生成树的边集为:\n";
MiniSpanTree_KRSL(G,dgevalue);
}
pascal算法

program didi;
var
a:array[0..100000] of record
s,t,len:longint;
end;
fa,r:array[0..10000] of longint;
n,i,j,x,y,z:longint;
tot,ans:longint;
count,xx:longint;
procere quick(l,r:longint);
var
i,j,x,y,t:longint;
begin
i:=l;j:=r;
x:=a[(l+r) div 2].len;
repeat
while x>a[i].len do inc(i);
while x<a[j].len do dec(j);
if i<=j then
begin
y:=a[i].len;a[i].len:=a[j].len;a[j].len:=y;
y:=a[i].s;a[i].s:=a[j].s;a[j].s:=y;
y:=a[i].t;a[i].t:=a[j].t;a[j].t:=y;
inc(i);dec(j);
end;
until i>j;
if i<r then quick(i,r);
if l<j then quick(l,j);
end;
function find(x:longint):longint;
begin
if fa[x]<>x then fa[x]:=find(fa[x]);
find:=fa[x];
end;
procere union(x,y:longint);{启发式合并}
var
t:longint;
begin
x:=find(x);
y:=find(y);
if r[x]>r[y] then
begin
t:=x;x:=y;y:=t;
end;
if r[x]=r[y] then inc(r[x]);
fa[x]:=y;
end;
begin
readln(xx,n);
for i:=1 to xx do fa[i]:=i;
for i:=1 to n do
begin
read(x,y,z);
inc(tot);
a[tot].s:=x;
a[tot].t:=y;
a[tot].len:=z;
end;
quick(1,tot);{将边排序}
ans:=0;
count:=0;
i:=0;
while count<=x-1 do{count记录加边的总数}
begin
inc(i);
with a[i] do
if find(s)<find(t) then
begin
union(s,t);
ans:=ans+len;
inc(count);
end;
end;
write(ans);
end.
Prim
var
m,n:set of 1..100;
s,t,min,x,y,i,j,k,l,sum,p,ii:longint;
a:array[1..100,1..100]of longint;
begin
readln(p);
for ii:=1 to p do
begin
k:=0; sum:=0;
fillchar(a,sizeof(a),255);
readln(x);
m:=[1];
n:=[2..x];
for i:=1 to x do
begin
for j:=1 to x do
begin
read(a[i,j]);
if a[i,j]=0
then a[i,j]:=maxlongint;
end;
readln;
end;
for l:=1 to x-1 do
begin
min:=maxlongint;
for i:=1 to x do
if i in m
then begin
for j:=1 to x do
begin
if (a[i,j]<min)and(j in n)
then begin
min:=a[i,j];
s:=i;
t:=j;
end;
end;
end;
sum:=sum+min;
m:=m+[t];
n:=n-[t];
inc(k);
end;
writeln(sum);
end;
end.

热点内容
游戏辅编程 发布:2025-05-14 21:18:49 浏览:684
三菱plc一段二段密码什么意思 发布:2025-05-14 21:17:16 浏览:527
电脑开机密码忘记了怎么破解 发布:2025-05-14 21:09:40 浏览:56
pythondict格式 发布:2025-05-14 21:09:38 浏览:885
落叶片拍摄脚本 发布:2025-05-14 20:40:49 浏览:798
安卓为什么不能用cmwap 发布:2025-05-14 20:40:43 浏览:657
jquery获取上传文件 发布:2025-05-14 20:27:57 浏览:44
云web服务器搭建 发布:2025-05-14 20:25:36 浏览:526
汽修汽配源码 发布:2025-05-14 20:08:53 浏览:743
蜜蜂编程官网 发布:2025-05-14 19:59:28 浏览:58