当前位置:首页 » 操作系统 » linux读写性能

linux读写性能

发布时间: 2022-08-31 02:50:25

❶ 为什么linux文件系统的读性能都高于写性能,有的相差还很大

因为从硬盘工作原理上写比读就要慢(写原理不同,还有额外的校验等)
其次从操作系统上看写需要更多的支持(文件锁等,fat表改写等)
最后表现出来就是写比读要慢很多。

❷ 如何1分钟内对 Linux 性能快速分析(113资讯网)

当你在IDC主机商购买一台系统为 Linux 服务器之后,我想大家第一时间就是对主机进行一个性能分析,这里我跟大家分享几个命令,能让大家在一分钟以内对自己的性能有一个大致的鸟解?

uptime

dmesg | tail

vmstat 1

mpstat -P ALL 1

pidstat 1

iostat -xz 1

free -m

sar -n DEV 1

sar -n TCP,ETCP 1

top

这10个命令到底是什么意思,我为大家一一解释一下:

1.uptime

# uptime

03:16:26 up 21:31, 1 user, load average: 10.02, 06.43, 09.02

在上面的例子中,平均负载显示是在不断增加的,1 分钟的值是 10,相比 15 分钟的值 09 来说是增加了。这个数字这么大就意味着有事情发生了.

2. dmesg | tail

# dmesg | tail

[  14.102501] ISO 9660 Extensions: RRIP_1991A

[  15.900216] ISO 9660 Extensions: Microsoft Joliet Level 3

[  15.900234] ISO 9660 Extensions: RRIP_1991A

[  17.030540] EXT4-fs (vda1): resizing filesystem from 5242619 to 13106939 blocks

[  17.151434] random: crng init done

[  17.151436] random: 7 urandom warning(s) missed e to ratelimiting

[  18.314268] EXT4-fs (vda1): resized filesystem to 13106939

[  20.394666] new mount options do not match the existing superblock, will be ignored

[  38.405804] ISO 9660 Extensions: Microsoft Joliet Level 3

[  38.407599] ISO 9660 Extensions: RRIP_1991A

这里展示的是最近 10 条系统消息日志,如果系统消息没有就不会展示。主要是看由于性能问题导致的错误。

3. vmstat 1

# vmstat 1

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----

r  b  swpd  free  buff  cache  si  so    bi    bo  in  cs us sy id wa st

1  0      0 324644 141184 1270628    0    0    10    40  207  431  1  1 99  0  0

0  0      0 324388 141184 1270628    0    0    0    0  130  280  1  1 98  0  0

0  0      0 324388 141184 1270628    0    0    0    0  89  169  0  0 100  0  0

0  0      0 324420 141184 1270628    0    0    0    0  118  225  1  0 99  0  0

0  0      0 324420 141184 1270628    0    0    0    32  125  254  0  0 99  1  0

1  1      0 324420 141184 1270628    0    0    0    68  96  171  0  0 96  4  0

0  0      0 324452 141184 1270628    0    0    0  184  127  166  0  1 96  3  0

^C

r: CPU 上的等待运行的可运行进程数。这个指标提供了判断 CPU 饱和度的数据,因为它不包含 I/O 等待的进程。可解释为:“r” 的值比 CPU 数大的时候就是饱和的。

free:空闲内存,单位是 k。如果这个数比较大,就说明你还有充足的空闲内存。“free -m” 和下面第 7 个命令,可以更详细的分析空闲内存的状态。

si,so:交换进来和交换出去的数据量,如果这两个值为非 0 值,那么就说明没有内存了。

us,sy,id,wa,st:这些是 CPU 时间的分解,是所有 CPU 的平均值。它们是用户时间,系统时间(内核),空闲,等待 I/O 时间,和被偷的时间(这里主要指其它的客户,或者使用 Xen,这些客户有自己独立的操作域)。

4. mpstat -P ALL 1

# mpstat -P ALL 1

Linux 4.15.0-88-generic (VM-0-17-ubuntu) 06/15/2020 _x86_64_ (1 CPU)

03:33:26 AM  CPU    %usr  %nice    %sys %iowait    %irq  %soft  %steal  %guest  %gnice  %idle

03:33:27 AM  all    0.00    0.00    0.00    1.00    0.00    0.00    0.00    0.00    0.00  99.00

03:33:27 AM    0    0.00    0.00    0.00    1.00    0.00    0.00    0.00    0.00    0.00  99.00

这个命令打印各个 CPU 的时间统计,可以看出整体 CPU 的使用是不是均衡的。由于我使用的是1H2G主机看不出区别!

