当前位置:首页 » 操作系统 » cc算法动态规划

cc算法动态规划

发布时间: 2022-11-28 22:35:49

㈠ 动态规划算法的基本思想

动态规划与其它算法相比,大大减少了计算量,丰富了计算结果,不仅求出了当前状态到目标状态的最优值,而且同时求出了到中间状态的最优值,这对于很多实际问题来说是很有用的。动态规划相比一般算法也存在一定缺点:空间占据过多,但对于空间需求量不大的题目来说,动态规划无疑是最佳方法!

动态规划与其它算法相比,大大减少了计算量,丰富了计算结果,不仅求出了当前状态到目标状态的最优值,而且同时求出了到中间状态的最优值,这对于很多实际问题来说是很有用的。动态规划相比一般算法也存在一定缺点:空间占据过多,但对于空间需求量不大的题目来说,动态规划无疑是最佳方法!

动态规划算法和贪婪算法都是构造最优解的常有方法。动态规划算法没有一个固定的解题模式,技巧性很强。

动态规划是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼等人在研究多阶段决策过程的优化问题时,提出了着名的最优化原理,从而创立了动态规划。

㈡ C++算法 动态规划 最短路径问题

d[i][j][k]表示第i列 左边的第j个到右边的第k个的距离(第i个和第k个均表示图中这一列的第i,k个,不是左边第j个指向的第k个),d[2][2][2]就表示B2到C2的距离就是8,d[2][2][4]表示B2到C4为4
望采纳

㈢ c++动态规划是什么

所谓动态规划:把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解。动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。

㈣ 什么是动态规划算法,常见的动态规划问题分析与求解

动态规划中递推式的求解方法不是动态规划的本质,本质,是对问题状态的定义和状态转移方程的定义。

㈤ 大数据经典算法解析(1)一C4.5算法

姓名:崔升    学号:14020120005

【嵌牛导读】:

C4.5作为一种经典的处理大数据的算法,是我们在学习互联网大数据时不得不去了解的一种常用算法

【嵌牛鼻子】:经典大数据算法之C4.5简单介绍

【嵌牛提问】:C4.5是一种怎么的算法,其决策机制靠什么实现?

【嵌牛正文】:

决策树模型:

决策树是一种通过对特征属性的分类对样本进行分类的树形结构,包括有向边与三类节点:

根节点(root node),表示第一个特征属性,只有出边没有入边;

内部节点(internal node),表示特征属性,有一条入边至少两条出边

叶子节点(leaf node),表示类别,只有一条入边没有出边。

上图给出了(二叉)决策树的示例。决策树具有以下特点:

对于二叉决策树而言,可以看作是if-then规则集合,由决策树的根节点到叶子节点对应于一条分类规则;

分类规则是 互斥并且完备 的,所谓 互斥 即每一条样本记录不会同时匹配上两条分类规则,所谓 完备 即每条样本记录都在决策树中都能匹配上一条规则。

分类的本质是对特征空间的划分,如下图所示,

决策树学习:

决策树学习的本质是从训练数据集中归纳出一组分类规则[2]。但随着分裂属性次序的不同,所得到的决策树也会不同。如何得到一棵决策树既对训练数据有较好的拟合,又对未知数据有很好的预测呢?

首先,我们要解决两个问题:

如何选择较优的特征属性进行分裂?每一次特征属性的分裂,相当于对训练数据集进行再划分,对应于一次决策树的生长。ID3算法定义了目标函数来进行特征选择。

什么时候应该停止分裂?有两种自然情况应该停止分裂,一是该节点对应的所有样本记录均属于同一类别,二是该节点对应的所有样本的特征属性值均相等。但除此之外,是不是还应该其他情况停止分裂呢?

2. 决策树算法

特征选择

特征选择指选择最大化所定义目标函数的特征。下面给出如下三种特征(Gender, Car Type, Customer ID)分裂的例子:

图中有两类类别(C0, C1),C0: 6是对C0类别的计数。直观上,应选择Car Type特征进行分裂,因为其类别的分布概率具有更大的倾斜程度,类别不确定程度更小。

为了衡量类别分布概率的倾斜程度,定义决策树节点tt的不纯度(impurity),其满足:不纯度越小,则类别的分布概率越倾斜;下面给出不纯度的的三种度量:

其中,p(ck|t)p(ck|t)表示对于决策树节点tt类别ckck的概率。这三种不纯度的度量是等价的,在等概率分布是达到最大值。

为了判断分裂前后节点不纯度的变化情况,目标函数定义为信息增益(information gain):

