当前位置:首页 » 操作系统 » 粗匹配算法

粗匹配算法

发布时间: 2022-08-30 03:51:09

⑴ 图像匹配的算法

迄今为止,人们已经提出了各种各样的图像匹配算法,但从总体上讲,这些匹配算法可以分成关系结构匹配方法、结合特定理论工具的匹配方法、基于灰度信息的匹配方法、基于亚像元匹配方法、基于内容特征的匹配方法五大类型 基于内容特征的匹配首先提取反映图像重要信息的特征,而后以这些特征为模型进行匹配。局部特征有点、边缘、线条和小的区域,全局特征包括多边形和称为结构的复杂的图像内容描述。特征提取的结果是一个含有特征的表和对图像的描述,每一个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度,边与线的长度和曲率,区域的大小等。除了局部特征的属性外,还用这些局部特征之间的关系描述全局特征,这些关系可以是几何关系,例如两个相邻的三角形之间的边,或两个边之间的距离可以是辐射度量关系,例如灰度值差别,或两个相邻区域之间的灰度值方差或拓扑关系,例如一个特征受限于另一个特征。人们一般提到的基于特征的匹配绝大多数都是指基于点、线和边缘的局部特征匹配,而具有全局特征的匹配实质上是我们上面提到的关系结构匹配方法。特征是图像内容最抽象的描述,与基于灰度的匹配方法比,特相对于几何图像和辐射影响来说更不易变化,但特征提取方法的计算代价通常较,并且需要一些自由参数和事先按照经验选取的闭值,因而不便于实时应用同时,在纹理较少的图像区域提取的特征的密度通常比较稀少,使局部特征的提 取比较困难。另外,基于特征的匹配方法的相似性度量也比较复杂,往往要以特征属性、启发式方法及闭方法的结合来确定度量方法。基于图像特征的匹配方法可以克服利用图像灰度信息进行匹配的缺点,由于图像的特征点比象素点要少很多,因而可以大大减少匹配过程的计算量同时,特征点的匹配度量值对位置的变化比较敏感,可以大大提高匹配的精确程度而且,特征点的提取过程可以减少噪声的影响,对灰度变化,图像形变以及遮挡等都有较好的适应能力。所以基于图像特征的匹配在实际中的应用越来越广-泛。所使用的特征基元有点特征明显点、角点、边缘点等、边缘线段等。

⑵ 算法有哪些分类

算法分类编辑算法可大致分为:

基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

⑶ 有没有好的粗匹配算法

Robert Sedgewick的算法第四版,在coursera上有同步的在线课堂 算法导论不适合初学者。理论性太强,且缺乏具体实现

⑷ 数据处理

4.3.1 数据源情况

4.3.1.1 卫星影像数据情况

本项目数据源是由国土资源部信息中心提供的 2005~2007 年 SPOT 5_2.5 m 分辨率影像数据。覆盖工作区的 SPOT 5 卫星影像数据共计 79 景(图 4-2),所接收影像均有 4% 以上的重叠区域;影像信息丰富,无明显噪声、斑点和坏线;云、雪覆盖量均小于 10%,且未覆盖城乡结合部等重点地区;东部平原地区大部分影像覆盖有程度不同的雾或霾,但整体地类信息能够区分;影像数据接收侧视角一般小于 15°,平原地区不超过 25°,山区不超过 20°,基本满足技术规范对影像接收的要求。

图 4-2 河南省 SPOT 5 影像数据分布示意图

图 4-3 影像接收时间分布

由于本次 SPOT 5 卫星影像接收时间跨度大,时相接收差异大,79 景影像多集中于春季和秋季(图 4-3),但部分影像由于接收时间不是河南地区最佳季节,存在着这样或那样的问题,见表 4-1:

表 4-1 影像数据接收信息及数据质量评述表

续表

4.3.1.2 DEM 数据情况

覆盖河南全省的 1∶5 万数字高程模型(DEM)共计 464 幅。

首先,对 DEM 是否齐全及 DEM 的现势性等进行了全面检查;其次,对相邻分幅 DEM 是否有重叠区域以及重叠区域的高程是否一致、接边后是否出现裂隙现象等信息进行了检查;第三,项目组对每幅 DEM 是否有完整的元数据以及对数据的地理基础、精度、格网尺寸等信息是否齐全等进行了全面检查。

由于 1∶5 万 DEM 原始数据是 GRID 标准格式,数学基础为 1980 年西安坐标系,1985 年国家高程基准,6°分带。鉴于以上数据格式和项目实施方案要求,项目组对涉及工作区的 464 幅DEM,分别按照 19°带和 20°带进行镶嵌及坐标系转换,之后再进行拼接、换带及投影转换处理,得到覆盖河南全省的、满足对项目区影像进行正射校正需求的、中央经线为 114°、1954 北京坐标系、1985 年国家高程基准的河南省 1∶5 万 DE(M图 4-4)。

