遗传算法源程序
Ⅰ 遗传算法解决有时间窗的车辆调度问题源程序出错,求教
1、要看你组合优化是属于哪种问题,一般的组合优化都是混合整数线性或非线性的,那么就不行了,因此要对遗传算法改进才能计算。2、如果有现成的工具箱求解你的组合优化问题肯定要方便些,但碰到具体问题,可能要对参数进行一些设置更改
Ⅱ 求一个基本遗传算法的MATLAB代码
我发一些他们的源程序你,都是我在文献中搜索总结出来的:
%
下面举例说明遗传算法
%
%
求下列函数的最大值
%
%
f(x)=10*sin(5x)+7*cos(4x)
x∈[0,10]
%
%
将
x
的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为
(10-0)/(2^10-1)≈0.01
。
%
%
将变量域
[0,10]
离散化为二值域
[0,1023],
x=0+10*b/1023,
其中
b
是
[0,1023]
中的一个二值数。
%
%
%
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
%
编程
%-----------------------------------------------
%
2.1初始化(编码)
%
initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
%
长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name:
initpop.m
%初始化
function
pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength));
%
rand随机产生每个单元为
{0,1}
行数为popsize,列数为chromlength的矩阵,
%
roud对矩阵的每个单元进行圆整。这样产生的初始种群。
%
2.2.2
将二进制编码转化为十进制数(2)
%
decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
%
(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
%
参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name:
decodechrom.m
%将二进制编码转换成十进制
function
pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
%
2.4
选择复制
%
选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
%
根据方程
pi=fi/∑fi=fi/fsum
,选择步骤:
%
1)
在第
t
代,由(1)式计算
fsum
和
pi
%
2)
产生
{0,1}
的随机数
rand(
.),求
s=rand(
.)*fsum
%
3)
求
∑fi≥s
中最小的
k
,则第
k
个个体被选中
%
4)
进行
N
次2)、3)操作,得到
N
个个体,成为第
t=t+1
代种群
%遗传算法子程序
%Name:
selection.m
%选择复制
function
[newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue);
%求适应值之和
fitvalue=fitvalue/totalfit;
%单个个体被选择的概率
fitvalue=cumsum(fitvalue);
%如
fitvalue=[1
2
3
4],则
cumsum(fitvalue)=[1
3
6
10]
[px,py]=size(pop);
ms=sort(rand(px,1));
%从小到大排列
fitin=1;
newin=1;
while
newin<=px
if(ms(newin))
评论
0
0
加载更多
Ⅲ 基本遗传算法源程序C语言
你肯定写了 #include <graph.c>
你确定路径对了么 你确定tc文件夹的include文件夹中有gragh.c么
Ⅳ NSGA2遗传算法在matlab具体使用方法,有源代码该如何修改程序中的参数及设置
遗传算法在matlab里有两个函数,分别是ga和gaoptimset,前者用来调用遗传算法,后者用来设定遗传算法的参数,具体内容可以doc ga查看,遗传算法有哪些参数可以直接在命令窗口输入gaoptimset查看,祝好。
Ⅳ Matlab下的遗传算法求解TSP问题的源程序
n个城市,编号为1---n
for循环的次数是蚂蚁重复城市的次数,比如5个蚂蚁放到4个城市,需要重复两遍才能放完蚂蚁,每次循环产生n个1---n的随机数,相当于随机n个城市,产生城市序列
循环结束
tabu一句表示将m个蚂蚁随机,每个蚂蚁放到前面产生的城市序列中,每个蚂蚁一个城市,需要m个,所以提取前面1:m个序列
'表示转置,没有多大用处,可能参与后面的计算方便。
我感觉如果m,n很大的话,你这样做会产生很大的浪费,计算很多的随机数,这样的话更好,一句就得:(如果变量randpos后面没有用到的话,如果用到了,还要用你的程序)
tabu=ceil(n*rand(1,m))'
Ⅵ 基本遗传算法源程序
下面这个链接中,遗传算法的详细说明和例子都有了
http://ke..com/view/45853.html?wtp=tt
再给你补充几个例子:
3.4.4.1重温轮盘赌选择 (Roulette Whell Selection Revisited )
SGenome& CgaBob::RouletteWheelSelection()
{
double fSlice = RandFloat()*m_dTotalFitnessScore;
我们从零到整个适应分范围内随机选取了一实数fSlice 。
我喜欢把此数看作整个适应性分数饼图中的一块,如早先在图3.4中所示。
〔但并不是其中一块,译注〕
double cfTotal = O;
int SelectedGenome = 0;
for (int i=O; i<m_iPopSize; ++i)
{
cfTotal += m_vecGenomes[i].dFitness;
if (cfTotal > fSlice)
{
SelectedGenome = i;
break;
}
}
return m_vecGenomes[SelectedGenome];
}
现在,程序通过循环来考察各基因组,把它们相应的适应性分数一个一个累加起来,直到这一 部分累加和 大于 fSlice 值时,
就返回该基因组。就是这样简单。
3.4.4.2 重温杂交操作(Crossover Revisited)
这一函数要求2个染色体在同一随机位置上断裂开,然后将它们在断开点以后的部分进行互换,以形成 2 个新的染色体 ( 子代 ) 。
void CgaBob::Crossover( const vector<int> &mum, const vector<int> &dad, vector<int> &baby1, vector<int> &baby2)
{
这一函数共传入 4 个参数,参数传递均采用引用( reference )方式,
其中前2 个传入父辈 parent 的染色体(别忘记 , 染色体只是一个整数型的矢量std::vector ),
后 2 个则是用来 子代染色体的空矢量。
