当前位置:首页 » 操作系统 » linux发tcp

linux发tcp

发布时间: 2022-12-10 20:35:41

linux和windows有没有发送tcp协议消息的命令行程序

下面大概分几个方面进行罗列:

Linux要包含

[cpp]
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <arpa/inet.h>
等头文件,而windows下则是包含
[cpp]
#include <winsock.h>


Linux中socket为整形,Windows中为一个SOCKET。
Linux中关闭socket为close,Windows中为closesocket。
Linux中有变量socklen_t,Windows中直接为int。
因为linux中的socket与普通的fd一样,所以可以在TCP的socket中,发送与接收数据时,直接使用read和write。而windows只能使用recv和send。
设置socet选项,比如设置socket为非阻塞的。Linux下为

[cpp]
flag = fcntl (fd, F_GETFL);
fcntl (fd, F_SETFL, flag | O_NONBLOCK);
,Windows下为
[cpp]
flag = 1;
ioctlsocket (fd, FIONBIO, (unsigned long *) &flag);

当非阻塞socket的TCP连接正在进行时,Linux的错误号为EINPROGRESS,Windows的错误号为WSAEWOULDBLOCK。

file
Linux下面,文件换行是"\n",而windows下面是"\r\n"。
Linux下面,目录分隔符是"/",而windows下面是"\"。
Linux与Windows下面,均可以使用stat调用来查询文件信息。但是,Linux只支持2G大小,而Windows只支持4G大小。为了支持更大的文件查询,可以在Linux环境下加

_FILE_OFFSET_BITS=64定义,在Windows下面使用_stat64调用,入参为struct __stat64。
Linux中可根据stat的st_mode判断文件类型,有S_ISREG、S_ISDIR等宏。Windows中没有,需要自己定义相应的宏,如

[cpp]
#define S_ISREG(m) (((m) & 0170000) == (0100000))
#define S_ISDIR(m) (((m) & 0170000) == (0040000))
Linux中删除文件是unlink,Windows中为DeleteFile。

time

Linux中,time_t结构是长整形。而windows中,time_t结构是64位的整形。如果要在windows始time_t为32位无符号整形,可以加宏定义,_USE_32BIT_TIME_T。
Linux中,sleep的单位为秒。Windows中,Sleep的单位为毫秒。即,Linux下sleep (1),在Windows环境下则需要Sleep (1000)。
Windows中的timecmp宏,不支持大于等于或者小于等于。
Windows中没有struct timeval结构的加减宏可以使用,需要手动定义:

㈡ 如何在linux下用tcp传输文件

一. ftp 说明 linux 系统下常用的FTP 是vsftp, 即Very Security File Transfer Protocol. 还有一个是proftp(Profession ftp)。 我们这里也是简单的说明下vsftp的配置。 vsftp提供3种远程的登录方式: (1)匿名登录方式 就是不需要用户名,密码。就能登录到服务器电脑里面 (2)本地用户方式 需要帐户名和密码才能登录。而且,这个帐户名和密码,都是在你linux系统里面,已经有的用户。 (3)虚拟用户方式 同样需要用户名和密码才能登录。但是和上面的区别就是,这个用户名和密码,在你linux系统中是没有的(没有该用户帐号) 二. Vsftp的安装配置 2.1 安装 vsftp 的安装包,可以在安装里找到。 用yum 安装过程也很简单。 安装命令:yum install vsftpd 2.2. 相关命令 2.2.1 启动与关闭 [root@singledb ~]# service vsftpd start Starting vsftpd for vsftpd: [ OK ] [root@singledb ~]# service vsftpd stop Shutting down vsftpd: [ OK ] [root@singledb ~]# service vsftpd restart Shutting down vsftpd: [FAILED] Starting vsftpd for vsftpd: [ OK ] [root@singledb ~]# /etc/init.d/vsftpd start Starting vsftpd for vsftpd: [FAILED] [root@singledb ~]# /etc/init.d/vsftpd stop Shutting down vsftpd: [ OK ] [root@singledb ~]# /etc/init.d/vsftpd restart Shutting down vsftpd: [FAILED] Starting vsftpd for vsftpd: [ OK ] [root@singledb ~]# /etc/init.d/vsftpd status vsftpd (pid 3931) is running... [root@singledb ~]# 2.2.2. 其他命令 --查看vsftpd 启动状态 [root@singledb ~]# chkconfig --list vsftpd vsftpd 0:off 1:off 2:off 3:off 4:off 5:off 6:off [root@singledb ~]# chkconfig vsftpd on [root@singledb ~]# chkconfig --list vsftpd vsftpd 0:off 1:off 2:on 3:on 4:on 5:on 6:off 这里看到,默认情况下从2到5设置为on了。2到5是多用户级别。 这个对应的是linux不同的运行级别。 我们也可以加level 选项来指定: [root@singledb ~]# chkconfig --level 0 vsftpd on [root@singledb ~]# chkconfig --list vsftpd vsftpd 0:on 1:off 2:on 3:on 4:on 5:on 6:off 我们看到0已经设置为on了。 我们可以使用man chkconfig 来查看帮助: --level levels Specifies the run levels an operation should pertain to. It is given as a string of numbers from 0 to 7. For example, --level 35 specifies runlevels 3 and 5. 传统的init 定义了7个运行级(run level),每一个级别都代表系统应该补充运行的某些特定服务: (1)0级是完全关闭系统的级别 (2)1级或者S级代表单用户模式 (3)2-5 级 是多用户级别 (4)6级 是 重新引导的级别 (1)查看防火墙 我一般都是把系统的防火墙关闭了。 因为开了会有很多限制。 [root@singledb ~]# /etc/init.d/iptables status Table: nat Chain PREROUTING (policy ACCEPT) num target prot opt source destination Chain POSTROUTING (policy ACCEPT) num target prot opt source destination 1 MASQUERADE all -- 192.168.122.0/24 !192.168.122.0/24 Chain OUTPUT (policy ACCEPT) num target prot opt source destination Table: filter Chain INPUT (policy ACCEPT) num target prot opt source destination 1 ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:53 2 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:53 3 ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:67 4 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:67 Chain FORWARD (policy ACCEPT) num target prot opt source destination 1 ACCEPT all -- 0.0.0.0/0 192.168.122.0/24 state RELATED,ESTABLISHED 2 ACCEPT all -- 192.168.122.0/24 0.0.0.0/0 3 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 4 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable 5 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable Chain OUTPUT (policy ACCEPT) num target prot opt source destination You have new mail in /var/spool/mail/root --添加开放21号端口: [root@singledb ~]# /sbin/iptables -I INPUT -p tcp --dport 21 -j ACCEPT [root@singledb ~]# /etc/init.d/iptables status Table: nat Chain PREROUTING (policy ACCEPT) num target prot opt source destination Chain POSTROUTING (policy ACCEPT) num target prot opt source destination 1 MASQUERADE all -- 192.168.122.0/24 !192.168.122.0/24 Chain OUTPUT (policy ACCEPT) num target prot opt source destination Table: filter Chain INPUT (policy ACCEPT) num target prot opt source destination 1 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:21 2 ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:53 3 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:53 4 ACCEPT udp -- 0.0.0.0/0 0.0.0.0/0 udp dpt:67 5 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:67 Chain FORWARD (policy ACCEPT) num target prot opt source destination 1 ACCEPT all -- 0.0.0.0/0 192.168.122.0/24 state RELATED,ESTABLISHED 2 ACCEPT all -- 192.168.122.0/24 0.0.0.0/0 3 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 4 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable 5 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable Chain