图 4-4 河南省 1∶5 万 DEM

经过对拼接好的 DEM 进行全面检查,本项目使用的 DEM 数据覆盖河南全省,不存在缺失、黑边等现象,基本满足本项目影像数据正射校正的需要。

4.3.2 数据配准

目前影像配准技术大致分为两大类,基于灰度的方法和基于特征的方法。大多数基于灰度的方法采用互相关技术或傅立叶变换技术来实现。影像配准采用的是 ERDAS 9.1 中的自动配准模块(AutoSync)。在自动检测结束后,将其在参考图像上寻找出来同样需要很大的工作量。在不能完全自动实现匹配的情况下,如果能够大致计算出需要寻找和精确调整标注的区域,同样能够减少很大工作量。通过使用多项式粗略计算出两张影像的对应关系就可以解决这一问题。

根据 ERDAS 系统要求,我们最少需要 3 个点就可以在两张卫星影像间建立一个粗略的对应关系。使用至少 3 个点建立起正算多项式模型后,便可以将自动检测出来的控制点迅速对应到参考影像上,只需要在很小的范围内调整就可以精确标注出其在参考影像上的位置。图 4-5 左侧为原始影像上自动检测点,右侧为参考影像上粗定位点,需要进行调整。

图 4-5 配准

虽然计算机的引入可以大量节约劳动,但是因为技术所限,并不能解决矫正和配准所有环节的全部问题,从而将测绘工作者彻底解放出来。

本次项目生产过程中,针对 SPOT 5_10 m 多光谱数据重采样成间隔为 2.5 m,重采样方法采用双线性内插法。以景为配准单元,以 SPOT 5_2.5 m 全色数据为配准基础,将 SPOT 5 多光谱数据与之配准。随机选择配准后全色与多光谱数据上的同名点,要求配准误差平原和丘陵地区不超过 0.5 个像元,山区适当放宽至 1 个像元。配准控制点文件命名使用“景号 + MULTI 和 PAN”,如“287267MULTI”。配准文件命名使用“景号 + MATCH”,如“287267MATCH”。

影像配准采用的是 ERDAS 9.1 中的自动配准模块(AutoSync)。首先,在单景影像的四角部位手动选取四个配准控制同名点,然后由软件生成自动配准控制点,剔除其中误差较大的控制点后,进行自动配准(图 4-6)。配准完成后,采用软件提供的“拉窗帘”的方式对整景影像自上而下、自左至右进行配准精度检查(图 4-7)。

总结配准的工作,可以看到基本上分为如下几步:①标注至少 3 个粗匹配控制点;②设置检测参数;③进行自动检测;④人工调整和保存控制点;⑤进行配准。其中第 4 步仍然需要人工参与,主要的问题在于两点:一是精度是否真正是人感官上的特征点方面存在问题;二是参考图像上的控制点仅仅是粗略对应标注,人工无法手动调整至精确对应位置,因此,暂时的配准工作仅仅部分减轻了人工工作量,但不可能完全由计算机完成配准工作。

图 4-6 影像配准

图 4-7 影像配准精度“拉窗帘”检查

4.3.3 数据融合

4.3.3.1 融合前数据的预处理

获取完整项目区的卫星影像数据时,由于接收时间跨度较大,数据时相差别较大,加上空中云、雾或霾的干扰以及地面光照不均匀等因素,造成景与景之间的影像光谱和纹理特征差别较大。为使影像纹理清晰,细节突出,提高目视解译精度等,在数据融合前必须对数据进行预处理。

SPOT 5 全色波段数据处理的目的是增强局部灰度反差、突出纹理、加强纹理能量和通过滤波来提高纹理细节。

(1)线性变换。经过线性拉伸处理的影像数据,既增强局部灰度反差又保持原始灰度间的相对关系。

图 4-8 线性变换

设A1、A2为输入影像的嵌位控制值,B1、B2为变换后影像最低、最高亮度值(图4-8),输入影像的亮度值A1~A2被拉伸为B1~B2范围,其中输入亮度0~A1及A2~255分别被变换为B1、B2,如果赋值B1=0、B2=255,则拉大了输入影像的动态范围,从而反差得到增强,保持了输入影像灰度间的线性关系。通过线性拉伸将位移A1变换为0,而将A2变为255;这样既没有改变A1到A2之间灰度值的相对关系,又扩展了直方图的动态范围,从而增强影像结构的细微突变信息。

(2)纹理增强。纹理能量增强目前主要靠高通滤波来实现,在空域增强中滤波器选择是关键。不同影像地貌、地物选择的滤波核各异。一般地,在地形高起伏地区,地理单元比较宏观,采用的滤波器一般较大,能够反映地理单元的宏观特点,选择较小的滤波核会破坏整体的地貌外形。在地理单元分布细碎,地貌细腻,选择滤波器相对应较小,否则无法表现细碎的纹理结构。在纹理能量增强时应该避免增强过剩,否则影像细节会过于饱和,使纹理丧失,达不到增强细节的目的。以下滤波核是本次用到的边缘增强滤波算子,应用效果比较好。如图4-9所示。