5. pidstat 1

# pidstat 1

Linux 4.15.0-88-generic (VM-0-17-ubuntu) 06/15/2020 _x86_64_ (1 CPU)

03:34:47 AM  UID      PID    %usr %system  %guest  %wait    %CPU  CPU  Command

03:34:48 AM    0      1120    1.00    0.00    0.00    0.00    1.00    0  sshd

pidstat 命令为每个 CPU 统计信息功能。由于我使用的是1H2G主机看不出区别!

6. iostat -xz 1

# iostat -xz 1

Linux 4.15.0-88-generic (VM-0-17-ubuntu) 06/15/2020 _x86_64_ (1 CPU)

avg-cpu:  %user  %nice %system %iowait  %steal  %idle

          0.67    0.01    0.52    0.29    0.00  98.52

Device            r/s    w/s    rkB/s    wkB/s  rrqm/s  wrqm/s  %rrqm  %wrqm r_await w_await aqu-sz rareq-sz wareq-sz  svctm  %util

loop0            0.00    0.00      0.00      0.00    0.00    0.00  0.00  0.00    0.22    0.00  0.00    9.64    0.00  0.00  0.00

scd0            0.02    0.00      0.48      0.00    0.00    0.00  0.00  0.00    0.21    0.00  0.00    27.72    0.00  0.19  0.00

vda              0.64    4.07      9.15    40.59    0.00    1.99  0.00  32.85    3.58    2.31  0.01    14.31    9.96  0.24  0.11

avg-cpu:  %user  %nice %system %iowait  %steal  %idle

          0.00    0.00    0.00    0.00    0.00  100.00

Device            r/s    w/s    rkB/s    wkB/s  rrqm/s  wrqm/s  %rrqm  %wrqm r_await w_await aqu-sz rareq-sz wareq-sz  svctm  %util

r/s, w/s, rkB/s, wkB/s:这些表示设备上每秒钟的读写次数和读写的字节数(单位是k字节)。这些可以看出设备的负载情况。性能问题可能就是简单的因为大量的文件加载请求。

await:I/O 等待的平均时间(单位是毫秒)。这是应用程序所等待的时间,包含了等待队列中的时间和被调度服务的时间。过大的平均等待时间就预示着设备超负荷了或者说设备有问题了。

avgqu-sz:设备上请求的平均数。数值大于 1 可能表示设备饱和了(虽然设备通常都是可以支持并行请求的,特别是在背后挂了多个磁盘的虚拟设备)。

%util:设备利用率。是使用率的百分数,展示每秒钟设备工作的时间。这个数值大于 60% 则会导致性能很低(可以在 await 中看),当然这也取决于设备特点。这个数值接近 100% 则表示设备饱和了。

7. free -m/h

ubuntu@VM-0-17-ubuntu:~# free -m

              total        used        free      shared  buff/cache  available

Mem:          1833        137        313          5        1381        1506

Swap:            0          0          0

ubuntu@VM-0-17-ubuntu:~$ free -h

              total        used        free      shared  buff/cache  available

Mem:          1.8G        139M        311M        5.8M        1.3G        1.5G

Swap:            0B          0B          0B

这个命令我相信大家都熟悉,buffers:用于块设备 I/O 缓冲的缓存,cached:用于文件系统的页缓存。

8. sar -n DEV 1

ubuntu@VM-0-17-ubuntu:~# sar -n DEV 1

Linux 4.15.0-88-generic (VM-0-17-ubuntu) 06/15/2020 _x86_64_ (1 CPU)

03:43:35 AM    IFACE  rxpck/s  txpck/s    rxkB/s    txkB/s  rxcmp/s  txcmp/s  rxmcst/s  %ifutil

03:43:36 AM      eth0    11.00    10.00      0.79      1.06      0.00      0.00      0.00      0.00

03:43:36 AM        lo      0.00      0.00      0.00      0.00      0.00      0.00      0.00      0.00

