当前位置:首页 » 操作系统 » 图解深度算法

图解深度算法

发布时间: 2022-09-18 03:51:55

❶ 深度学习算法是什么

深度学习算法是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。

深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。

区别于传统的浅层学习,深度学习的不同在于:

(1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点。

(2)明确了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据丰富的内在信息。

❷ 图的矩阵深度和广度遍历算法

图的遍历是指从图中任一给定顶点出发,依次访问图中的其余顶点。如果给定的图是连通图,则从图中的任意一点出发,按照一个指定的顺序就可以访问到图中的所有顶点,且每个顶点只访问一次。这个过程称为图的遍历。
图的遍历比树的遍历复杂的多。树是一种特殊类型的图,即无圈(无回路)连通图。树中的任意两个顶点间都有唯一的路径相通。在一个顶点被访问过之后,不可能又沿着另外一条路径访问到已被访问过的结点。而图中的顶点可能有边与其他任意顶点相连
。因此在访问了某个顶点之后,可能沿着另一条边访问已被访问过的顶点。例如图(a)中的G1,在访问了V1,V2和V3之后,有可能沿着边(V3,V1)访问到V1。为了避免一顶点被多次访问,可以设立一个集合Visited,用来记录已被访问过的顶点。它的初值为空
集。一旦V1被访问过,即把V1加到集合Visited中。图的遍厉通常有两种:图的深度优先
搜索和图的广度优先搜索。
1)图的深度优先搜索
从图G=(V,E)的一个顶点V0出发,在访问了任意一个与V0相邻且未被访问过的顶点W1之后,再从W1出发,访问和W1相邻且未被访问过的顶点W2,然后再从W2出发进行如上所述访问,直到找到一个它相邻的结点,都被访问过的结点为止。然后退回到尚有相
邻结点未被访问过的顶点,再从该顶点出发,重复上述搜索过程,直到所有被访问过的顶点的邻接点都被访问过为止。图的这种遍历过程就称为图的深度优先搜索。例如从顶点V1出发对图3.3.5进行深度优先搜索,遍历的顺序为 V1,V2,V5,V10,V6,V7,V3,V12,V1
1,V8,V4,V9。(与邻接表中的邻接点排列顺序有关,即p->next.vertex=v2 or v3对遍历
顺序有影响 )
例25.(p194.c)图的深度优先搜索。从图G的顶点V0
发进行深度优先搜索,打印出各个顶点的遍历顺序。
解:图的深度优先搜索法为:
(1)首先访问V0并把V0加到集合visited中;
(2)找到与V0相邻的顶点W,若W未进入
visited中,则以深度优先方法从W开始搜索。
(3)重复过程(2)直到所有于V0相邻的顶点
都被访问过为止。