图 4-9 滤波增强

(3)多光谱数据处理。在融合影像中,多光谱数据的贡献是其光谱信息。融合前主要以色彩增强为主,调整亮度、色度、饱和度,拉开不同地类之间的色彩反差,对局部的纹理要求不高,有时为了保证光谱色彩,还允许削弱部分纹理信息。

4.3.3.2 影像融合

目前用于多源遥感数据融合的方法很多,从技术层次来分,可以包括像元级融合、特征级融合和决策级融合三个层次。像元级融合有HIS变换、主分量变换、假彩色合成、小波变换、加权融合等方法;特征级融合有Bayes、决策法、神经网络法、比值运算、聚类分析等方法;决策级融合有基于知识的融合、神经网络、滤波融合等方法。从融合算法上分,可分为对图像直接进行代数运算的方法,如加权融合法、乘积融合法、Brovey变换融合法等;第二种是基于各种空间变换的方法,如HIS变换融合法、PCA变换融合法、Lab变换融合法等;第三种是基于金字塔式分解和重建的融合方法,如拉普拉斯金字塔融合法、小波变换融合法。

本项目所使用数据为SPOT5数据,缺少蓝波段多光谱,对数据采用了自然色模拟方法,在土地利用资源调查中,多光谱信息可以突出地反映土地利用类型的要素信息,提高影像的可判读性,便于从图形、纹理特征及光谱特征进行综合判别分析。一般遥感卫星多光谱传感器波谱范围覆盖整个可见光部分,即蓝、绿、红波段。而SPOT系列遥感卫星其多光谱覆盖范围在可见光部分仅从绿到红波段,缺少蓝波段。在利用遥感卫星影像进行土地利用资源调查时,多光谱信息要求必须以人眼可见的自然色表达,而不允许用伪彩色和红外彩色模拟,以便于非遥感测绘人员的判读与实地调查。对于通常的SPOT系列遥感卫星的自然色模拟方法,往往仅靠不同波段组合,以人眼目视判别、感知来调整色调。作业人员的先验知识作色调调整,作业人员经验欠缺时,色调调校失真较大;二是标准难以定量统一,不同调校时间、人员,不同景影像的拼接,由于感知的差异都难以达到同一或近似的标准。通过分析全省SPOT5数据特征,本次影像融合处理主要采用了乘积变换融合和Andorre融合。

Andorre融合采用的是视宝公司提供的Andorre融合方法,具体步骤为:

步骤1 对全色影像先做正态化处理。等价于Wallis滤波及增强局部(纹理增强)与全局对比度。

步骤2 按下面公式融合(P是正态化处理后的全色影像,B1是绿波段,B2是红波段,B3是近红外波段)。

ERDAS 中模块计算公式:

§ 公式一(蓝通道):

§ 公式二(绿通道):

§ 公式三(红通道):

步骤 3 按下面公式完成伪自然色转换:

ERDAS 中模块计算公式:

§ 公式一(红通道):

§ 公式二(绿通道):

§ 公式三(蓝通道):

步骤 4 对步骤 3 生成的各个通道执行直方图拉伸处理。通常,线性直方图拉伸可以满足这种彩色影像的调整,需要根据影像目视效果定义阈值。阈值的选择应该避免在平衡其他颜色造成的像素过饱和。或在 Photoshop 中调整影像色调、亮度及对比度等直至满足要求。

通过 ERDAS 中 Model 实现其算法(图 4-10)。

4.3.3.3 融合影像后处理

后处理主要采用以下 5 种方法:

(1)直方图调整。对反差较低、亮度偏暗的融合影像,调整输入输出范围,改变反差系数进行线性拉伸,使其各色直方图达到接近正态分布。输出范围一般都定为 0~255,而在输入范围的选择中,对低亮度端的截去应慎重,可以消除部分噪声。

(2)USM 锐化。通过变化阈值、半径、锐化程度增强地物边缘特征。注意阈值和半径的设定值不宜过大,锐化程度可根据不同地区影像特点适当选取。通过软件的预览功能可以判断参数选择得是否合适。城乡结合部、居民点、道路和耕地边界是需要重点突出的地物,必须保证清晰可辨,进一步改善总体效果。

(3)彩色平衡。经过融合运算后,影像或多或少会带有一定程度的偏色,需要通过调整彩色平衡加以改正。

(4)色度饱和度调整。由于 SPOT 5 影像融合后存在大量的洋红色,与实地颜色不一致的,可以通过改变色度、饱和度、明度等将其转变为土黄色,使其更接近于真实颜色。

(5)反差增强。通过亮度和对比度调整,可以增强地物间的反差,使不同地类更易区分。

通过融合影像后处理,进一步改善影像的视觉效果,使整景影像色彩真实均匀、明暗程度适中、清晰,增强专题信息,特别是加强纹理信息。

图 4-10 融合处理算法

4.3.4 正射校正模型选择与处理

4.3.4.1 正射纠正的基本模型

一般对推扫式遥感卫星影像的正射纠正有严密纠正模型和变换关系纠正模型两大类。严密纠正模型根据卫星轨道参数、传感器摄影特征以及成像特点,由传感器在获取影像瞬间的位置、方位等因素,建立起像点与地面之间的共线关系,并由此共线方程解求像点或地面点的纠正。而变换关系纠正模型是一种传统的几何纠正方式,不考虑成像的特性,它通过地面控制点与影像同名点计算出不同变换式的变换系数,从而将变形的原始影像拟合到地面坐标中。