I(⋅)I(⋅)对应于决策树节点的不纯度,parentparent表示分裂前的父节点,NN表示父节点所包含的样本记录数,aiai表示父节点分裂后的某子节点,N(ai)N(ai)为其计数,nn为分裂后的子节点数。

特别地,ID3算法选取 熵值 作为不纯度I(⋅)I(⋅)的度量,则

cc指父节点对应所有样本记录的类别;AA表示选择的特征属性,即aiai的集合。那么,决策树学习中的信息增益ΔΔ等价于训练数据集中 类与特征的互信息 ,表示由于得知特征AA的信息训练数据集cc不确定性减少的程度。

在特征分裂后,有些子节点的记录数可能偏少,以至于影响分类结果。为了解决这个问题,CART算法提出了只进行特征的二元分裂,即决策树是一棵二叉树;C4.5算法改进分裂目标函数,用信息增益比(information gain ratio)来选择特征:

因而,特征选择的过程等同于计算每个特征的信息增益,选择最大信息增益的特征进行分裂。此即回答前面所提出的第一个问题(选择较优特征)。ID3算法设定一阈值,当最大信息增益小于阈值时,认为没有找到有较优分类能力的特征,没有往下继续分裂的必要。根据最大表决原则,将最多计数的类别作为此叶子节点。即回答前面所提出的第二个问题(停止分裂条件)。

决策树生成:

ID3算法的核心是根据信息增益最大的准则,递归地构造决策树;算法流程如下:

如果节点满足停止分裂条件(所有记录属同一类别 or 最大信息增益小于阈值),将其置为叶子节点;

选择信息增益最大的特征进行分裂;

重复步骤1-2,直至分类完成。

C4.5算法流程与ID3相类似,只不过将信息增益改为 信息增益比 。

3. 决策树剪枝

过拟合

生成的决策树对训练数据会有很好的分类效果,却可能对未知数据的预测不准确,即决策树模型发生过拟合(overfitting)——训练误差(training error)很小、泛化误差(generalization error,亦可看作为test error)较大。下图给出训练误差、测试误差(test error)随决策树节点数的变化情况:

可以观察到,当节点数较小时,训练误差与测试误差均较大,即发生了欠拟合(underfitting)。当节点数较大时,训练误差较小,测试误差却很大,即发生了过拟合。只有当节点数适中是,训练误差居中,测试误差较小;对训练数据有较好的拟合,同时对未知数据有很好的分类准确率。

发生过拟合的根本原因是分类模型过于复杂,可能的原因如下:

训练数据集中有噪音样本点,对训练数据拟合的同时也对噪音进行拟合,从而影响了分类的效果;

决策树的叶子节点中缺乏有分类价值的样本记录,也就是说此叶子节点应被剪掉。

剪枝策略

为了解决过拟合,C4.5通过剪枝以减少模型的复杂度。[2]中提出一种简单剪枝策略,通过极小化决策树的整体损失函数(loss function)或代价函数(cost function)来实现,决策树TT的损失函数为:

其中,C(T)C(T)表示决策树的训练误差,αα为调节参数,|T||T|为模型的复杂度。当模型越复杂时,训练的误差就越小。上述定义的损失正好做了两者之间的权衡。

如果剪枝后损失函数减少了,即说明这是有效剪枝。具体剪枝算法可以由动态规划等来实现。

4. 参考资料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introction to Data Mining .

[2] 李航,《统计学习方法》.

[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.

㈥ 简述动态规划算法的基本范式

动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解.动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间.我们可以用一个表来记录所有已解的子问题的答案.不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中.这就是动态规划法的基本思路.具体的动态规划算法多种多样,但它们具有相同的填表格式.

㈦ 详解动态规划算法

其实你可以这么去想。
能用动态规划解决的问题,肯定能用搜索解决。
但是搜素时间复杂度太高了,怎么优化呢?
你想到了记忆化搜索,就是搜完某个解之后把它保存起来,下一次搜到这个地方的时候,调用上一次的搜索出来的结果。这样就解决了处理重复状态的问题。
动态规划之所以速度快是因为解决了重复处理某个状态的问题。
记忆化搜索是动态规划的一种实现方法。
搜索到i状态,首先确定要解决i首先要解决什么状态。
那么那些状态必然可以转移给i状态。
于是你就确定了状态转移方程。
然后你需要确定边界条件。
将边界条件赋予初值。
此时就可以从前往后枚举状态进行状态转移拉。

㈧ 动态规划算法程序例子

给你导弹拦截的吧:
[问题描述]
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数,每个数据之间至少有一个空格),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。