OUTPUT (policy ACCEPT) num target prot opt source destination --保存配置 [root@singledb ~]# /etc/rc.d/init.d/iptables save Saving firewall rules to /etc/sysconfig/iptables: [ OK ] --重启防火墙: [root@singledb ~]# service iptables {startstoprestart} (2)查看关闭selinux [root@singledb ~]# sestatus SELinux status: disabled 我这里在安装操作系统的时候就关闭了selinux,如果没有关闭,可以修改如下文件来关闭: [root@singledb ~]# cat /etc/sysconfig/selinux # This file controls the state of SELinux on the system. # SELINUX= can take one of these three values: # enforcing - SELinux security policy is enforced. # permissive - SELinux prints warnings instead of enforcing. # disabled - SELinux is fully disabled. SELINUX=disabled # SELINUXTYPE= type of policy in use. Possible values are: # targeted - Only targeted network daemons are protected. # strict - Full SELinux protection. SELINUXTYPE=targeted [root@singledb ~]# 保存退出并重启系统reboot 三. FTP配置文件 FTP 安装好之后,在/etc/vsftpd/目录下会有如下文件: [root@singledb ~]# cd /etc/vsftpd/ [root@singledb vsftpd]# ls ftpusers user_list vsftpd.conf vsftpd_conf_migrate.sh [root@singledb vsftpd]# vsftpd.conf: 主配置文件 ftpusers: 指定哪些用户不能访问FTP服务器 user_list: 指定的用户是否可以访问ftp服务器由vsftpd.conf文件中的userlist_deny的取值来决定。 [root@singledb vsftpd]# cat user_list # vsftpd userlist # If userlist_deny=NO, only allow users in this file # If userlist_deny=YES (default), never allow users in this file, and # do not even prompt for a password. # Note that the default vsftpd pam config also checks /etc/vsftpd/ftpusers # for users that are denied. 我们过滤掉#的注释后,查看一下vsftpd.conf 文件: [root@singledb ftp]# cat /etc/vsftpd/vsftpd.conf grep -v '^#'; anonymous_enable=YES local_enable=YES write_enable=YES local_umask=022 dirmessage_enable=YES xferlog_enable=YES connect_from_port_20=YES xferlog_std_format=YES listen=YES pam_service_name=vsftpd userlist_enable=yes tcp_wrappers=YES 至于这些参数的意思,在注释里有详细的说明。 我们可以在vsftpd.conf 文件设置如下参数: (1)ftpd_banner=welcome to ftp service :设置连接服务器后的欢迎信息 (2)idle_session_timeout=60 :限制远程的客户机连接后,所建立的控制连接,在多长时间没有做任何的操作就会中断(秒) (3)data_connection_timeout=120 :设置客户机在进行数据传输时,设置空闲的数据中断时间 (4)accept_timeout=60 设置在多长时间后自动建立连接 (5)connect_timeout=60 设置数据连接的最大激活时间,多长时间断开,为别人所使用; (6)max_clients=200 指明服务器总的客户并发连接数为200 (7)max_per_ip=3 指明每个客户机的最大连接数为3 (8)local_max_rate=50000(50kbytes/sec) 本地用户最大传输速率限制 (9)anon_max_rate=30000匿名用户的最大传输速率限制 (10)pasv_min_port=端口 (11)pasv-max-prot=端口号 定义最大与最小端口,为0表示任意端口;为客户端连接指明端口; (12)listen_address=IP地址 设置ftp服务来监听的地址,客户端可以用哪个地址来连接; (13)listen_port=端口号 设置FTP工作的端口号,默认的为21 (14)chroot_local_user=YES 设置所有的本地用户可以chroot (15)chroot_local_user=NO 设置指定用户能够chroot (16)chroot_list_enable=YES (17)chroot_list_file=/etc/vsftpd/chroot_list(只有/etc/vsftpd/chroot_list中的指定的用户才能执行 ) (18)local_root=path 无论哪个用户都能登录的用户,定义登录帐号的主目录, 若没有指定,则每一个用户则进入到个人用户主目录; (19)chroot_local_user=yes/no 是否锁定本地系统帐号用户主目录(所有);锁定后,用户只能访问用户的主目录/home/user,不能利用cd命令向上转;只能向下; (20)chroot_list_enable=yes/no 锁定指定文件中用户的主目录(部分),文件:/chroot_list_file=path 中指定; (21)userlist_enable=YES/NO 是否加载用户列表文件; (22)userlist_deny=YES 表示上面所加载的用户是否允许拒绝登录; (23)userlist_file=/etc/vsftpd/user_list 列表文件 限制IP 访问FTP: #vi /etc/hosts.allow vsftpd:192.168.5.128:DENY 设置该IP地址不可以访问ftp服务 FTP 访问时间限制: #cp /usr/share/doc/vsftpd-1.1.3/vsftpd.xinetd /etc/xinetd.d/vsftpd #vi /etc/xinetd.d/vsftpd/ 修改 disable = no access_time = hour:min-hour:min (添加配置访问的时间限制(注:与vsftpd.conf中listen=NO相对应) 例: access_time = 8:30-11:30 17:30-21:30 表示只有这两个时间段可以访问ftp ftp的配置基本上只有这些了。 默认情况下,ftp根目录是/var/ftp。 如果要修改这个目录位置,可以更改/etc/passwd 文件: [root@singledb ftp]# cat /etc/passwd grep ftp ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin 创建一个用户来访问FTP,并指定该用户的FTP 目录: [root@singledb u02]# useradd -d /u02/qsftp qs [root@singledb u02]# passwd qs Changing password for user qs. New UNIX password: BAD PASSWORD: it is WAY too short Retype new UNIX password: passwd: all authentication tokens updated successfully. 这里指定的是/u02/qsftp 这个目录,要注意个目录的权限。 更改用户不能telnet,只能ftp: usermod -s /sbin/nologin username //用户只能ftp,不能telnet usermod -s /sbin/bash username //用户恢复正常 禁止用户ssh登陆 useradd username -s /bin/false 更改用户主目录: usermod -d /bbb username //把用户的主目录定为/bbb 然后用qs这个用户就可以访问了。 以上只是一些简单的设置。 在用户权限这块还有很多内容可以研究。 比如特定用户的特定权限。 安全性等。 以后在研究了。