使用这个工具是可以检测网络接口的吞吐:rxkB/s 和 txkB/s,作为收发数据负载的度量,也是检测是否达到收发极限。在上面这个例子中,eth0 接收数据达到 0.79 kb 字节/秒,发送数据达到1.06 字节/秒。

9. sar -n TCP,ETCP 1

ubuntu@VM-0-17-ubuntu:~# sar -n TCP,ETCP 1

Linux 4.15.0-88-generic (VM-0-17-ubuntu) 06/15/2020 _x86_64_ (1 CPU)

03:49:56 AM  active/s passive/s    iseg/s    oseg/s

03:49:57 AM      0.00      0.00      5.05      3.03

03:49:56 AM  atmptf/s  estres/s retrans/s isegerr/s  orsts/s

03:49:57 AM      0.00      0.00      0.00      0.00      0.00

这是对 TCP 关键指标的统计,它包含了以下内容:

active/s:每秒本地发起的 TCP 连接数(例如通过 connect() 发起的连接)。

passive/s:每秒远程发起的连接数(例如通过 accept() 接受的连接)。

retrans/s:每秒TCP重传数。

10. top

ubuntu@VM-0-17-ubuntu:~# top

top - 03:53:20 up 1 day,  1:41,  1 user,  load average: 0.01, 0.04, 0.00

Tasks:  89 total,  1 running,  52 sleeping,  0 stopped,  0 zombie

%Cpu(s):  0.3 us,  0.3 sy,  0.0 ni, 99.3 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st

KiB Mem :  1877076 total,  317436 free,  143420 used,  1416220 buff/cache

KiB Swap:        0 total,        0 free,        0 used.  1540856 avail Mem

  PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM    TIME+ COMMAND                                                                                     

3730 root      20  0  105688  6812  5840 S  0.3  0.4  0:00.01 sshd                                                                                         

7546 root      20  0  644608  14924  6776 S  0.3  0.8  2:48.99 YDService                                                                                   

    1 root      20  0  159892  9260  6796 S  0.0  0.5  0:06.45 systemd                                                                                     

    2 root      20  0      0      0      0 S  0.0  0.0  0:00.00 kthreadd                                                                                     

    4 root      0 -20      0      0      0 I  0.0  0.0  0:00.00 kworker/0:0H                                                                                 

    6 root      0 -20      0      0      0 I  0.0  0.0  0:00.00 mm_percpu_wq                                                                                 

    7 root      20  0      0      0      0 S  0.0  0.0  0:04.29 ksoftirqd/0                                                                                 

    8 root      20  0      0      0      0 I  0.0  0.0  0:08.85 rcu_sched                                                                                   

    9 root      20  0      0      0      0 I  0.0  0.0  0:00.00 rcu_bh                                                                                       

  10 root      rt  0      0      0      0 S  0.0  0.0  0:00.00 migration/0                                                                                 

  11 root      rt  0      0      0      0 S  0.0  0.0  0:00.16 watchdog/0                                                                                   

  12 root      20  0      0      0      0 S  0.0  0.0  0:00.00 cpuhp/0                                                                                     

  13 root      20  0      0      0      0 S  0.0  0.0  0:00.00 kdevtmpfs                                                                                   

top 命令包含了很多我们前面提到的指标。这个命令可以很容易看出指标的变化表示负载的变化,这个看起来和前面的命令有很大不同。

top 的一个缺陷也比较明显,很难看出变化趋势,其它像 vmstat 和 pidstat 这样的工具就会很清晰,它们是以滚动的方式输出统计信息。所以如果你在看到有问题的信息时没有及时的暂停下来(Ctrl-S 是暂停, Ctrl-Q 是继续),那么这些有用的信息就会被清屏。

文章原文: https://www.113p.cn/129.html  (来都来了,就去我博客看下!!)