[输入输出样例]
INPUT:
389 207 155 300 299 170 158 65
OUTPUT:
6(最多能拦截的导弹数)
2(要拦截所有导弹最少要配备的系统数)

[问题分析]
我们先解决第一问。一套系统最多能拦多少导弹,跟它最后拦截的导弹高度有很大关系。假设a[i]表示拦截的最后一枚导弹是第i枚时,系统能拦得的最大导弹数。例如,样例中a[5]=3,表示:如果系统拦截的最后一枚导弹是299的话,最多可以拦截第1枚(389)、第4枚(300)、第5枚(299)三枚导弹。显然,a[1]~a[8]中的最大值就是第一问的答案。关键是怎样求得a[1]~a[8]。
假设现在已经求得a[1]~a[7](注:在动态规划中,这样的假设往往是很必要的),那么怎样求a[8]呢?a[8]要求系统拦截的最后1枚导弹必须是65,也就意味着倒数第2枚被拦截的导弹高度必须不小于65,则符合要求的导弹有389、207、155、300、299、170、158。假如最后第二枚导弹是300,则a[8]=a[4]+1;假如倒数第2枚导弹是299,则a[8]=a[5]+1;类似地,a[8]还可能是a[1]+1、a[2]+1、……。当然,我们现在求得是以65结尾的最多导弹数目,因此a[8]要取所有可能值的最大值,即a[8]=max{a[1]+1,a[2]+1,……,a[7]+1}=max{a[i]}+1 (i=1..7)。
类似地,我们可以假设a[1]~a[6]为已知,来求得a[7]。同样,a[6]、a[5]、a[4]、a[3]、a[2]也是类似求法,而a[1]就是1,即如果系统拦截的最后1枚导弹是389,则只能拦截第1枚。
这样,求解过程可以用下列式子归纳:
a[1]=1
a[i]=max{a[j]}+1 (i>1,j=1,2,…,i-1,且j同时要满足:a[j]>=a[i])
最后,只需把a[1]~a[8]中的最大值输出即可。这就是第一问的解法,这种解题方法就称为“动态规划”。

第二问比较有意思。由于它紧接着第一问,所以很容易受前面的影响,多次采用第一问的办法,然后得出总次数,其实这是不对的。要举反例并不难,比如长为7的高度序列“7 5 4 1 6 3 2”, 最长不上升序列为“7 5 4 3 2”,用多次求最长不上升序列的结果为3套系统;但其实只要2套,分别击落“7 5 4 1”与“6 3 2”。所以不能用“动态规划”做,那么,正确的做法又是什么呢?
我们的目标是用最少的系统击落所有导弹,至于系统之间怎么分配导弹数目则无关紧要,上面错误的想法正是承袭了“一套系统尽量多拦截导弹”的思维定势,忽视了最优解中各个系统拦截数较为平均的情况,本质上是一种贪心算法,但贪心的策略不对。如果从每套系统拦截的导弹方面来想行不通的话,我们就应该换一个思路,从拦截某个导弹所选的系统入手。
题目告诉我们,已有系统目前的瞄准高度必须不低于来犯导弹高度,所以,当已有的系统均无法拦截该导弹时,就不得不启用新系统。如果已有系统中有一个能拦截该导弹,我们是应该继续使用它,还是另起炉灶呢?事实是:无论用哪套系统,只要拦截了这枚导弹,那么系统的瞄准高度就等于导弹高度,这一点对旧的或新的系统都适用。而新系统能拦截的导弹高度最高,即新系统的性能优于任意一套已使用的系统。既然如此,我们当然应该选择已有的系统。如果已有系统中有多个可以拦截该导弹,究竟选哪一个呢?当前瞄准高度较高的系统的“潜力”较大,而瞄准高度较低的系统则不同,它能打下的导弹别的系统也能打下,它够不到的导弹却未必是别的系统所够不到的。所以,当有多个系统供选择时,要选瞄准高度最低的使用,当然瞄准高度同时也要大于等于来犯导弹高度。
解题时用一个数组sys记下当前已有系统的各个当前瞄准高度,该数组中实际元素的个数就是第二问的解答。