㈢ 如何在LINUX发送一个tcp请求

这个就需要在 Linux 系统下编写网络的 TCP/IP socket 程序了。可以分别编写 server、client 端的代码。这些在网络编程的教材上都有标准的代码。

㈣ Linux下实现简单的TCP服务器与客户端通信

一直收的那个就不要写输入的代码了,直接无限读取就可以。
一直发的那个就不要写输出的代码了,直接无限输入就可以;
当然如果想两个都想在服务器和客户端各种实现,那么加入多线程吧。一个线程只管输入,一个线程只管输出

㈤ 畅谈linux下TCP(上)

tcp 协议 是互联网中最常用的协议 , 开发人员基本上天天和它打交道,对它进行深入了解。 可以帮助我们排查定位bug和进行程序优化。下面我将就TCP几个点做深入的探讨

客户端:收到 ack 后 分配连接资源。 发送数据
服务器 : 收到 syn 后立即 分配连接资源

客户端:收到ACK, 立即分配资源
服务器:收到ACK, 立即分配资源

既然三次握手也不是100%可靠, 那四次,五次,六次。。。呢? 其实都一样,不管多少次都有丢包问题。

client 只发送一个 SYN, server 分配一个tcb, 放入syn队列中。 这时候连接叫 半连接 状态;如果server 收不到 client 的ACK, 会不停重试 发送 ACK-SYN 给client 。重试间隔 为 2 的 N 次方 叠加(2^0 , 2^1, 2^2 ....);直至超时才释放syn队列中的这个 TCB;
在半连接状态下, 一方面会占用队列配额资源,另一方面占用内存资源。我们应该让半连接状态存在时间尽可能的小

当client 向一个未打开的端口发起连接请求时,会收到一个RST回复包

当listen 的 backlog 和 somaxconn 都设置了得时候, 取两者min值

Recv-Q 是accept 队列当前个数, Send-Q 设置最大值

这种SYN洪水攻击是一种常见攻击方式,就是利用半连接队列特性,占满syn 队列的 资源,导致 client无法连接上。
解决方案:

为什么不像握手那样合并成三次挥手? 因为和刚开始连接情况,连接是大家都从0开始, 关闭时有历史包袱的。server(被动关闭方) 收到 client(主动关闭方) 的关闭请求FIN包。 这时候可能还有未发送完的数据,不能丢弃。 所以需要分开。事实可能是这样

当然,在没有待发数据,并且允许 Delay ACK 情况下, FIN-ACK合并还是非常常见的事情,这是三次挥手是可以的。

同上

CLOSE_WAIT 是被动关闭方才有的状态

被动关闭方 [收到 FIN 包 发送 ACK 应答] 到 [发送FIN, 收到ACK ] 期间的状态为 CLOSE_WAIT, 这个状态仍然能发送数据。 我们叫做 半关闭 , 下面用个例子来分析:

这个是我实际生产环境碰到的一个问题,长连接会话场景,server端收到client的rpc call 请求1,处理发现请求包有问题,就强制关闭结束这次会话, 但是 因为client 发送 第二次请求之前,并没有去调用recv,所以并不知道 这个连接被server关闭, 继续发送 请求2 , 此时是半连接,能够成功发送到对端机器,但是recv结果后,遇到连接已经关闭错误。

如果 client 和 server 恰好同时发起关闭连接。这种情况下,两边都是主动连接,都会进入 TIME_WAIT状态

1、 被动关闭方在LAST_ACK状态(已经发送FIN),等待主动关闭方的ACK应答,但是 ACK丢掉, 主动方并不知道,以为成功关闭。因为没有TIME_WAIT等待时间,可以立即创建新的连接, 新的连接发送SYN到前面那个未关闭的被动方,被动方认为是收到错误指令,会发送RST。导致创建连接失败。

