当前位置:首页 » 操作系统 » matlabsmo算法

matlabsmo算法

发布时间: 2022-10-02 20:26:00

1. 支持向量机原理讲解(一)

支持向量机(Support Vector Machine,以下简称SVM),作为传统机器学习的一个非常重要的分类算法,它是一种通用的前馈网络类型,最早是由Vladimir N.Vapnik 和 Alexey Ya.Chervonenkis在1963年提出,目前的版本(soft margin)是Corinna Cortes 和 Vapnik在1993年提出,1995年发表。深度学习(2012)出现之前,如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是排第一估计是没有什么异议的。

SVM本来是一种线性分类和非线性分类都支持的二元分类算法,但经过演变,现在也支持多分类问题,也能应用到了回归问题。本篇文章重点讲解线性支持向量机的模型原理和目标函数优化原理。

在讲解SVM模型之前,我们可以先简单了解感知机模型的原理,因为这两个模型有一些相同的地方。在二维平面中,感知机模型是去找到一条直线,尽可能地将两个不同类别的样本点分开。同理,在三维甚至更高维空间中,就是要去找到一个超平面。定义这个超平面为wTx+b=0(在二维平面中,就相当于直线w_1 x+w_1 y+b=0),而在超平面上方的点,定义为y=1,在超平面下方的点,定义为y=-1。而这样的超平面可能是不唯一的,那么感知机是怎么定期最优超平面呢?从感知机模型的目标函数中,我们了解到它是希望让所有误分类的点(定义为M)到超平面的距离和最小。其目标函数如下:

(注:加入 是因为点若在超平面下, 为负数,需要乘上对应的 )

当w和b成比例增加了之后,比如都扩大N倍,会发现,分子和分母都会同时扩大N倍,这对目标函数并不影响。因此,当我们将W扩大或缩小一定倍数使得,||w||=1,分子也会相应的扩大或缩小,这样,目标函数就能简化成以下形式:

这个思想将会应用到支持向量机的目标函数优化上,后文将会详细讲解。

正如上文所说,线性支持向量机的思想跟感知机的思想很相似。其思想也是对给定的训练样本,找到一个超平面去尽可能的分隔更多正反例。不同的是其选择最优的超平面是基于正反例离这个超平面尽可能远。

从上图可以发现,其实只要我们能保证距离超平面最近的那些点离超平面尽可能远,就能保证所有的正反例离这个超平面尽可能的远。因此,我们定义这些距离超平面最近的点为支持向量(如上图中虚线所穿过的点)。并且定义正负支持向量的距离为Margin。

对SVM思想有一定理解之后,设超平面为 。我们讲解一下函数间隔和几何间隔的区别。

给定一个样本 , 表示点x到超平面的距离。通过观察 和 是否同号,我们判断分类是否正确。所以函数间隔定义 为:

而函数间隔不能正常反应点到超平面的距离,因为当我们等比例扩大 和 的时候,函数间隔也会扩大相应的倍数。因此,我们引入几何间隔。

几何间隔就是在函数间隔的基础下,在分母上对 加上约束(这个约束有点像归一化),定义为 :


其实参考点到直线的距离,我们可以发现几何间隔就是高维空间中点到超平面的距离,才能真正反映点到超平面的距离。

根据SVM的思想,我们可以知道是要取最大化支持向量到超平面的几何间隔,所以目标函数可以表示为:

在感知机模型最后,我们知道当同时扩大w和b,分子分母都会同样扩大,对目标函数不影响,所以在这里我们将分子(支持向量到超平面的函数间隔)扩大或压缩等于1,则目标函数可以转化为:

但是上式并不是凸函数,不好求解,再进一步转化为:

上式就是一个凸函数,并且不等式约束为仿射函数,因此可以使用拉格朗日对偶去求解该问题。

根据拉格朗日乘子法,引入拉格朗日乘子α,且α≥0我们可以知道,先不考虑min,(2)问题等价于:

然后再考虑min,则有:

应用拉格朗日对偶性,通过求解对偶问题得到最优解,则对偶问题的目标函数为:

这就是线性可分条件下支持向量机的对偶算法。这样做的优点在于:一是原问题的对偶问题往往更容易求解,二者可以自然的引入核函数,进而推广到非线性分类问题。

从(4)中,我们可以先求目标函数对于 和 的极小值,再求拉格朗日乘子 的极大值。

首先,分别对 和 分别求偏导数,并令为0:


得:

将(5)和(6)代入(4)得到:

对(7)取反得到:

只要我们可以求出(8)中极小化的 向量,那么我们就可以对应的得到 和 ,而求解 需要使用SMO算法,由于该算法比较复杂,我们将在下一篇文章专门讲解。假设我们现在已经使用SMO算法得到了最优的 值,记为

再求 :

对于任一样本 有:

注意到任一样本都有 ,则将右式的1用 代:

将(9)代入上式,可以得到:

这样,我们就能够求解得到线性支持向量机的目标函数的各个参数,进而得到最优的超平面,将正负样本分隔开。但是在上文中我们没有讲解求 向量的SMO算法,在下篇文章,将会详细讲解SMO算法,欢迎继续关注。

2. SVM算法,包括算法原理、算法实现、核函数参数的选取、优化、系数调整,能通俗地说明下吗谢谢

SVM 原理,在一个超空间找一个 切分的超平面,
SVM 算法实现,主要是解决SVM公式对偶问题,常用的是SMO,
SVM 核参数,隐含的将特征映射到高维空间,有兴趣可学习 learn with kernel.
SVM 参数调整分两部分,1 参数调整,用上述SMO算法,2 模型选择。

太累,不想写太多

3. 机器学习实战 SMO算法是否写错了

我确定,里头的完整版SMO算法是写错了。在寻找第二个变量时,每次只找了一个,优化失败后就放弃了,重新挑选第一个变量。这样最后算法结束后,还有不少变量不满足KKT条件。我一度以为这个算法不能收敛到全局最优。而且每次运行结果都不一样。后来,我把代码改了一下,在寻找第二个变量时,把所有可能符合条件的变量都尝试一遍。这样,算法就能收敛了。运行结束后,所有变量都能满足KKT条件。

4. 支持向量机(SVM)

        支持向量机(support vector machine),故一般简称SVM,通俗来讲,它是一种二分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向量机也被称为最大边缘区分类器。其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。SVM在很多诸如文本分类,图像分类,生物序列分析和生物数据挖掘,手写字符识别等领域有很多的应用。

        支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面,分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。

        假设给定一些分属于两类的2维点,这些点可以通过直线分割, 我们要找到一条最优的分割线,如何来界定一个超平面是不是最优的呢?

        如图:

        在上面的图中,a和b都可以作为分类超平面,但最优超平面只有一个,最优分类平面使间隔最大化。 那是不是某条直线比其他的更加合适呢? 我们可以凭直觉来定义一条评价直线好坏的标准:

        距离样本太近的直线不是最优的,因为这样的直线对噪声敏感度高,泛化性较差。 因此我们的目标是找到一条直线(图中的最优超平面),离所有点的距离最远。 由此, SVM算法的实质是找出一个能够将某个值最大化的超平面,这个值就是超平面离所有训练样本的最小距离。这个最小距离用SVM术语来说叫做间隔(margin) 。

        描述:给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类。如果用x表示数据点,用y表示类别(y可以取1或者-1,分别代表两个不同的类),一个线性分类器的学习目标便是要在n维的数据空间中找到一个超平面(hyper plane),这个超平面的方程可以表示为( wT中的T代表转置):

        例如:现在有一个二维平面,平面上有两种不同的数据,分别用圈和叉表示。由于这些数据是线性可分的,所以可以用一条直线将这两类数据分开,这条直线就相当于一个超平面,超平面一边的数据点所对应的y全是-1 ,另一边所对应的y全是1。