下面是对用邻接表表示的图G进行深度优先搜索的程序
int rear=0; /*Visit和rear都为全局变量*/
int visit[500];
depth_first_search(g,v0) /*从V0开始对图G进行深度
优先搜索*/
graphptr g[ ]; /*指针数组,为邻接表表头顶点指针
g[vi]...g[vn]*/
int v0; /*这里V0和W都是顶点标号,如V0=0或1*/
{ /*g[v0]是顶点V0的表头指针*/
int w;
graphptr p; /*链表的结点指针*/
visit [++rear]=v0;
printf("%d\n",v0);
p=g[v0];/*指定一个顶点,通过邻接表表头指针
,访问v0的邻接顶点*/
while (p!=NULL)
{
w=p->vertex ;/*这里W是与V0相邻的一个顶点*/
if (!visited(w))/*当V0的相邻结点,W未被访问时,从W开始遍厉*/
depth_first_search(g,w);
p=p->next;/*接着访问另一个相邻顶点*/
}
}
int visited(w) /*检查顶点w是否进入visited(w)*/
int w ;
{
int i;
for (i=1;i<=rear;i++)
if (visit [ i ] == w) return(1);/*W在visit[]中,说明被访问过*/
return(0); /*W不在visit[]中,说明未被访问过,返回0*/
}
2)图的广度优先搜索
从图G的一个顶点V0出发,依次访问V0的邻接点K1,K2...Kn。然后再顺序访问K1,K2...Kn的所有尚未被访问过的邻接点。如此重复,直到图中的顶点都被访问过为止。图的这种搜索称为图的广度优先搜索。例如:从V1出发按广度优先搜索方法遍历图3.3.5,顶
点的访问顺序为V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12。
图的广度优先搜索类似树的按层次遍历,需要有一个队列来存放还没
有来得及处理的顶点。图的广度优先搜索算法为:
(1)首先把V0放入队列;
(2)若队列为空则结束,否则取出队列的头V;
(3)访问V并把所有与V相邻且未被访问的顶点插入队列;
(4)重复(2)-(3)直到队列为空。
上述算法中所有已被访问过的顶点都放在队列中,因此只要检查某个顶点是否在队列中就可以判断出该顶点是否已被访问过。
广度搜索法的程序如下:
broad_first_search(g,v0) /*从V0开始对图g进行广度优先搜索*/
graphptr g[ ]; /*为邻接表,表头顶点指针*/
int v0;
{
int queue[500],front =1, tail=1,v;
graphptr p;
queue [tail]=v0; /*把V0插入队列queue*/
while (front <=tail)/*当队列不为空*/
{
v=queue[front++]; /*取出队列中的顶点*/
printf("%d\n",v); /*访问该顶点*/
p=g[v]; /*从顶点V的链表来考虑与V相邻的顶点*/
while (p!=NULL)
{
v=p->vertex; /*从第一个结点(即边)中找出相邻的顶点*/
if (!visited(queue,tail,v))/*判断顶点是否进入队列,如进入队列
说明已被访问或将要访问*/
queue[++tail]=v;/*如果该顶点未被访问过,将此相邻顶点插入队列*/
p=p-->next;/*再考虑该结点的下一个相邻顶点*/
}
}
}
visited (q,tail,v)/*判断顶点是否被访问过,访问过时,返回1,否则返回0*/
int q[ ],tail,v;/*进入队列的顶点,在front之前的顶点已被访问过打印输出,
在front和tail之间的顶点是即将要访问顶点*/
{
int i;
for(i=1;i<=tail;i++)/*扫描队列,确定v是否在队列中,在队列中返回1,否则返回0*
/
if (q[i]==v)return(1);/*队列中的顶点都认为已被访问过*/
return(0);
}

深度优先的非递归算法

/*设当前图(或图的某个连通分枝)的起始访问点为p*/
NodeType stackMain,stackSec
visit(p)
p->mark=true;
do
{
for(all v isTheConnectNode of (G,p))//将当前点的邻接点中的所有结点压入副栈中
if(v.marked==false)
statckSec.push(v)
//将副栈中的点依次弹出,压入主栈中,这与非递归算法中使用队列的意图类似
while(!stackSec.isEmpty())
stackMain.push(statckSec.pop());
do//找出下一个未访问的结点或者没找到,直到栈为空
{
if(!stackMain.isEmpty())

{
p=stackMain.pop();

}
}while(p.marked==true&&!stackMain.isEmpty())
if(p.marked==false)//访问未访问结点.

{

visit(p);

p.marked=true;

}

}while(!stackMain.isEmpty())