if ( (RandFloat() > m_dCrossoverRate) || (mum == dad) )
{
baby1 = mum;
baby2 = dad;
return;
}
这里,首先是进行检测,看 mum 和 dad 两个上辈是否需要进行杂交。
杂交发生的概率是由参数 m_dCrossoverRate 确定。
如果不发生杂交,则2个上辈染色体不作任何改变地就直接复制为子代,函数立即返回。
int cp = RandInt(0, m_iChromoLength - 1) ;
沿染色体的长度随机选择一个点来裂开染色体。
for (int i=0; i<cp; i++)
{
baby1.push_back(mum[i]);
baby2.push_back(dad[i]);
}
for (i=cp; i<mum.size(); i++)
{
baby1.push_back(dad[i]);
baby2.push_back(mum[i]);}
这两个小循环把 2 个 parent 染色体在杂交点( CP,crossover point )
以后的所有位进行了互换,并把新的染色体赋给了 2 个子代 : baby1 和 baby2 。
3.4.4.3 重温变异操作(Mutation Revisited)
这一函数所做的工作,不过就是沿着一个染色体的长度,一bit一bit地进行考察,并按m_dMutationRate给定的几率,将其中某些bit实行翻转。
void CgaBob::Mutate(vector<int> &vecBits)
{
for (int curBit=0; curBit<vecBits.size(); curBit++)
{ //是否要翻转此bit?
if (RandFloat() < m_dMutationRate)
( //是,就翻转此bit
vecBits[curBit] = !vecBits[curBit];
} }//移到下一个bit
}
Ⅶ 请问这个MATLAB遗传算法源代码应该怎样使用
在command窗口中输入函数名字加参数值,把括号里的参数变成具体数后在命令窗口中输入ga(d,termops,num,pc,cxops,pm,alpha)
Ⅷ MATLAB编遗传算法源程序
遗传算法实例:
也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。
对于初学者,尤其是还没有编程经验的非常有用的一个文件
遗传算法实例
% 下面举例说明遗传算法 %
% 求下列函数的最大值 %
% f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] %
% 将 x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为 (10-0)/(2^10-1)≈0.01 。 %
% 将变量域 [0,10] 离散化为二值域 [0,1023], x=0+10*b/1023, 其中 b 是 [0,1023] 中的一个二值数。 %
% %
%--------------------------------------------------------------------------------------------------------------%
%--------------------------------------------------------------------------------------------------------------%
% 编程
%-----------------------------------------------
% 2.1初始化(编码)
% initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),
% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。
%遗传算法子程序
%Name: initpop.m
%初始化
function pop=initpop(popsize,chromlength)
pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵,
% roud对矩阵的每个单元进行圆整。这样产生的初始种群。
% 2.2 计算目标函数值
% 2.2.1 将二进制数转化为十进制数(1)
%遗传算法子程序
%Name: decodebinary.m
%产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制
function pop2=decodebinary(pop)
[px,py]=size(pop); %求pop行和列数
for i=1:py
pop1(:,i)=2.^(py-i).*pop(:,i);
end
pop2=sum(pop1,2); %求pop1的每行之和
% 2.2.2 将二进制编码转化为十进制数(2)
% decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置
% (对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),
% 参数1ength表示所截取的长度(本例为10)。
%遗传算法子程序
%Name: decodechrom.m
%将二进制编码转换成十进制
function pop2=decodechrom(pop,spoint,length)
pop1=pop(:,spoint:spoint+length-1);
pop2=decodebinary(pop1);
% 2.2.3 计算目标函数值
% calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。
%遗传算法子程序
%Name: calobjvalue.m
%实现目标函数的计算
function [objvalue]=calobjvalue(pop)
temp1=decodechrom(pop,1,10); %将pop每行转化成十进制数
x=temp1*10/1023; %将二值域 中的数转化为变量域 的数
objvalue=10*sin(5*x)+7*cos(4*x); %计算目标函数值
% 2.3 计算个体的适应值
%遗传算法子程序
%Name:calfitvalue.m
%计算个体的适应值
function fitvalue=calfitvalue(objvalue)
global Cmin;
Cmin=0;
[px,py]=size(objvalue);
for i=1:px
if objvalue(i)+Cmin>0
temp=Cmin+objvalue(i);
else
temp=0.0;
end
fitvalue(i)=temp;
end
fitvalue=fitvalue';
% 2.4 选择复制
% 选择或复制操作是决定哪些个体可以进入下一代。程序中采用赌轮盘选择法选择,这种方法较易实现。
% 根据方程 pi=fi/∑fi=fi/fsum ,选择步骤:
% 1) 在第 t 代,由(1)式计算 fsum 和 pi
% 2) 产生 {0,1} 的随机数 rand( .),求 s=rand( .)*fsum
% 3) 求 ∑fi≥s 中最小的 k ,则第 k 个个体被选中
% 4) 进行 N 次2)、3)操作,得到 N 个个体,成为第 t=t+1 代种群
%遗传算法子程序