❸ Linux CPU性能调优

CPU是影响linux性能的主要因素之一。vmstat命令:显示关于系统各种资源之间相关性能的简要信息。
procs那栏中的r表示运行和等待CPU时间片的进程数,如果这个值长期大于系统CPU的个数那就说明CPU不足,需要增加CPU。memory那栏中:swapd表示切换到内存交换区的内存数量。free表示当前空闲的物理内存数量。buff表示块设备(/dev/sda)读写需要的缓冲。cache表示文件系统的缓存。如果值较大,说明缓存中的文件数较多。swap中si表示由磁盘调入内存。so表示由内存调入磁盘。在一般情况下,si和so的值都为0,如果这2个值长期不为0
的话,说明系统内存不足,需要添加内存。
www.shiwu.com
io:显示磁盘读写状况bi表示读磁盘数据的总量。bo表示写磁盘数据的总量。system:显示间隔内发生的中断数in表示在磨一时间间隔中每秒设备中断数。cs表示每秒产生的上下文切换次数。这2个值越大,则说明内核消耗CPU时间就越多。cpu:显示了CPU的使用状态us显示了用户进程消耗CPU时间百分比。如果us值越高则说明消耗CPU的时间越多,如果us的值长期大于50%则需要优化程序或算法。sy显示内核消耗CPU时间百分比。如果us+sy值大于80%,则可能存在CPU资源不足情况。id显示CPU处于空闲状态时间百分比。wa显示IO等待所占用CPU时间百分比。wa越高,则IO等待越严重,则考虑提高磁盘读写性能。wa参考值20%。sar命令:可以对每个方面进行单独的统计,但是增加了系统开销,但是对系统的统计结果不会有很大影响。
由上图可以看出我的系统只有一个CPU,如果有多个CPU的话会显示多个。在多个CPU的情况下,如果想对其中一个CPU进行信息统计的话,则使用sar
–P
0
2
3
对第一个CPU进行信息统计。%user显示用户进程消耗的CPU时间百分比%nice显示运行正常进程所消耗CPU时间百分比%system显示了系统进程消耗CPU时间百分比%iowait显示IO等待所占用CPU时间百分比%idle显示了CPU处在空闲时间百分比%steal显示在内存相对紧张的环境下pagein强制对不同的页面进行的steal操作。最后一行Average显示了上面统计的平均值。如果在一个多CPU的系统中,如果程序使用了单线程,会造成CPU整体使用率不高,导致一个CPU在使用,其他CPU处在闲置状态。
www.shiwu.com
iostat命令:主要用于统计磁盘IO状态,但是也能查看CPU使用情况,但是只能显示所有CPU的平均信息。
这里各列的意思与sar中的意思一样。uptime命令:主要统计系统当前的运行状况。
系统在1分钟内,5分钟内,15分钟内的平均负荷。上面的vmstat,sar,iostat,uptime命令主要是用于统计CPU信息的,还可以通过top,ps查看进程使用情况,来判断CPU负载过大的原因。
作者
alan9101

❹ LINUX下如何用DD命令来测试存储的读写性能

通常就是 计算读写一定大小的块耗费的时间 ,本身有速度输出
基本的测试如下
磁盘读速度
sync;time dd if=[mountpoint] of=/dev/null bs=4096k count=2000
测试数据大小为:4096k×2000
磁盘写速度
sync;time dd if=/dev/zero of=[mountpoint] bs=4096k count=2000
测试数据大小为:4096k×2000
[mountpoint]替换为你实际的挂载点
以上都是测试 2000个 4M块的速度 可以通过改变 bs大小来分析不同级别块的性能

可以通过写更详细的脚本来实现更详细的输出

❺ 如何排除linux系统的读写缓存进行磁盘性能测试

1、先熟悉两个特殊的设备:
(1)/dev/null:回收站、无底洞。
(2)/dev/zero:产生字符。
2、测试磁盘写能力
代码如下:
time dd if=/dev/zero of=/testw.dbf bs=4k count=100000
因为/dev//zero是一个伪设备,它只产生空字符流,对它不会产生IO,所以,IO都会集中在of文件中,of文件只用于写,所以这个命令相当于测试磁盘的写能力。命令结尾添加oflag=direct将跳过内存缓存,添加oflag=sync将跳过hdd缓存。
3、测试磁盘读能力
代码如下:
time dd if=/dev/sdb of=/dev/null bs=4k
因为/dev/sdb是一个物理分区,对它的读取会产生IO,/dev/null是伪设备,相当于黑洞,of到该设备不会产生IO,所以,这个命令的IO只发生在/dev/sdb上,也相当于测试磁盘的读能力。(Ctrl+c终止测试)
4、测试同时读写能力
代码如下:
time dd if=/dev/sdb of=/testrw.dbf bs=4k
在这个命令下,一个是物理分区,一个是实际的文件,对它们的读写都会产生IO(对/dev/sdb是读,对/testrw.dbf是写),假设它们都在一个磁盘中,这个命令就相当于测试磁盘的同时读写能力。