严密纠正模型有基于多项式的共线方程、基于卫星轨道参数的纠正方法、基于光束法的区域网平差等方法;变换关系纠正模型有多项式纠正、有理函数多项式、有理函数多项式区域网平差等方法。其中,区域网平差是用较少的控制点以多景影像组成区域网进行平差的纠正方法。

(1)基于多项式的共线方程纠正方法。改正原始影像的几何变形,采用像素坐标变换,使影像坐标符合某种地图投影和图形表达方式和像素亮度值重采样。在摄影瞬间,传感器、影像、地面三者之间,以共线方程反映了成像时地面点和像点之间一一对应的关系。

由于推扫式成像是当前大多数遥感卫星采用的主流成像方式,那么整景影像为多中心投影,每条扫描线是中心投影。用共线方程表达为

推扫式成像的每一扫描线外方位元素均不同,且y值恒为0。正射纠正时必须求解每一行的外方位元素,利用共线方程得到与地面点相对应的像点坐标,加入DEM后对影像进行纠正。

一般可以认为,在一定时间内,遥感卫星在轨道运行时,空间姿态变化是稳定的,那么6个外方位元素的变化是时间的函数。由于推扫式影像y坐标和时间之间有固定的对应关系,即每行扫描时间相同,所以可将第i行外方位元素表示为初始外方位元素(φi,wi,ki)和行数y的函数,而这个函数可以用二次多项式函数来表示,即

该方法需获得初始外方位元素可从星历文件中得到,如SPOTS影像星历,在DIM,CAP格式文件中。

(2)多项式纠正方法。多项式纠正方法是一种传统的变换关系纠正方法。多项式用二维的地面控制点计算出与像点的变换关系,设定任意像元在原始影像中坐标和对应地面点坐标分别为(x,y)和(X,Y),以x=Fx(x,y),y=Fy(x,y)数学表达式表达,如果该数学表达式采用多项式函数来表达,则像点坐标(x,y)与地面点坐标(X,Y)建立的多项式函数为

式中(:a0,a1,a2,a3,……,an)(,b0,b1,b2,b3,……,bn)——变换系数。

一般多项式阶数是1阶到5阶的,式中表达的为3阶。所需控制点数N与多项式阶数n的关系为:N(=n+1)(n+2)/2,即1阶需3个控制点,2阶需6个控制点,3阶需10个控制点。

多项式纠正考虑二维平面间的关系差,因此,对于地形起伏高差较大的区域,并不能改正由地形起伏引起的投影误差,纠正后的精度就不高。另外考虑入射角的影响,多项式纠正对于地形起伏较大地区并不适宜。

(3)有理函数纠正方法。有理函数纠正方法是一种变换关系的几何纠正模型,以有理函数系数(Rational Function Coefficient)将地面点P(La,Lb,Hc)与影像上的点(pIi,Sa)联系起来。对于地面点P,其影像坐标(pIi,Sa)的计算始于经纬度的正则化,即

正则化的影像坐标(x,y)为

求得的影像坐标为

有理函数纠正不仅以较高的精度进行物方和像方的空间变换,相对于多项式纠正方法考虑了地面高程,相对于基于共线方程模型使复杂的实际传感器模型得以简化,便于实现。

(4)区域网平差纠正方法。区域网平差,首先将三维空间模型经过相似变换缩小到影像空间,再将其以平行光投影至过原始影像中心的一个水平面上,最后将其变换至原始倾斜影像,从而进行以仿射变换建立误差方程,包括每景影像的参数和地面影像坐标的改正,组成法方程,进行平差计算改正。基于模型的区域网平差,是通过影像之间的约束关系补偿有理函数模型的系统误差。区域网平差要合理布设控制点,在景间需有一定数量的连接点,所需控制点数量较少。

4.3.4.2 正射纠正

本次遥感影像正射纠正采用专业遥感影像处理软件ERDAS提供的LPS正射模块进行的,纠正过程如图4-11所示。

图 4-11 正射纠正流程

为了与以往的县级土地利用数据库相衔接,平面坐标系统仍然采用 1954 北京坐标系,高程系统采用 1985 国家高程基准,投影方式采用高斯-克吕格投影,分带方式为 3°分带。

本项目涉及 79 景连片且同源影像数据,因此采用整体区域纠正,以工作区为纠正单元,利用具有区域网纠正功能的 ERDAS 中 LPS 模块进行区域网平差,根据影像分布情况建立一个区域网文件,快速生成无缝正射镶嵌精确的正射影像,如图 4-12 所示。因本工作区涉及 37°、38°、39°三个 3°分带,考虑到全省数据镶嵌等问题,整个工程采用 38°带,其中央经线为 114°。