[参考程序]
program noip1999_2;
const max=1000;
var i,j,current,maxlong,minheight,select,tail,total:longint;
height,longest,sys:array [1..max] of longint;
line:string;
begin
write('Input test data:');
readln(line); {输入用字符串}
i:=1;
total:=0; {飞来的导弹数}
while i<=length(line) do {分解出若干个数,存储在height数组中}
begin
while (i<=length(line)) and (line[i]=' ') do i:=i+1; {过滤空格}
current:=0; {记录一个导弹的高度}
while (i<=length(line)) and (line[i]<>' ') do {将一个字符串变成数}
begin
current:=current*10+ord(line[i])-ord('0');
i:=i+1
end;
total:=total+1;
height[total]:=current {存储在height中}
end;
longest[1]:=1; {以下用动态规划求第一问}
for i:=2 to total do
begin
maxlong:=1;
for j:=1 to i-1 do
begin
if height[i]<=height[j]
then if longest[j]+1>maxlong
then maxlong:=longest[j]+1;
longest[i]:=maxlong {以第i个导弹为结束,能拦截的最多导弹数}
end;
end;
maxlong:=longest[1];
for i:=2 to total do
if longest[i]>maxlong then maxlong:=longest[i];
writeln(maxlong); {输出第一问的结果}
sys[1]:=height[1]; {以下求第二问}
tail:=1; {数组下标,最后也就是所需系统数}
for i:=2 to total do
begin
minheight:=maxint;
for j:=1 to tail do {找一套最适合的系统}
if sys[j]>height[i] then
if sys[j]<minheight then
begin minheight:=sys[j]; select:=j end;
if minheight=maxint {开一套新系统}
then begin tail:=tail+1; sys[tail]:=height[i] end
else sys[select]:=height[i]
end;
writeln(tail)
end.

[部分测试数据]
输入1:300 250 275 252 200 138 245
输出1:
5
2

输入2:181 205 471 782 1033 1058 1111
输出2:
1
7

输入3:465 978 486 476 324 575 384 278 214 657 218 445 123
输出3:
7
4

输入4:236 865 858 565 545 445 455 656 844 735 638 652 659 714 845
输出4:
6
7
够详细的吧

㈨ 算法分析中动态规划的四个基本步骤

1、描述优解的结构特征。

2、递归地定义一个最优解的值。

3、自底向上计算一个最优解的值。

4、从已计算的信息中构造一个最优解。

㈩ 回文序列问题

Example 1:
Input: 121
Output: true
Example 2:
Input: -121
Output: false
Explanation: From left to right, it reads -121. From right to left, it becomes 121-. Therefore it is not a palindrome.

示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
时间复杂度: O(n^2) 两个for循环
空间复杂度: O(n^2) dp数组的大小

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是 回文串 。返回 s 所有可能的分割方案。
回文串 是正着读和反着读都一样的字符串。
示例 1:
输入:s = "aab"
输出:[["a","a","b"],["aa","b"]]
思路:动态规划得到每个子串是否为回文子串,然后从头开始回溯算法
时间复杂度:O(N * 2^N)

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。
返回符合要求的 最少分割次数 。
示例 1:
输入:s = "aab"
输出:1
解释:只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。
思路:

时间复杂度=空间复杂度=O(n^2)

给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。
回文字符串 是正着读和倒过来读一样的字符串。
子字符串 是字符串中的由连续字符组成的一个序列。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:s = "abc"
输出:3
解释:三个回文子串: "a", "b", "c"

给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。

给定一个字符串 S,找出 S 中不同的非空回文子序列个数,并返回该数字与 10^9 + 7 的模。
通过从 S 中删除 0 个或多个字符来获得子序列。
如果一个字符序列与它反转后的字符序列一致,那么它是回文字符序列。
如果对于某个 i,A_i != B_i,那么 A_1, A_2, ... 和 B_1, B_2, ... 这两个字符序列是不同的。
示例 1:
输入:
S = 'bccb'
输出:6
解释:
6 个不同的非空回文子字符序列分别为:'b', 'c', 'bb', 'cc', 'bcb', 'bccb'。
注意:'bcb' 虽然出现两次但仅计数一次。

热点内容
我的世界手机版服务器如何给管理 发布:2025-05-17 15:34:06 浏览:830
hbase与传统数据库 发布:2025-05-17 15:28:56 浏览:168
看我QQ密码多少 发布:2025-05-17 15:27:12 浏览:264
我配置很高了ae为什么卡 发布:2025-05-17 14:54:50 浏览:169
python数据分析实战pdf 发布:2025-05-17 14:49:42 浏览:952
海澜之家广告脚本 发布:2025-05-17 13:56:06 浏览:34
手文件夹恢复 发布:2025-05-17 13:53:32 浏览:997
linux怎么看进程 发布:2025-05-17 13:53:30 浏览:307
thinkphp字段缓存 发布:2025-05-17 13:52:01 浏览:579
山灵app安卓版如何设置 发布:2025-05-17 13:51:49 浏览:392