%Name: selection.m
%选择复制
function [newpop]=selection(pop,fitvalue)
totalfit=sum(fitvalue); %求适应值之和
fitvalue=fitvalue/totalfit; %单个个体被选择的概率
fitvalue=cumsum(fitvalue); %如 fitvalue=[1 2 3 4],则 cumsum(fitvalue)=[1 3 6 10]
[px,py]=size(pop);
ms=sort(rand(px,1)); %从小到大排列
fitin=1;
newin=1;
while newin<=px
if(ms(newin))<fitvalue(fitin)
newpop(newin)=pop(fitin);
newin=newin+1;
else
fitin=fitin+1;
end
end
% 2.5 交叉
% 交叉(crossover),群体中的每个个体之间都以一定的概率 pc 交叉,即两个个体从各自字符串的某一位置
% (一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:
% x1=0100110
% x2=1010001
% 从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:
% y1=0100001
% y2=1010110
% 这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。
% 事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。
%遗传算法子程序
%Name: crossover.m
%交叉
function [newpop]=crossover(pop,pc)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:2:px-1
if(rand<pc)
cpoint=round(rand*py);
newpop(i,:)=[pop(i,1:cpoint),pop(i+1,cpoint+1:py)];
newpop(i+1,:)=[pop(i+1,1:cpoint),pop(i,cpoint+1:py)];
else
newpop(i,:)=pop(i);
newpop(i+1,:)=pop(i+1);
end
end
% 2.6 变异
% 变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率 pm 翻转,即由“1”变为“0”,
% 或由“0”变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。
%遗传算法子程序
%Name: mutation.m
%变异
function [newpop]=mutation(pop,pm)
[px,py]=size(pop);
newpop=ones(size(pop));
for i=1:px
if(rand<pm)
mpoint=round(rand*py);
if mpoint<=0
mpoint=1;
end
newpop(i)=pop(i);
if any(newpop(i,mpoint))==0
newpop(i,mpoint)=1;
else
newpop(i,mpoint)=0;
end
else
newpop(i)=pop(i);
end
end
% 2.7 求出群体中最大得适应值及其个体
%遗传算法子程序
%Name: best.m
%求出群体中适应值最大的值
function [bestindivial,bestfit]=best(pop,fitvalue)
[px,py]=size(pop);
bestindivial=pop(1,:);
bestfit=fitvalue(1);
for i=2:px
if fitvalue(i)>bestfit
bestindivial=pop(i,:);
bestfit=fitvalue(i);
end
end
% 2.8 主程序
%遗传算法主程序
%Name:genmain05.m
clear
clf
popsize=20; %群体大小
chromlength=10; %字符串长度(个体长度)
pc=0.6; %交叉概率
pm=0.001; %变异概率
pop=initpop(popsize,chromlength); %随机产生初始群体
for i=1:20 %20为迭代次数
[objvalue]=calobjvalue(pop); %计算目标函数
fitvalue=calfitvalue(objvalue); %计算群体中每个个体的适应度
[newpop]=selection(pop,fitvalue); %复制
[newpop]=crossover(pop,pc); %交叉
[newpop]=mutation(pop,pc); %变异
[bestindivial,bestfit]=best(pop,fitvalue); %求出群体中适应值最大的个体及其适应值
y(i)=max(bestfit);
n(i)=i;
pop5=bestindivial;
x(i)=decodechrom(pop5,1,chromlength)*10/1023;
pop=newpop;
end
fplot('10*sin(5*x)+7*cos(4*x)',[0 10])
hold on
plot(x,y,'r*')
hold off
[z index]=max(y); %计算最大值及其位置
x5=x(index)%计算最大值对应的x值
y=z
【问题】求f(x)=x 10*sin(5x) 7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x 10*sin(5*x) 7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2 x2.^2)))-exp(0.5*(cos(2*pi*x1) cos(2*pi*x2))) 22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv) 22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x 10*sin(5*x) 7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下
initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代
运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)
注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2
【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')
注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055
大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])
evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。