本次纠正中采用 SPOT 5 物理模型,控制点均匀分布于整景影像,控制点个数 25 个,相邻景影像重叠区有 2 个以上共用控制点。

工作区控制点分布如图 4-13 所示。

影像正射纠正以实测控制点和 1∶5 万 DEM 为纠正基础,以工作区为纠正单元,采样间隔为 2.5 m。

对控制点和连接点超过限差的要进行检查、剔除,发现误差超限的点位,应先通过设置其为检查点方式重新解算,如解算通过,则通过平差解算;如果纠正精度超限,查找超限原因,则应考虑在误差较大的点位附近换点或增补点加以解决,并进行必要的返工,直至满足要求为止。控制点采集如图 4-14 所示。

对整景利用 DEM 数据在 LPS 中选取 SPOT 5 Orbital Pushbroom 传感器模型,投影选取 Gauss Kruger,椭球体采用 Krasovsky,进行正射纠正,纠正精度满足 SPOT 5_2.5 m 数字正射影像图纠正精度要求,纠正后的图面点位中误差见表 4-2。

图 4-12 整体区域纠正控制点选取示意图

图 4-13 区域网平差纠正工程图

图 4-14 控制点采集

表 4-2 正射纠正控制点中误差

续表

4.3.5 镶嵌

以项目区为单位,对相邻景正射影像的接边精度进行检查。经检查接边精度合格后,以项目区为单位,对正射影像进行镶嵌。

由于项目区采用的是 ERDAS 提供的 LPS 正射模块区域网平差纠正,相邻两幅影像,均采集了两个以上的共用控制点,相应提高了影像镶嵌精度。

在项目区相邻景影像的重叠区域中,平原、丘陵与山区分别随机选取了 30 对均匀分布的检查点,检查影像的接边精度。根据检查点的点位坐标,计算检查点点位中误差。见表 4-3。

表 4-3 影像镶嵌误差

本项目影像镶嵌以工作区为单元,在景与景之间镶嵌线尽量选取线状地物或地块边界等明显分界处,以便使镶嵌影像中的拼接缝尽可能地消除,尽量避开云、雾及其他质量相对较差的区域,使镶嵌处无裂缝、模糊和重影现象,使镶嵌处影像色彩过渡自然,使不同时相影像镶嵌时保证同一地块内纹理特征一致,方便地类判读和界线勾绘。影像镶嵌图如图 4-15 所示。

⑸ KMP是什么意思

一种由Knuth(D.E.Knuth)、Morris(J.H.Morris)和Pratt(V.R.Pratt)三人设计的线性时间字符串匹配算法。这个算法不用计算变迁函数δ,匹配时间为Θ(n),只用到辅助函数π[1,m],它是在Θ(m)时间内,根据模式预先计算出来的。数组π使得我们可以按需要,“现场”有效的计算(在平摊意义上来说)变迁函数δ。粗略地说,对任意状态q=0,1,…,m和任意字符a∈Σ,π[q]的值包含了与a无关但在计算δ(q,a)时需要的信息。由于数组π只有m个元素,而δ有Θ(m∣Σ∣)个值,所以通过预先计算π而不是δ,使得时间减少了一个Σ因子。

⑹ 王者荣耀匹配规则是什么 匹配机制到底是什么

王者荣耀匹配规则是根据玩家的历史战绩、排位段位、近期胜率等参数综合判定,系统会把实力相近的玩家匹配到同一局游戏。另外,王者荣耀的排位模式还需要根据双方玩家的平均段位进行排位匹配。

所有开黑的队伍会优先匹配到其它开黑队伍,当不存在其它开黑队伍时,将会遇到个人实力稍强的路人组合队伍。

(6)粗匹配算法扩展阅读:

匹配玩家的胜负情况决定赛后的加减星以及隐藏的实力分变动,玩家的表现情况只会影响勇者积分的增长数量以及举报相关的判断,在我们匹配机制中,帮助团队胜利永远是唯一的目标。MVP的次数只作为单局表现的一次评价,完全不会干预影响匹配算法。

普通匹配赛只需要玩家满足最低的要求即可参与匹配,系统会根据玩家的实力情况来进行匹配和己方队伍实力相近的队伍进行比赛,所以实力不佳的玩家完全不需要担心被高段位碾压。

⑺ 数据结构串匹配十大经典算法

1。
int Index(SString S,SString T,int pos)
{
//返回子串T在主串S中第pos个字符之后的位置。若不存在,则函数值为0。
//其中,T非空,1〈=pos<=Stringlength(S).
i=pos;j=1;
while(i<=S[0] && j<=T[0])
{
if (S[i]== T[i]) {++i;++j;}
else { i=i-j+2;j=1;}
}
if(j>T[0]) return i-T[0];
else return 0;
}//Index
2。

int Index-KMP(SString S,SString T,int pos)
{
//利用模式串T的next函数值求T在主串S中第pos 个字符之后的位置的KMP算法。其中,T非空,1<=pos<=Stringlength(S)
i=pos;
j=1;
while(i<=S[0] && j<=T[0])
{
if (j==0 || S[i]==T[j]) {++i; ++j;}
else j=next[j];
}
if (j>T[0]) return i-T[0];
else return 0;
//Index}
下面是next函数:
void next(SString S,ing next[])
{
i=1;
next[1]=0;
j=0;
while (i<T[0])
{
if (j==0 || T[i]==T[j]){ ++i; ++j;
next[j]=i;}
else j=next[j];
}
}//next