        我们令分类函数为:

        当f(x) 等于0的时候,x便是位于超平面上的点,而f(x)大于0的点对应 y=1 的数据点,f(x)小于0的点对应y=-1的点,如下图所示:

        一个点距离超平面的远近可以表示分类预测的确信或准确程度,如何确定这个超平面呢?从直观上而言,这个超平面应该是最适合分开两类数据的直线。而判定“最适合”的标准就是这条直线离直线两边的数据的间隔最大。所以,得寻找有着最大间隔的超平面。

补充知识点: 点到平面的距离

        支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面.。对线性可分的训练数据集而言,线性可分分离超平面有无穷多个(等价于感知机),但是几何间隔最大的分离超平面是唯一的。这里的间隔最大化又称为硬间隔最大化。

        间隔最大化的直观解释是:对训练数据集找到几何间隔最大的超平面意味着以充分大的确信度对训练数据进行分类。也就是说,不仅将正负实例点分开,而且对最难分的实例点(离超平面最近的点)也有足够大的确信度将它们分开。这样的超平面应该对未知的新实例有很好的分类预测能力。

      按照我们前面的分析,对一个数据点进行分类, 当它的margin越大的时候,分类的confidence越大。 对于一个包含n个点的数据集,我们可以很自然地定义它的margin为所有这n个点的margin值中最小的那个。于是,为了使得分类的confidence高,我们希望所选择的超平面hyper plane能够最大化这个margin值。让所选择的超平面能够最大化这个“间隔”值,这个间隔就是下图中的Gap的一半:

为什么用几何间隔求最大的分离超平面而不用函数间隔?

例题:

我们构造了约束最优化问题,就是下面这个:

        此外,由于这个问题的特殊结构,还可以通过拉格朗日对偶性(Lagrange Duality)变换到对偶变量 (al variable) 的优化问题,即通过求解与原问题等价的对偶问题(al problem)得到原始问题的最优解,这就是线性可分条件下支持向量机的对偶算法,这样做的优点在于:一者对偶问题往往更容易求解;二者可以自然的引入核函数,进而推广到非线性分类问题。

补充知识点: 拉格朗日乘子法学习

                     拉格朗日KKT条件

                     KKT条件介绍

                     拉格朗日对偶

         通过给每一个约束条件加上一个拉格朗日乘子(Lagrange multiplier)α,定义拉格朗日函数(通过拉格朗日函数将约束条件融合到目标函数里去,从而只用一个函数表达式便能清楚的表达出我们的问题):

 求解这个式子的过程需要拉格朗日对偶性的相关知识。

例题:

         接下来谈谈线性不可分的情况,因为 线性可分这种假设实在是太有局限性 了。下图就是一个典型的线性不可分的分类图,我们没有办法用一条直线去将其分成两个区域,每个区域只包含一种颜色的点。

         要想在这种情况下的分类器,有两种方式, 一种是用曲线 去将其完全分开,曲线就是一种 非线性 的情况,跟之后将谈到的 核函数 有一定的关系:

         另外一种还是用直线,不过不用去保证可分性 ,就是包容那些分错的情况,不过我们得加入惩罚函数,使得点分错的情况越合理越好。其实在很多时候,不是在训练的时候分类函数越完美越好,因为训练函数中有些数据本来就是噪声,可能就是在人工加上分类标签的时候加错了,如果我们在训练(学习)的时候把这些错误的点学习到了,那么模型在下次碰到这些错误情况的时候就难免出错了。这种学习的时候学到了“噪声”的过程就是一个过拟合(over-fitting),这在机器学习中是一个大忌。

我们可以为分错的点加上一点惩罚,对一个分错的点的 惩罚函数 就是 这个点到其正确位置的距离:

        对于线性不可分的情况,我们可以用核函数让空间从原本的线性空间变成一个更高维的空间 , 在这个高维的线性空间下,再用一个超平面进行划分 。 这儿举个例子,来理解一下如何利用空间的维度变得更高来帮助我们分类的:

        上图是一个线性不可分的图,当我们把这两个类似于椭圆形的点映射到一个高维空间后,映射函数为:

        用这个函数可以将上图的平面中的点映射到一个三维空间(z1,z2,z3),并且对映射后的坐标加以旋转之后就可以得到一个线性可分的点集了。

        形象说明:例如世界上本来没有两个完全一样的物体,对于所有的两个物体,我们可以通过增加维度来让他们最终有所区别,比如说两本书,从(颜色,内容)两个维度来说,可能是一样的,我们可以加上作者这个维度,是在不行我们还可以加入页码,可以加入拥有者,可以加入购买地点,可以加入笔记内容等等。当维度增加到无限维的时候,一定可以让任意的两个物体可分了。

核函数定义:

核技巧在支持向量机中的应用:

常用核函数:

非线性支持向量机学习算法:

        支持向量机的学习问题可以形式化为求解凸二次规划问题。这样的凸二次规划问题具有全局最优解,并且有许多最优化算法可以用于这一一问题的求解。但是当训练样本容量很大时,这些算法往往变得非常低效,以致无法使用。所以,如何高效地实现支持向量机学习就成为一一个重要的问题。目前人们已提出许多快速实现算法.本节讲述其中的序列最小最优化(sequential minimal optimization, SMO)算法。

        上述问题是要求解N个参数(α1,α2,α3,...,αN),其他参数均为已知,序列最小最优化算法(SMO)可以高效的求解上述SVM问题,它把原始求解N个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解2个参数,方法类似于坐标上升,节省时间成本和降低了内存需求。每次启发式选择两个变量进行优化,不断循环,直到达到函数最优值。

        整个SMO算法包括两部分,求解两个变量的 二次规划 问题和选择这两个变量的 启发式 方法。

 上面求得的(α1)new和(α2)new是在η>0的情况下求得的:

        当时为了推导公式我们直接默认它是大于0了,现在我们需要重新审视这一项(η)。这一项是原来关于的二次项的系数。我们可以分下面三种情况讨论:

(1)当η>0时 :这个二次函数开口向上,所以要求这个二次函数的最小值,如果说极值点不在计算出的可行域的范围内,就要根据这个极值点和可行域边界值的关系来得到取最小值的地方:

①如果这个极值点在可行域左边,那么我们可以得到这个可行域内二次函数一定在单增,所以此时L应该是那个取最小值的地方。就如大括号的第三种情况。

②如果这个极值点在可行域右边,那么此时可行域内一定单减,所以此时H就是那个取最小值的地方,就是大括号里的第一种情况。

(2)当η=0时: 这个二次函数就变成了一个一次函数,那么不管这个一次函数的单调性怎样,最小值一定是在边界处取到。所以到时候计算可行域的两个边界的值,看哪个小就用哪个。

(3)当η<0时: 这个二次函数开口向下,那么此时怎么得到取最小值的点呢?很容易就能想到:最小值也是在可行域的边界处取到。很容易理解,此时开口向下,当极值点在区间内时,最小值只能在端点处取,因为极值点处是最大的。而当极值点在区间外时,区间内一定是单调的,此时最小值也只能在端点处取。通过计算比较边界处的目标函数值,哪个小取哪个。

通过以上判断求出(α2)new以后,再根据公式求出(α1)new,然后带入目标函数(1)中。即如下过程:

        上述分析是在从N个变量中已经选出两个变量进行优化的方法,下面分析如何高效地选择两个变量进行优化,使得目标函数下降的最快。

5. 支持向量机基本原理 matlab程序及其应用

支持向量机
1 简介
支持向量机基本上是最好的有监督学习算法了。最开始接触SVM是去年暑假的时候,老师要求交《统计学习理论》的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念。这次斯坦福提供的学习材料,让我重新学习了一些SVM知识。我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的。这份材料从前几节讲的logistic回归出发,引出了SVM,既揭示了模型间的联系,也让人觉得过渡更自然。
2 重新审视logistic回归
Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。
形式化表示就是
假设函数