❻ 如何进行linux 磁盘io读写性能测试分析,并且监控、记录测试数据

#!/bin/bash
device_name=(`df -lh |grep "^/dev/sd"|awk '{print $1}'`)
mount_dir=(`df -lh |grep "^/dev/sd"|awk '{print $6}'`)
#echo ${device_name[@]}
#echo ${mount_dir[@]}
num=${#device_name[@]}
#echo $num

for ((i=0;i<=$num-1;i++));
do
touch ${mount_dir[$i]}/file1
if [ $? -eq 0 ]
then
echo -e "\e[32m${device_name[$i]} is OK\e[0m"
else
echo -e "\e[31m${device_name[$i]} is error\e[0m"
fi
rm -rf ${mount_dir[$i]}/file1
done
~

这是一个检查磁盘好坏的脚本,是我线上用的,但我没写到计划任务里,只是偶尔检查一下磁盘,祝你成功

❼ linux怎样提升磁盘读写性能

关于页面缓存的信息,可以用
cat /proc/meminfo
看到。其中的Cached 指用于pagecache的内存大小(diskcache-SwapCache)。随着写入缓存页,Dirty 的值会增加。
一旦开始把缓存页写入硬盘,Writeback的值会增加直到写入结束。

Linux 用pdflush进程把数据从缓存页写入硬盘,查看有多少个pdflush进程
cat /proc/sys/vm/nr_pdflush_threads

pdflush的行为受/proc/sys/vm中的参数的控制
/proc/sys/vm/dirty_writeback_centisecs (default 500):
1/100秒, 多长时间唤醒pdflush将缓存页数据写入硬盘。默认5秒唤醒2个(更多个)线程。
如果wrteback的时间长于dirty_writeback_centisecs的时间,可能会出问题。

pdflush的第一件事是读取
/proc/sys/vm/dirty_expire_centiseconds (default 3000)
1/100秒。缓存页里数据的过期时间(旧数据),在下一个周期内被写入硬盘。默认30秒是一个很长的时间。

第二件事是判断内存是否到了要写入硬盘的限额,由参数决定:
/proc/sys/vm/dirty_background_ratio (default 10)
百分值,保留过期页缓存(脏页缓存)的最大值。是以MmeFree+Cached-Mapped的值为基准的

pdflush写入硬盘看两个参数:
1 数据在页缓存中是否超出30秒,如果是,标记为脏页缓存;
2 脏页缓存是否达到工作内存的10%;

以下参数也会影响到pdflush
/proc/sys/vm/dirty_ratio (default 40)
总内存的最大百分比,系统所能拥有的最大脏页缓存的总量。超过这个值,开启pdflush写入硬盘。如果cache增长快于pdflush,那么整个系统在40%的时候遇到I/O瓶颈,所有的I/O都要等待cache被pdflush进硬盘后才能重新开始。

对于有高度写入操作的系统
dirty_background_ratio: 主要调整参数。如果需要把缓存持续的而不是一下子大量的写入硬盘,降低这个值。
dirty_ratio: 第二调整参数。

Swapping参数
/proc/sys/vm/swappiness
默认,linux倾向于从物理内存映射到硬盘缓存,保持硬盘缓存尽可能大。未用的页缓存会被放进swap区。
数值为0,将会避免使用swapping
100,将会尽量使用swapping
少用swapping会增加程序的响应速度;多用swapping将会提高系统的可用性。

如果有大量的写操作,为避免I/O的长时间等待,可以设置:
$ echo 5 > /proc/sys/vm/dirty_background_ratio
$ echo 10 > /proc/sys/vm/dirty_ratio

文件系统数据缓冲需要频繁的内存分配。加大保留内存的值能提升系统速度和稳定。小于8G的内存,保留内存为64M,大于8G的设置为256M
$ echo 65536 > /proc/sys/vm/min_free_kbytes