❸ 二叉树的深度怎么算

二叉树的深度算法:
一、递归实现基本思想:
为了求得树的深度,可以先求左右子树的深度,取二者较大者加1即是树的深度,递归返回的条件是若节点为空,返回0
算法:
1 int FindTreeDeep(BinTree BT){
2 int deep=0;
3 if(BT){
4 int lchilddeep=FindTreeDeep(BT->lchild);
5 int rchilddeep=FindTreeDeep(BT->rchild);
6 deep=lchilddeep>=rchilddeep?lchilddeep+1:rchilddeep+1;
7 }
8 return deep;
9 }
二、非递归实现基本思想:
受后续遍历二叉树思想的启发,想到可以利用后续遍历的方法来求二叉树的深度,在每一次输出的地方替换成算栈S的大小,遍历结束后最大的栈S长度即是栈的深度。
算法的执行步骤如下:
(1)当树非空时,将指针p指向根节点,p为当前节点指针。
(2)将p压入栈S中,0压入栈tag中,并令p执行其左孩子。
(3)重复步骤(2),直到p为空。
(4)如果tag栈中的栈顶元素为1,跳至步骤(6)。从右子树返回
(5)如果tag栈中的栈顶元素为0,跳至步骤(7)。从左子树返回
(6)比较treedeep与栈的深度,取较大的赋给treedeep,对栈S和栈tag出栈操作,p指向NULL,并跳至步骤(8)。
(7)将p指向栈S栈顶元素的右孩子,弹出栈tag,并把1压入栈tag。(另外一种方法,直接修改栈tag栈顶的值为1也可以)
(8)循环(2)~(7),直到栈为空并且p为空
(9)返回treedeep,结束遍历
1 int TreeDeep(BinTree BT ){
2 int treedeep=0;
3 stack S;
4 stack tag;
5 BinTree p=BT;
6 while(p!=NULL||!isEmpty(S)){
7 while(p!=NULL){
8 push(S,p);
9 push(tag,0);
10 p=p->lchild;
11 }
12 if(Top(tag)==1){
13 deeptree=deeptree>S.length?deeptree:S.length;
14 pop(S);
15 pop(tag);
16 p=NULL;
17 }else{
18 p=Top(S);
19 p=p->rchild;
20 pop(tag);
21 push(tag,1);
22 }
23 }
24 return deeptree;
25 }

❹ 二叉树的性质有些啊怎么求它的深度

二叉树性质如下:


1 :在二叉树的第i层上至少有2^(i-1)个结点

2:深度为k的二叉树至多有2^(k-1)个结点

3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1

4:具有n个结点的完全二叉树的深度是【log2n】+1(向下取整)

5:如果对一棵有n个结点的完全二叉树的结点按层序编号,则对任一结点i(1in),有:

如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是i/2

如果2i>n,则结点i无左孩子;如果2in,则其左孩子是2i

如果2i+1>n,则结点i无右孩子;如果2i+1n,则其右孩子是2i+1

二叉树深度算法如下:


深度为m的满二叉树有2^m-1个结点;

具有n个结点的完全二叉树的深度为[log2n]+1.(log2n是以2为底n的对数)


(4)图解深度算法扩展阅读:


在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。具有n个节点的完全二叉树的深度为log2(n+1)。深度为k的完全二叉树,至少有2k-1个节点,至多有2k-1个节点。

二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点之后,每个顶点定义了唯一的父结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。如果不考虑连通性,允许图中有多个连通分量,这样的结构叫做森林。

遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。由于二叉树是非线性结构,因此,树的遍历实质上是将二叉树的各个结点转换成为一个线性序列来表示。

设L、D、R分别表示遍历左子树、访问根结点和遍历右子树, 则对一棵二叉树的遍历有三种情况:DLR(称为先根次序遍历),LDR(称为中根次序遍历),LRD (称为后根次序遍历)。

❺ 常见的深度学习算法主要有哪些

深度学习常见的3种算法有:卷积神经网络、循环神经网络、生成对抗网络。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一。
循环神经网络(Recurrent Neural Network, RNN)是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络。
生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是最近两年十分热门的一种无监督学习算法。

❻ 二叉树的深度怎么算

二叉树的深度计算,首先要判断节点,以下是计算二叉树的详细步骤:

1、一颗树只有一个节点,它的深度是1;

2、二叉树的根节点只有左子树而没有右子树,那么可以判断,二叉树的深度应该是其左子树的深度加1;

3、二叉树的根节点只有右子树而没有左子树,那么可以判断,那么二叉树的深度应该是其右树的深度加1;