我现在只有这两个答案。

⑻ 论淘宝搜索推荐算法排序机制及2021年搜索的方向。

[写在前面]淘宝搜索引擎至今反复多次,搜索顺序也从最初的统计模型升级到机械学习模型,到2010年为止没有标签没有基础标签,随着计算能力的提高,2010年后开始挖掘用户的基础标签,从3年到2013年开始使用大规模的机械学习和实时特征
但你有没有想过为什么2016-2017年的两年是各种各样的黑搜索盛行的一年,为什么今天几乎消失了?
最根本的原因是从统计算法模型到机械学习模型的转型期。
说白了,这时不收割就没有收割的机会。因为统计模型即将退出历史舞台。
因此,各路大神各自扩大了统计模型算法中的影响因素。统计算法无论在哪里,点击率和坑产都很容易搜索。
那两年成了中小卖家的狂欢盛宴,很多大神的烟火也是旺盛的。
今天推荐算法的第三代使用后,加上疫情的影响进行了鲜明的比较,真的很感慨。
淘宝真的没有流量了吗?电器商务真的做不到吗?还是大家的思维没有改变,停留在2016-2017年的黑搜宴会上不想醒来?
2017年、2018年、2019年是淘宝推荐算法反复最快的3年,每年的算法升级都不同,整体上到2019年9月为止统计算法模型的影响因素还很大,从2019年下半年开始第三代推荐算法后,全面的真正意义进入了以机械学习模型为中心的推荐算法时代。
各路大神也无法验证,加上百年疫情的影响,很多大神的隐蔽布也泄露了。
基本上以统计模型为主,训练基本上没有声音,典型的是坑产游戏。
如果现在还能看到的话,基本上可以判断他不是在训练,而是在制作印刷用纸,一定会推荐使用资源,资源是多么安全。
刷子的生产增加真的没有效果吗?不是我以前的文章说:不是不行,而是从坑产的角度思考,而是从改变竞争环境的角度思考,用补充书改变竞争环境,改变场地,有新的天地,任何手段都要为商业本质服务。
正文
概述统计算法模型时代。
统计模型时代搜索引擎的排名是最原始的排名思考,如果你的类别不错,关键词比较正确,就能得到很大的流量,当时产品需求少,只要上下架的优化就能使产品上升。
到2016年为止没有坑产游戏吗?黑色搜索的效果不好吗?其实,什么时候坑产是最核心的机密,谁来教大家,什么时候教的最多的是类别优化,关键词优化,大部分优化都围绕关键词,电器商的老人想起了你什么时候得到关键词的人得到了世界。
有人告诉我做坑产,关键词找到生意也来了。什么时候知道坑产也没有人给你刷子,大规模的补充书也出现在黑色搜索盛行的时期。
为什么关键词者得天下?
搜索关键词是用户目前意图最直观的表达,也是用户表达意图最直接的方式。
搜索的用户购物意图最强,成交意愿也最强,现在搜索也是转化率最高的流量来源。
统计时代关键词背后直接依赖的是类别商品,只要制作类别和关键词分词即可,哪个时代最出现的黑马通常是类别机会、关键词机会、黑科学技术机会。
最基本的是商业本质,什么时候产品需求少,没有很多现在的类别,自己找类别,现在想想什么概念。
记得什么时候类别错了,搜索也可以来。如果你的商品点击反馈好的话,错误的类别没有什么影响,现在试试吧
搜索类是搜索的基础。
什么时候能称霸,背后有商业逻辑,用户行为数据好就行了。
但无论如何发展检索都离不开关键词。例如,上述关键词是用户表达意图的最直接的方法,是当前消费者的检索行为和购买行为发生了根本性的变化。
检索依然根据消费者的行为数据和关键词来判断需求,这就是机械学习模型时代。
机器学习模式时代-推荐搜索算法。
现在的商品体积和消费者购物行为的丰富性,统计算法不能满足检索的本质要求。
所以现在搜索引擎开始发展深度学习模式更精细的建模-推荐搜索算法,搜索排名更智能。
在此重点讨论推荐检索算法,
2017、2018、2019是推荐检索算法真正意义发展的3年,3年3个系统版本每年更换一次,很多电器商人都不知道头脑。
推荐检索算法和统计算法模型的最大区别在于,Query的处理能力和算法有召回机制
简单表示推荐算法的程序:
1:对检索关键词进行分词、重写的处理进行类别预判
2:根据用户信息,即用户以前的行为数据记录和预测的性别、年龄、购买力、店铺喜好、品牌喜好、实时行动作等信息存档
3:根据检索用户信息,根据检索用户以前的行为数据检索引擎和预测的性别、年龄、购买力、店铺喜好、品牌喜好、实时行动作为等信息存档3:根据检索用户信息的检索用户信息
也就是说,在第一关召回阶段基本上与统计模型时代的最佳化途径相同,核心是标题分词和类别,现在最大的区别是根据用户信息推荐最佳化,这是标签和正确人群标签图像最佳化的基本意义。
为什么现在一直在谈论标签,谈论人标签图像?入池实际上是为了匹配真正的消费者用户信息,通过直通车测试来判断人群也是为了通过性别、年龄和购买力来优化匹配真正的消费者。
召回机制:
通过构建子单元索引方式加快商品检索,不必经历平台上亿级的所有商品。该索引是搜索引擎中的倒置索引,利用倒置索引初始筛选商品的过程是召回阶段。
在这个阶段,不会进行复杂的计算,主要是根据现在的搜索条件进行商品候选集的快速圈定。
之后再进行粗排和精排,计算的复杂程度越来越高,计算的商品集合逐渐减少,最后完成整个排序过程。
主要召回路径分为
1:语言召回
2:向量召回
这些都是商业秘密不方便的说明,有兴趣的是学习我们的在线会员课程标签重叠游戏6是基于语言和向量召回的基础逻辑实战落地的课程。
下一阶段进入粗行列,粗行列受这些因素的影响:
粗行列作为召回后的第一个门槛,希望用户体验以时间低的模型快速排序和筛选商品,第一关系将过滤到不适合本次检索词要求的商品
为了实现这个目的,首先要明确影响粗排名得分的因素
1:类别匹配得分和文本匹配得分,
2:商品信息质量(商品发布时间、商品等级、商品等级)
3:商品组合得分
点击得分
交易得分卖方服务商业得分
在粗排列框架下,系统粗排列算法根据商品类别的预测得分进行得分
点击得分交易得分
交易得分卖方服务商业得分粗排列框架下,系统粗排列的大排列
最后是精排,检索顺序的主要目标是高相关性、高个性化的正确性。
每个用户的喜好不同,系统会根据每个用户的Query结合用户信息进行召回。然后通过粗排后,商品数量从万级下降到千级。
千级商品经排后直接向用户展示,搜索过程中商品集合的思考和具体变化如下图