I/O 调度器
cat /sys/block/[disk]/queue/scheler

4中调度算法
noop anticipatory deadline [cfq]
deadline : deadline 算法保证对既定的IO请求以最小的延迟时间。
anticipatory: 有个IO发生后,如果又有进程请求IO,则产生一个默认6ms猜测时间,猜测下一个进程请求IO是干什么。这对于随机读取会造成较大的延时。
数据库应用很糟糕,而对于Web Server等则会表现不错。
cfq: 对每个进程维护一个IO队列,各个进程发来的IO请求会被cfq以轮循方式处理,对每一个IO请求都是公平。适合离散读的应用。
noop: 对所有IO请求都用FIFO队列形式处理。默认IO不会存在性能问题。

改变调度器
$ echo deadline > /sys/block/sdX/queue/scheler
对于数据库服务器,deadline算法是推荐的。

提高调度器请求队列的
$ echo 4096 > /sys/block/sdX/queue/nr_requests

有大量的读请求,默认的请求队列应付不过来,可以提高这个值。缺点是要牺牲一定的内存。
为了增加连续读取的吞吐量,可以增加预读数据量。预读的实际值是自适应的,所以使用一个较高的值,不会降低小型随机存取的性能。
$ echo 4096 > /sys/block/sdX/queue/read_ahead_kb
如果LINUX判断一个进程在顺序读取文件,那么它会提前读取进程所需文件的数据,放在缓存中。服务器遇到磁盘写活动高峰,导致请求处理延迟非常大(超过3秒)。通过调整内核参数,将写活动的高峰分布成频繁的多次写,每次写入的数据比较少。这样可以把尖峰的写操作削平成多次写操作。以这种方式执行的效率比较低,因为内核不太有机会组合写操作。但对于繁忙的服务器,写操作将更一致地进行,并将极大地改进交互式性能。

/proc/sys/vm/dirty_ratio

控制文件系统的写缓冲区的大小,单位是百分比,表示占系统内存的百分比,表示当写缓冲使用到系统内存多少的时候,开始向磁盘写出数据。增大之会使用更多系统内存用于磁盘写缓冲,也可以极大提高系统的写性能。但是,当你需要持续、恒定的写入场合时,应该降低其数值。

/proc/sys/vm/dirty_background_ratio

控制文件系统的pdflush进程,在何时刷新磁盘。单位是百分比,表示系统内存的百分比,pdflush用于将内存中的内容和文件系统进行同步,比如说,当一个文件在内存中进行修改,pdflush负责将它写回硬盘.每当内存中的垃圾页(dirty page)超过10%的时候,pdflush就会将这些页面备份回硬盘.增大之会使用更多系统内存用于磁盘写缓冲,也可以极大提高系统的写性能。但是,当你需要持续、恒定的写入场合时,应该降低其数值:

/proc/sys/vm/dirty_writeback_centisecs

控制内核的脏数据刷新进程pdflush的运行间隔。单位是 1/100 秒。缺省数值是500,也就是 5 秒。如果你的系统是持续地写入动作,那么实际上还是降低这个数值比较好,这样可以把尖峰的写操作削平成多次写操作。
如果你的系统是短期地尖峰式的写操作,并且写入数据不大(几十M/次)且内存有比较多富裕,那么应该增大此数值。
该参数的设置应该小于dirty_expire_centisecs,但也不能太小,太小I/O太频繁,反而
使系统性能下降。具体可能需要在生产环境上测试。据说1:6 (dirty_expire_centisecs : dirty_writeback_centisecs )的比例比较好。

/proc/sys/vm/dirty_expire_centisecs

声明Linux内核写缓冲区里面的数据多“旧”了之后,pdflush进程就开始考虑写到磁盘中去。单位是 1/100秒。缺省是 30000,也就是 30 秒的数据就算旧了,将会刷新磁盘。对于特别重载的写操作来说,这个值适当缩小也是好的,但也不能缩小太多,因为缩小太多也会导致IO提高太快。
当然,如果你的系统内存比较大,并且写入模式是间歇式的,并且每次写入的数据不大(比如几十M),那么这个值还是大些的好。