4、二叉树的根节点既有右子树又有左子树,那么可以判断,那么二叉树的深度应该是其左右子树的深度较大值加1。

一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。

具有n个节点的完全二叉树的深度为floor(log2n)+1。深度为k的完全二叉树,至少有2k-1个叶子节点,至多有2k-1个节点。


5、有N个结点的完全二叉树各结点如果用顺序方式存储,则结点之间有如下关系:

若I为结点编号则 如果I>1,则其父结点的编号为I/2;

如果2*I<=N,则其左孩子(即左子树的根结点)的编号为2*I;若2*I>N,则无左孩子;

❼ 如何求二叉树深度

二叉树性质如下:
1
:在二叉树的第i层上至少有2^(i-1)个结点
2:深度为k的二叉树至多有2^(k-1)个结点
3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1
4:具有n个结点的完全二叉树的深度是【log2n】+1(向下取整)
5:如果对一棵有n个结点的完全二叉树的结点按层序编号,则对任一结点i(1in),有:
如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是i/2
如果2i>n,则结点i无左孩子;如果2in,则其左孩子是2i
如果2i+1>n,则结点i无右孩子;如果2i+1n,则其右孩子是2i+1
二叉树深度算法如下:
深度为m的满二叉树有2^m-1个结点;
具有n个结点的完全二叉树的深度为[log2n]+1.(log2n是以2为底n的对数)

❽ 写一个求二叉树的深度的算法

#include <stdio.h>
#include <stdlib.h>

typedef struct node
{
char data;
struct node *left,*right;
}Node,*PNode;
PNode createBtree(PNode root)//创建二叉树,控制台下输入,基于先序遍历输入
{
char data;
scanf("%c",&data);
if (data==' ')
{
root=NULL;
return root;
}
root = (PNode)malloc(sizeof(Node));
root->data = data;
root->left = createBtree(root->left);
root->right = createBtree(root->right);

return root;
}

int depth(PNode root)//这就是你要的函数。
{
int ld,rd;
if (root==NULL)
{
return 0;
}
ld = 1+depth(root->left);
rd = 1+depth(root->right);
return ld>rd?ld:rd;
}
int main()
{
PNode root=NULL;
root = createBtree(root);
printf("%d",depth(root));
return 0;
}

为了测试,写了二叉树的建立程序;
如下输入可以看到结果
虚节点用空格输入的。例如你输入
先序遍历
234空格空格5空格6空格空格7空格空格回车就可以看到结果。
另外,本算法是从1开始算深度的,就是根节点是深度下。

❾ 深度优先算法的定义

深度优先搜索算法(Depth-First-Search),是搜索算法的一种。是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。当节点v的所有边都己被探寻过,搜索将回溯到发现节点v的那条边的起始节点。这一过程一直进行到已发现从源节点可达的所有节点为止。如果还存在未被发现的节点,则选择其中一个作为源节点并重复以上过程,整个进程反复进行直到所有节点都被访问为止。属于盲目搜索。
深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题,如最大路径问题等等。
因发明“深度优先搜索算法”,霍普克洛夫特与陶尔扬共同获得计算机领域的最高奖:图灵奖.

❿ 深度学习有哪些算法

只有简单的了解:
常见的深度学习算法有三种:来卷积神经网络、循环神经网络、生成对抗网络。具体的需要自己去钻研了

热点内容
宝塔数据库备份 发布:2025-05-18 02:14:18 浏览:192
安卓商店下载的光遇是什么服 发布:2025-05-18 02:13:38 浏览:31
网页挖矿源码 发布:2025-05-18 02:13:34 浏览:307
centosftp服务器设置参数 发布:2025-05-18 02:12:55 浏览:216
账号密码保存在浏览器哪里 发布:2025-05-18 01:56:43 浏览:833
ftp不输入密码 发布:2025-05-18 01:54:27 浏览:671
压缩旗袍 发布:2025-05-18 01:52:58 浏览:198
海上传奇南昌 发布:2025-05-18 01:40:31 浏览:131
php怎么访问地址 发布:2025-05-18 01:29:43 浏览:321
fbe加密 发布:2025-05-18 01:16:34 浏览:251