前面的召回、粗排主要解决主题相关性,通过主题相关性的限制,首先缩小商品集合和我们的在线会员课程标签
精排阶段系是真正系统推荐算法发挥真正威力时,应根据用户行为反馈迅速进行机械学习建模,判断用户真实性、准确性和可持续控制性。
为什么现在的游戏和黑色技术暂时出现,核心是系统算法模型机械学习模型,系统分析用户有问题,不正确,不稳定,维持性差,可以迅速调整。
也就是说,即使发现脆弱性,研究快速有效的方法,系统也会根据你精排阶段的用户行为迅速分析学习建模,发现模型有问题,你的玩法就结束了。
猜机器学习建模的速度有多快?
想玩黑色的东西早点死去吧。
现在使用的检索顺序模型主要是
CTR模型和CVR模型,具体模型过于复杂也不需要深入,但影响这两种模型的最基本因素是用户行为数据
真的不能假的,假的也不能假的算法模型越来越智能化,算法越来越强,只有回归商业本质才能真正解决算法模型背后真正想解决的问题,算法基于商业逻辑。
2021年搜索向哪个方向发生变化:
2020年电器商人和蚂蚁是不平凡的一年。2020年也是蚂蚁从神坛上拉下来的元年,现在蚂蚁有各种各样的黑色。
基于中小卖家的走势无疑是阿里必须正面面对的现实。
如何让中小卖家回流或留在平台上,搜索该怎么做?
检索一定是基于三方的考虑,买方、卖方和平台本身,现在市场上又开始提倡坑产搜索逻辑,坑产妖风又开始,根据推荐搜索算法逻辑来谈这个问题。
为什么坑产思维是不死的小强,每次危机都会跳出来。
以统计模型为中心的坑产时代是淘宝从2003年到2015年一直使用的搜索算法模型长达13年。
同时也是淘宝和中国网分红的野蛮生长期,统计算法模式让太多电商赚钱。除了
之外,十年的奴役思维已经习惯了,在电器商圈,坑产游戏一定有人相信,其他人不一定被认可。所以,我们夹着尾巴发展的原因,时间真的可以证明一切,不用多说,做自己。
习惯性思维加上特殊时期的赚钱蝴蝶效应,使许多电器商人活在历史的长梦中。正确地说,统计算法模型的真正废除是在2019年下半年。
同学说坑产永远有效,我也这么想。
永远有效的是起爆模型坑产权重驱动和统计算法模型中的坑产排名不同。
起爆模型的坑产要素永远有效,这永远不会改变。
但是,如何有效地加上这个起爆模型的坑产权重,并不像模仿购物的意图那么简单。
坑产游戏在2021年绝对不行。淘宝不会把现在的算法系统换成15年前的。
基于三方利益:
购买者体验
卖方利益
平台的发展
搜索肯定会向高精度和高控制性发展。以标签为中心的用户标签图像仍然是影响流量精度的基本因素。
必须从标签的角度考虑和优化种子组的图像。
通过种子组的图像向相似人扩展到叶类人,业界喜好人最后向相关人扩展也是扩大流量的过程渠道。
基于推荐搜索算法逻辑:
精密排列阶段算法更强,精度更高,转化率更高,持续稳定性更强。
基于中小卖方流通的现状,优化精排阶段并非中小卖方能够简单接触。
推荐算法从搜索排名阶段出现在哪个阶段?
个人判断
一是召回阶段
二是粗排阶段
上述提到召回阶段的算法简单复盖商品为万级,排序规则也比较简单,中小卖方在召回阶段提高精度尤为重要。
在这个万级商品库中,如上下架的权重上升,中小卖方有机会上升到主页,从子单元的索引召回中寻找机会。
或者根据中小卖方的新产品和中小卖方的店铺水平进行特别优先搜索推荐,使中小卖方的新产品在低销售状态下显示,可以实现锦囊算法。
中小卖方有机会搜索主页,不调用用户信息直接打开主页的展示权可能是中小卖方最大的支持。
根据召回阶段的用户行为数据,在粗排阶段以比例融入用户信息,即标签的影响。
在初始召回阶段,类别和分词权重,看业者主图场景反应背后的人们反馈,用系统引导,给中小卖方真正参考的流量方向和成交方向。
谁疯狂地印刷用纸直接关闭黑屋,理解印刷用纸优化竞争场景,从优化人群的角度出发,适当放宽处罚。
通过召回阶段,得到的用户信息会影响粗体结果。在这个阶段,用户信息的权重比例不应该太大,流量卡也不应该太死。
在各检索顺序阶段用户信息,即用户标签对检索的影响权重的问题。
这个方向我的个人观点是可能的。