/proc/sys/vm/vfs_cache_pressure

表示内核回收用于directory和inode cache内存的倾向;缺省值100表示内核将根据pagecache和swapcache,把directory和inode cache保持在一个合理的百分比;降低该值低于100,将导致内核倾向于保留directory和inode cache;增加该值超过100,将导致内核倾向于回收directory和inode cache

/proc/sys/vm/min_free_kbytes

表示强制Linux VM最低保留多少空闲内存(Kbytes)。
缺省设置:724(512M物理内存)

/proc/sys/vm/nr_pdflush_threads

表示当前正在运行的pdflush进程数量,在I/O负载高的情况下,内核会自动增加更多的pdflush进程。

/proc/sys/vm/overcommit_memory

指定了内核针对内存分配的策略,其值可以是0、1、2。

0, 表示内核将检查是否有足够的可用内存供应用进程使用;如果有足够的可用内存,内存申请允许;否则,内存申请失败,并把错误返回给应用进程。

1, 表示内核允许分配所有的物理内存,而不管当前的内存状态如何。

2, 表示内核允许分配超过所有物理内存和交换空间总和的内存(参照overcommit_ratio)。

缺省设置:0

/proc/sys/vm/overcommit_ratio

如果overcommit_memory=2,可以过载内存的百分比,通过以下公式来计算系统整体可用内存。系统可分配内存=交换空间+物理内存*overcommit_ratio/100
缺省设置:50(%)

/proc/sys/vm/page-cluster

表示在写一次到swap区的时候写入的页面数量,0表示1页,1表示2页,2表示4页。
缺省设置:3(2的3次方,8页)

/proc/sys/vm/swapiness

表示系统进行交换行为的程度,数值(0-100)越高,越可能发生磁盘交换。

更改:
/etc/sysctl.conf

vm.dirty_ratio=40

sysctl -p

查看:

find /proc/sys/vm -name dirty* -print | while read name; do echo $name ;cat ${name}; done

❽ Linux 如何测试 IO 性能(磁盘读写速度

linux下测试磁盘IO读写速度
[root@node3 /]# time dd if=/dev/sda2 of=/dev/null bs=8k count=524288
524288+0 records in
524288+0 records out
4294967296 bytes (4.3 GB) copied, 37.4222 seconds, 115 MB/s
real 0m37.497s
user 0m0.036s
sys 0m1.320s
了4.3G的数据,平均速度为115M/s

[root@node3 /]# hdparm -t /dev/sda2
/dev/sda2:
Timing buffered disk reads: 284 MB in 3.00 seconds = 94.55 MB/sec

[root@node3 /]# hdparm -t /dev/sda2
/dev/sda2:
Timing buffered disk reads: 292 MB in 3.02 seconds = 96.82 MB/sec