2、 主动关闭方断开连接,如果没有TIME_WAIT等待时间,可以马上建立一个新的连接,但是前一个已经断开连接的,延迟到达的数据包。 被新建的连接接收,如果刚好seq 和 ack字段 都正确, seq在滑动窗口范围内(只能说机率非常小,但是还是有可能会发生),会被当成正确数据包接收,导致数据串包。 如果不在window范围内,则没有影响( 发送一个确认报文(ack 字段为期望ack的序列号,seq为当前发送序列号),状态变保持原样)

TIME_WAIT 问题比较比较常见,特别是CGI机器,并发量高,大量连接后段服务的tcp短连接。因此也衍生出了多种手段解决。虽然每种方法解决不是那么完美,但是带来的好处一般多于坏处。还是在日常工作中会使用。
1、改短TIME_WAIT 等待时间

这个是第一个想到的解决办法,既然等待时间太长,就改成时间短,快速回收端口。但是实际情况往往不乐观,对于并发的机器,你改多短才能保证回收速度呢,有时候几秒钟就几万个连接。太短的话,就会有前面两种问题小概率发生。

2、禁止Socket lingering

这种情况下关闭连接,会直接抛弃缓冲区中待发送的数据,会发送一个RST给对端,相当于直接抛弃TIME_WAIT, 进入CLOSE状态。同样因为取消了 TIME_WAIT 状态,会有前面两种问题小概率发生。

3、tcp_tw_reuse
net.ipv4.tcp_tw_reuse选项是 从 TIME_WAIT 状态的队列中,选取条件:1、remote 的 ip 和端口相同, 2、选取一个时间戳小于当前时间戳; 用来解决端口不足的尴尬。

现在端口可以复用了,看看如何面对前面TIME_WAIT 那两种问题。 我们仔细回顾用一下前面两种问题。 都是在新建连接中收到老连接的包导致的问题 , 那么如果我能在新连接中识别出此包为非法包,是不是就可以丢掉这些无用包,解决问题呢。

需要实现这些功能,需要扩展一下tcp 包头。 增加 时间戳字段。 发送者 在每次发送的时候。 在tcp包头里面带上发送时候的时间戳。 当接收者接收的时候,在ACK应答中除了TCP包头中带自己此时发送的时间戳,并且把收到的时间戳附加在后面。也就是说ACK包中有两个时间戳字段。结构如下:

那我们接下来一个个分析tcp_tw_reuse是如何解决TIME_WAIT的两个问题的

4、tcp_tw_recycle

tcp_tw_recycle 也是借助 timestamp机制。顾名思义, tcp_tw_reuse 是复用 端口,并不会减少 TIME-WAIT 数量。你去查询机器上TIME-WAIT 数量,还是 几千几万个,这点对有强迫症的同学感觉很不舒服。tcp_tw_recycle 是 提前 回收 TIME-WAIT资源。会减少 机器上 TIME-WAIT 数量。