其中x是n维特征向量,函数g就是logistic函数。
的图像是

可以看到,将无穷映射到了(0,1)。
而假设函数就是特征属于y=1的概率。

当我们要判别一个新来的特征属于哪个类时,只需求 ,若大于0.5就是y=1的类,反之属于y=0类。
再审视一下 ,发现 只和 有关, >0,那么 ,g(z)只不过是用来映射,真实的类别决定权还在 。还有当 时, =1,反之 =0。如果我们只从 出发,希望模型达到的目标无非就是让训练数据中y=1的特征 ,而是y=0的特征 。Logistic回归就是要学习得到 ,使得正例的特征远大于0,负例的特征远小于0,强调在全部训练实例上达到这个目标。
图形化表示如下:

中间那条线是 ,logistic回顾强调所有点尽可能地远离中间那条线。学习出的结果也就中间那条线。考虑上面3个点A、B和C。从图中我们可以确定A是×类别的,然而C我们是不太确定的,B还算能够确定。这样我们可以得出结论,我们更应该关心靠近中间分割线的点,让他们尽可能地远离中间线,而不是在所有点上达到最优。因为那样的话,要使得一部分点靠近中间线来换取另外一部分点更加远离中间线。我想这就是支持向量机的思路和logistic回归的不同点,一个考虑局部(不关心已经确定远离的点),一个考虑全局(已经远离的点可能通过调整中间线使其能够更加远离)。这是我的个人直观理解。
3 形式化表示
我们这次使用的结果标签是y=-1,y=1,替换在logistic回归中使用的y=0和y=1。同时将 替换成w和b。以前的 ,其中认为 。现在我们替换 为b,后面替换 为 (即 )。这样,我们让 ,进一步 。也就是说除了y由y=0变为y=-1,只是标记不同外,与logistic回归的形式化表示没区别。再明确下假设函数

上一节提到过我们只需考虑 的正负问题,而不用关心g(z),因此我们这里将g(z)做一个简化,将其简单映射到y=-1和y=1上。映射关系如下:

4 函数间隔(functional margin)和几何间隔(geometric margin)
给定一个训练样本 ,x是特征,y是结果标签。i表示第i个样本。我们定义函数间隔如下:

可想而知,当 时,在我们的g(z)定义中, , 的值实际上就是 。反之亦然。为了使函数间隔最大(更大的信心确定该例是正例还是反例),当 时, 应该是个大正数,反之是个大负数。因此函数间隔代表了我们认为特征是正例还是反例的确信度。
继续考虑w和b,如果同时加大w和b,比如在 前面乘个系数比如2,那么所有点的函数间隔都会增大二倍,这个对求解问题来说不应该有影响,因为我们要求解的是 ,同时扩大w和b对结果是无影响的。这样,我们为了限制w和b,可能需要加入归一化条件,毕竟求解的目标是确定唯一一个w和b,而不是多组线性相关的向量。这个归一化一会再考虑。
刚刚我们定义的函数间隔是针对某一个样本的,现在我们定义全局样本上的函数间隔

说白了就是在训练样本上分类正例和负例确信度最小那个函数间隔。
接下来定义几何间隔,先看图

假设我们有了B点所在的 分割面。任何其他一点,比如A到该面的距离以 表示,假设B就是A在分割面上的投影。我们知道向量BA的方向是 (分割面的梯度),单位向量是 。A点是 ,所以B点是x= (利用初中的几何知识),带入 得,

进一步得到

实际上就是点到平面距离。
再换种更加优雅的写法:

当 时,不就是函数间隔吗?是的,前面提到的函数间隔归一化结果就是几何间隔。他们为什么会一样呢?因为函数间隔是我们定义的,在定义的时候就有几何间隔的色彩。同样,同时扩大w和b,w扩大几倍, 就扩大几倍,结果无影响。同样定义全局的几何间隔
5 最优间隔分类器(optimal margin classifier)
回想前面我们提到我们的目标是寻找一个超平面,使得离超平面比较近的点能有更大的间距。也就是我们不考虑所有的点都必须远离超平面,我们关心求得的超平面能够让所有点中离它最近的点具有最大间距。形象的说,我们将上面的图看作是一张纸,我们要找一条折线,按照这条折线折叠后,离折线最近的点的间距比其他折线都要大。形式化表示为:

这里用 =1规约w,使得 是几何间隔。
到此,我们已经将模型定义出来了。如果求得了w和b,那么来一个特征x,我们就能够分类了,称为最优间隔分类器。接下的问题就是如何求解w和b的问题了。
由于 不是凸函数,我们想先处理转化一下,考虑几何间隔和函数间隔的关系, ,我们改写一下上面的式子:

这时候其实我们求的最大值仍然是几何间隔,只不过此时的w不受 的约束了。然而这个时候目标函数仍然不是凸函数,没法直接代入优化软件里计算。我们还要改写。前面说到同时扩大w和b对结果没有影响,但我们最后要求的仍然是w和b的确定值,不是他们的一组倍数值,因此,我们需要对 做一些限制,以保证我们解是唯一的。这里为了简便我们取 。这样的意义是将全局的函数间隔定义为1,也即是将离超平面最近的点的距离定义为 。由于求 的最大值相当于求 的最小值,因此改写后结果为:

这下好了,只有线性约束了,而且是个典型的二次规划问题(目标函数是自变量的二次函数)。代入优化软件可解。
到这里发现,这个讲义虽然没有像其他讲义一样先画好图,画好分类超平面,在图上标示出间隔那么直观,但每一步推导有理有据,依靠思路的流畅性来推导出目标函数和约束。
接下来介绍的是手工求解的方法了,一种更优的求解方法。
6 拉格朗日对偶(Lagrange ality)
先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题:

目标函数是f(w),下面是等式约束。通常解法是引入拉格朗日算子,这里使用 来表示算子,得到拉格朗日公式为

L是等式约束的个数。
然后分别对w和 求偏导,使得偏导数等于0,然后解出w和 。至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考《最优化与KKT条件》)
然后我们探讨有不等式约束的极值问题求法,问题如下:

我们定义一般化的拉格朗日公式

这里的 和 都是拉格朗日算子。如果按这个公式求解,会出现问题,因为我们求解的是最小值,而这里的 已经不是0了,我们可以将 调整成很大的正值,来使最后的函数结果是负无穷。因此我们需要排除这种情况,我们定义下面的函数:

这里的P代表primal。假设 或者 ,那么我们总是可以调整 和 来使得 有最大值为正无穷。而只有g和h满足约束时, 为f(w)。这个函数的精妙之处在于 ,而且求极大值。
因此我们可以写作

这样我们原来要求的min f(w)可以转换成求 了。

我们使用 来表示 。如果直接求解,首先面对的是两个参数,而 也是不等式约束,然后再在w上求最小值。这个过程不容易做,那么怎么办呢?
我们先考虑另外一个问题
D的意思是对偶, 将问题转化为先求拉格朗日关于w的最小值,将 和 看作是固定值。之后在 求最大值的话:

这个问题是原问题的对偶问题,相对于原问题只是更换了min和max的顺序,而一般更换顺序的结果是Max Min(X) <= MinMax(X)。然而在这里两者相等。用 来表示对偶问题如下:

下面解释在什么条件下两者会等价。假设f和g都是凸函数,h是仿射的(affine, )。并且存在w使得对于所有的i, 。在这种假设下,一定存在 使得 是原问题的解, 是对偶问题的解。还有 另外, 满足库恩-塔克条件(Karush-Kuhn-Tucker, KKT condition),该条件如下:

所以如果 满足了库恩-塔克条件,那么他们就是原问题和对偶问题的解。让我们再次审视公式(5),这个条件称作是KKT al complementarity条件。这个条件隐含了如果 ,那么 。也就是说, 时,w处于可行域的边界上,这时才是起作用的约束。而其他位于可行域内部( 的)点都是不起作用的约束,其 。这个KKT双重补足条件会用来解释支持向量和SMO的收敛测试。
这部分内容思路比较凌乱,还需要先研究下《非线性规划》中的约束极值问题,再回头看看。KKT的总体思想是将极值会在可行域边界上取得,也就是不等式为0或等式约束里取得,而最优下降方向一般是这些等式的线性组合,其中每个元素要么是不等式为0的约束,要么是等式约束。对于在可行域边界内的点,对最优解不起作用,因此前面的系数为0。
7 最优间隔分类器(optimal margin classifier)
重新回到SVM的优化问题:

我们将约束条件改写为:

从KKT条件得知只有函数间隔是1(离超平面最近的点)的线性约束式前面的系数 ,也就是说这些约束式 ,对于其他的不在线上的点( ),极值不会在他们所在的范围内取得,因此前面的系数 .注意每一个约束式实际就是一个训练样本。
看下面的图:

实线是最大间隔超平面,假设×号的是正例,圆圈的是负例。在虚线上的点就是函数间隔是1的点,那么他们前面的系数 ,其他点都是 。这三个点称作支持向量。构造拉格朗日函数如下:

注意到这里只有 没有 是因为原问题中没有等式约束,只有不等式约束。
下面我们按照对偶问题的求解步骤来一步步进行,

首先求解 的最小值,对于固定的 , 的最小值只与w和b有关。对w和b分别求偏导数。

并得到

将上式带回到拉格朗日函数中得到,此时得到的是该函数的最小值(目标函数是凸函数)
代入后,化简过程如下:

最后得到

由于最后一项是0,因此简化为

这里我们将向量内积 表示为
此时的拉格朗日函数只包含了变量 。然而我们求出了 才能得到w和b。
接着是极大化的过程 ,

前面提到过对偶问题和原问题满足的几个条件,首先由于目标函数和线性约束都是凸函数,而且这里不存在等式约束h。存在w使得对于所有的i, 。因此,一定存在 使得 是原问题的解, 是对偶问题的解。在这里,求 就是求 了。
如果求出了 ,根据 即可求出w(也是 ,原问题的解)。然后

即可求出b。即离超平面最近的正的函数间隔要等于离超平面最近的负的函数间隔。
关于上面的对偶问题如何求解,将留给下一篇中的SMO算法来阐明。
这里考虑另外一个问题,由于前面求解中得到

我们通篇考虑问题的出发点是 ,根据求解得到的 ,我们代入前式得到

也就是说,以前新来的要分类的样本首先根据w和b做一次线性运算,然后看求的结果是大于0还是小于0,来判断正例还是负例。现在有了 ,我们不需要求出w,只需将新来的样本和训练数据中的所有样本做内积和即可。那有人会说,与前面所有的样本都做运算是不是太耗时了?其实不然,我们从KKT条件中得到,只有支持向量的 ,其他情况 。因此,我们只需求新来的样本和支持向量的内积,然后运算即可。这种写法为下面要提到的核函数(kernel)做了很好的铺垫。这是上篇,先写这么多了。
7 核函数(Kernels)
考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格。假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点。那么首先需要将特征x扩展到三维 ,然后寻找特征和结果之间的模型。我们将这种特征变换称作特征映射(feature mapping)。映射函数称作 ,在这个例子中

我们希望将得到的特征映射后的特征应用于SVM分类,而不是最初的特征。这样,我们需要将前面 公式中的内积从 ,映射到 。
至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到的(为了更好地拟合)是其中一个原因,另外的一个重要原因是样例可能存在线性不可分的情况,而将特征映射到高维空间后,往往就可分了。(在《数据挖掘导论》Pang-Ning Tan等人着的《支持向量机》那一章有个很好的例子说明)
将核函数形式化定义,如果原始特征内积是 ,映射后为 ,那么定义核函数(Kernel)为