读了将近300M的数据,平均速度大约为95M/s
经过以上的测试数据大体估算该磁盘的性能大约为100M/s

❾ 怎样分析linux的性能指标

一、处理器参数
这是一个很简单的参数,它直观的描述了每个CPU的利用率。在xSeries架构中,如果CPU的利用率长时间的超过80%,就可能是出现了处理器的瓶颈。
Runable processes
这个值描述了正在准备被执行的进程,在一个持续时间里这个值不应该超过物理CPU数量的10倍,否则CPU方面就可能存在瓶颈。
Blocked
描述了那些因为等待I/O操作结束而不能被执行的进程,Blocked可能指出你正面临I/O瓶颈。
User time
描述了处理用户进程的百分比,包括nice time。如果User time的值很高,说明系统性能用在处理实际的工作。
System time
描述了CPU花费在处理内核操作包括IRQ和软件中断上面的百分比。如果system time很高说明系统可能存在网络或者驱动堆栈方面的瓶颈。一个系统通常只花费很少的时间去处理内核的操作。
Idle time
描述了CPU空闲的百分比。
Nice time
描述了CPU花费在处理re-nicing进程的百分比。
Context switch
系统中线程之间进行交换的数量。
Waiting
CPU花费在等待I/O操作上的总时间,与blocked相似,一个系统不应该花费太多的时间在等待I/O操作上,否则你应该进一步检测I/O子系统是否存在瓶颈。
Interrupts
Interrupts值包括硬Interrupts和软Interrupts,硬Interrupts会对系统性能带
来更多的不利影响。高的Interrupts值指出系统可能存在一个软件的瓶颈,可能是内核或者驱动程序。注意Interrupts值中包括CPU时钟导
致的中断(现代的xServer系统每秒1000个Interrupts值)。
二、内存参数
Free memory
相比其他操作系统,Linux空闲内存的值不应该做为一个性能参考的重要指标,因为就像我们之前提到过的,Linux内核会分配大量没有被使用的内存作为文件系统的缓存,所以这个值通常都比较小。
Swap usage
这个值描述了已经被使用的swap空间。Swap
usage只表示了Linux管理内存的有效性。对识别内存瓶颈来说,Swap In/Out才是一个比较又意义的依据,如果Swap
In/Out的值长期保持在每秒200到300个页面通常就表示系统可能存在内存的瓶颈。
Buffer and cache
这个值描述了为文件系统和块设备分配的缓存。注意在Red Hat Enterprise Linux
3和更早一些的版本中,大部分空闲内存会被分配作为缓存使用。在Red Hat Enterprise Linux
4以后的版本中,你可以通过修改/proc/sys/vm中的page_cache_tuning来调整空闲内存中作为缓存的数量。
Slabs
描述了内核使用的内存空间,注意内核的页面是不能被交换到磁盘上的。
Active versus inactive memory
提供了关于系统内存的active内存信息,Inactive内存是被kswapd守护进程交换到磁盘上的空间。
三、网络参数
Packets received and sent
这个参数表示了一个指定网卡接收和发送的数据包的数量。
Bytes received and sent
这个参数表示了一个指定网卡接收和发送的数据包的字节数。
Collisions per second
这个值提供了发生在指定网卡上的网络冲突的数量。持续的出现这个值代表在网络架构上出现了瓶颈,而不是在服务器端出现的问题。在正常配置的网络中冲突是非常少见的,除非用户的网络环境都是由hub组成。
Packets dropped
这个值表示了被内核丢掉的数据包数量,可能是因为防火墙或者是网络缓存的缺乏。
Overruns
Overruns表达了超出网络接口缓存的次数,这个参数应该和packets dropped值联系到一起来判断是否存在在网络缓存或者网络队列过长方面的瓶颈。
Errors
这个值记录了标志为失败的帧的数量。这个可能由错误的网络配置或者部分网线损坏导致,在铜口千兆以太网环境中部分网线的损害是影响性能的一个重要因素。
四、块设备参数
Iowait
CPU等待I/O操作所花费的时间。这个值持续很高通常可能是I/O瓶颈所导致的。
Average queue length
I/O请求的数量,通常一个磁盘队列值为2到3为最佳情况,更高的值说明系统可能存在I/O瓶颈。
Average wait
响应一个I/O操作的平均时间。Average wait包括实际I/O操作的时间和在I/O队列里等待的时间。
Transfers per second
描述每秒执行多少次I/O操作(包括读和写)。Transfers per second的值与kBytes per second结合起来可以帮助你估计系统的平均传输块大小,这个传输块大小通常和磁盘子系统的条带化大小相符合可以获得最好的性能。
Blocks read/write per second
这个值表达了每秒读写的blocks数量,在2.6内核中blocks是1024bytes,在早些的内核版本中blocks可以是不同的大小,从512bytes到4kb。
Kilobytes per second read/write
按照kb为单位表示读写块设备的实际数据的数量。

热点内容
安卓版设置里的隐身在哪里 发布:2025-05-14 17:35:16 浏览:332
linuxshell密码 发布:2025-05-14 17:21:11 浏览:200
安卓手机听筒在哪里关闭 发布:2025-05-14 17:16:20 浏览:456
我的世界炸毁50万服务器 发布:2025-05-14 17:16:07 浏览:123
存储站源 发布:2025-05-14 17:14:20 浏览:864
win2008的ftp设置 发布:2025-05-14 17:03:31 浏览:665
莱克发的工资卡密码是多少 发布:2025-05-14 16:57:10 浏览:179
方舟怎么用自己的存档进入别人的服务器 发布:2025-05-14 16:46:25 浏览:878
微博视频高清上传设置 发布:2025-05-14 16:38:41 浏览:549
数据库图书管理设计 发布:2025-05-14 16:33:52 浏览:379