⑼ 跪求matlab图像配准帮助,本人用harris粗匹配求得几何变换模型的参变量编写ransac算法,进行精配准。


基于小波变换的多尺度图像边缘检测matlab源代码(在Matlab7.0下运行)

clear all;
load wbarb;
I = ind2gray(X,map);imshow(I);
I1 = imadjust(I,stretchlim(I),[0,1]);figure;imshow(I1);
[N,M] = size(I);

h = [0.125,0.375,0.375,0.125];
g = [0.5,-0.5];
delta = [1,0,0];

J = 3;

a(1:N,1:M,1,1:J+1) = 0;
dx(1:N,1:M,1,1:J+1) = 0;
dy(1:N,1:M,1,1:J+1) = 0;
d(1:N,1:M,1,1:J+1) = 0;

a(:,:,1,1) = conv2(h,h,I,'same');
dx(:,:,1,1) = conv2(delta,g,I,'same');
dy(:,:,1,1) = conv2(g,delta,I,'same');

x = dx(:,:,1,1);
y = dy(:,:,1,1);
d(:,:,1,1) = sqrt(x.^2+y.^2);
I1 = imadjust(d(:,:,1,1),stretchlim(d(:,:,1,1)),[0 1]);figure;imshow(I1);

lh = length(h);
lg = length(g);

for j = 1:J+1
lhj = 2^j*(lh-1)+1;
lgj = 2^j*(lg-1)+1;
hj(1:lhj)=0;
gj(1:lgj)=0;
for n = 1:lh
hj(2^j*(n-1)+1)=h(n);
end

for n = 1:lg
gj(2^j*(n-1)+1)=g(n);
end

a(:,:,1,j+1) = conv2(hj,hj,a(:,:,1,j),'same');
dx(:,:,1,j+1) = conv2(delta,gj,a(:,:,1,j),'same');
dy(:,:,1,j+1) = conv2(gj,delta,a(:,:,1,j),'same');

x = dx(:,:,1,j+1);
y = dy(:,:,1,j+1);
dj(:,:,1,j+1) = sqrt(x.^2+y.^2);

I1 = imadjust(dj(:,:,1,j+1),stretchlim(dj(:,:,1,j+1)),[0 1]);figure;imshow(I1);
end

热点内容
落叶片拍摄脚本 发布:2025-05-14 20:40:49 浏览:797
安卓为什么不能用cmwap 发布:2025-05-14 20:40:43 浏览:656
jquery获取上传文件 发布:2025-05-14 20:27:57 浏览:43
云web服务器搭建 发布:2025-05-14 20:25:36 浏览:525
汽修汽配源码 发布:2025-05-14 20:08:53 浏览:742
蜜蜂编程官网 发布:2025-05-14 19:59:28 浏览:57
优酷怎么给视频加密 发布:2025-05-14 19:31:34 浏览:635
梦三国2副本脚本 发布:2025-05-14 19:29:58 浏览:860
phpxmlhttp 发布:2025-05-14 19:29:58 浏览:434
Pua脚本 发布:2025-05-14 19:24:56 浏览:449