到这里,我们可以得出结论,如果要实现该节开头的效果,只需先计算 ,然后计算 即可,然而这种计算方式是非常低效的。比如最初的特征是n维的,我们将其映射到 维,然后再计算,这样需要 的时间。那么我们能不能想办法减少计算时间呢?
先看一个例子,假设x和z都是n维的,

展开后,得

这个时候发现我们可以只计算原始特征x和z内积的平方(时间复杂度是O(n)),就等价与计算映射后特征的内积。也就是说我们不需要花 时间了。
现在看一下映射函数(n=3时),根据上面的公式,得到

也就是说核函数 只能在选择这样的 作为映射函数时才能够等价于映射后特征的内积。
再看一个核函数

对应的映射函数(n=3时)是

更一般地,核函数 对应的映射后特征维度为 。(这个我一直没有理解)。
由于计算的是内积,我们可以想到IR中的余弦相似度,如果x和z向量夹角越小,那么核函数值越大,反之,越小。因此,核函数值是 和 的相似度。
再看另外一个核函数

这时,如果x和z很相近( ),那么核函数值为1,如果x和z相差很大( ),那么核函数值约等于0。由于这个函数类似于高斯分布,因此称为高斯核函数,也叫做径向基函数(Radial Basis Function 简称RBF)。它能够把原始特征映射到无穷维。
既然高斯核函数能够比较x和z的相似度,并映射到0到1,回想logistic回归,sigmoid函数可以,因此还有sigmoid核函数等等。
下面有张图说明在低维线性不可分时,映射到高维后就可分了,使用高斯核函数。

来自Eric Xing的slides
注意,使用核函数后,怎么分类新来的样本呢?线性的时候我们使用SVM学习出w和b,新来样本x的话,我们使用 来判断,如果值大于等于1,那么是正类,小于等于是负类。在两者之间,认为无法确定。如果使用了核函数后, 就变成了 ,是否先要找到 ,然后再预测?答案肯定不是了,找 很麻烦,回想我们之前说过的

只需将 替换成 ,然后值的判断同上。

6. 深度学习为什么会出现局部最优问题

对于二次规划的求解可采用SMO算法。对于回归问题,需要依靠不敏感损失函数。

SVM在解决小样本、非线性及高维模式识别中表现出许多特有的优势。

支持向量机方法是在机器学习理论指导下专门针对有限样本设计的学习方法,不仅对于小样本问题可以得到最优解,而且SVM模型具有很强的泛化能力。更
为突出的是SVM最终转化为求解一个凸二次规划问题,在理论上可以得到全局最优解,克服了一些传统方法(如神经网络方法)可能陷入局部极值的不足。虽然
SVM与神经网络相比有明显优势,但在实际应用中还存在一些问题,比如对于大规模的数据集,由于SVM要解凸二次规划而使算法效率很低,甚至无法进
行;SVM对奇异值的稳健性不高;SVM的解不具有稀疏性,存在着大量冗余支撑向量;其参数没有好的选择策略。

热点内容
i7900k配置什么样显卡 发布:2025-05-16 23:34:50 浏览:924
苹果火影忍者脚本 发布:2025-05-16 23:23:46 浏览:450
python写入数据库 发布:2025-05-16 23:19:11 浏览:698
修复系统时什么配置好 发布:2025-05-16 22:52:07 浏览:803
逆战脚本挂机 发布:2025-05-16 22:30:01 浏览:936
java随机产生数 发布:2025-05-16 22:25:52 浏览:256
java任务管理 发布:2025-05-16 22:17:02 浏览:573
安卓如何修改cpu 发布:2025-05-16 21:58:20 浏览:366
pythonainb 发布:2025-05-16 21:45:56 浏览:857
淘汰服务器可以做家用电脑吗 发布:2025-05-16 21:41:31 浏览:844