tcp_tw_recycle 工作原理是。

㈥ linux下怎么设置tcp

Socket的send函数在执行时报EAGAIN的错误 当客户通过Socket提供的send函数发送大的数据包时,就可能返回一个EGGAIN的错误。该错误产生的原因是由于send 函数中的size变量大小超过了tcp_sendspace的值。tcp_sendspace定义了应用在调用send之前能够在kernel中缓存的数据量。当应用程序在socket中设置了O_NDELAY或者O_NONBLOCK属性后,如果发送缓存被占满,send就会返回EAGAIN的错误。 为了消除该错误,有三种方法可以选择: 1.调大tcp_sendspace,使之大于send中的size参数 ---no -p -o tcp_sendspace=65536 2.在调用send前,在setsockopt函数中为SNDBUF设置更大的值 3.使用write替代send,因为write没有设置O_NDELAY或者O_NONBLOCK 1. tcp 收发缓冲区默认值 [root@qljt core]# cat /proc/sys/net/ipv4/tcp_rmem 4096 87380 4161536 87380 :tcp接收缓冲区的默认值 [root@qljt core]# cat /proc/sys/net/ipv4/tcp_wmem 4096 16384 4161536 16384 : tcp 发送缓冲区的默认值 2. tcp 或udp收发缓冲区最大值 [root@qljt core]# cat /proc/sys/net/core/rmem_max 131071 131071:tcp 或 udp 接收缓冲区最大可设置值的一半。 也就是说调用 setsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 时rcv_size 如果超过 131071,那么 getsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 去到的值就等于 131071 * 2 = 262142 [root@qljt core]# cat /proc/sys/net/core/wmem_max 131071 131071:tcp 或 udp 发送缓冲区最大可设置值得一半。 跟上面同一个道理 3. udp收发缓冲区默认值 [root@qljt core]# cat /proc/sys/net/core/rmem_default 111616:udp接收缓冲区的默认值 [root@qljt core]# cat /proc/sys/net/core/wmem_default 111616 111616:udp发送缓冲区的默认值 . tcp 或udp收发缓冲区最小值 tcp 或udp接收缓冲区的最小值为 256 bytes,由内核的宏决定; tcp 或udp发送缓冲区的最小值为 2048 bytes,由内核的宏决定 setsockopt设置socket状态 1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket: BOOL bReuseaddr=TRUE; setsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL)); 2. 如果要已经处于连接状态的soket在调用closesocket后强制关闭,不经历TIME_WAIT的过程: BOOL bDontLinger = FALSE; setsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL)); 3.在send(),recv()过程中有时由于网络状况等原因,发收不能预期进行,而设置收发时限: int nNetTimeout=1000;//1秒 //发送时限 setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int)); //接收时限 setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int)); 4.在send()的时候,返回的是实际发送出去的字节(同步)或发送到socket缓冲区的字节(异步);系统默认的状态发送和接收一次为8688字节(约为8.5K);在实际的过程中发送数据 和接收数据量比较大,可以设置socket缓冲区,而避免了send(),recv()不断的循环收发: // 接收缓冲区 int nRecvBuf=32*1024;//设置为32K setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int)); //发送缓冲区 int nSendBuf=32*1024;//设置为32K setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int)); 5. 如果在发送数据的时,希望不经历由系统缓冲区到socket缓冲区的拷贝而影响程序的性能: int nZero=0; setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero)); 6.同上在recv()完成上述功能(默认情况是将socket缓冲区的内容拷贝到系统缓冲区): int nZero=0; setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int)); 7.一般在发送UDP数据报的时候,希望该socket发送的数据具有广播特性: BOOL bBroadcast=TRUE; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL)); 8.在client连接服务器过程中,如果处于非阻塞模式下的socket在connect()的过程中可以设置connect()延时,直到accpet()被呼叫(本函数设置只有在非阻塞的过程中有显着的 作用,在阻塞的函数调用中作用不大) BOOL bConditionalAccept=TRUE; setsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL)); 9.如果在发送数据的过程中(send()没有完成,还有数据没发送)而调用了closesocket(),以前我们一般采取的措施是"从容关闭"shutdown(s,SD_BOTH),但是数据是肯定丢失了,如何设置让程序满足具体应用的要求(即让没发完的数据发送出去后在关闭socket)? struct linger { u_short l_onoff; u_short l_linger; }; linger m_sLinger; m_sLinger.l_onoff=1;//(在closesocket()调用,但是还有数据没发送完毕的时候容许逗留) // 如果m_sLinger.l_onoff=0;则功能和2.)作用相同; m_sLinger.l_linger=5;//(容许逗留的时间为5秒) setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger)); 设置套接口的选项。 #include <winsock.h> int PASCAL FAR setsockopt( SOCKET s, int level, int optname, const char FAR* optval, int optlen); s:标识一个套接口的描述字。 level:选项定义的层次;目前仅支持SOL_SOCKET和IPPROTO_TCP层次。 optname:需设置的选项。 optval:指针,指向存放选项值的缓冲区。 optlen:optval缓冲区的长度。 注释: setsockopt()函数用于任意类型、任意状态套接口的设置选项值。尽管在不同协议层上存在选项,但本函数仅定义了最高的“套接口”层次上的选项。选项影响套接口的操作,诸如加急数据是否在普通数据流中接收,广播数据是否可以从套接口发送等等。 有两种套接口的选项:一种是布尔型选项,允许或禁止一种特性;另一种是整形或结构选项。允许一个布尔型选项,则将optval指向非零整形数;禁止一个选项optval指向一个等于零的整形数。对于布尔型选项,optlen应等于sizeof(int);对其他选项,optval指向包含所需选项的整形数或结构,而optlen则为整形数或结构的长度。SO_LINGER选项用于控制下述情况的行动:套接口上有排队的待发送数据,且 closesocket()调用已执行。参见closesocket()函数中关于SO_LINGER选项对closesocket()语义的影响。应用程序通过创建一个linger结构来设置相应的操作特性: struct linger { int l_onoff; int l_linger; }; 为了允许SO_LINGER,应用程序应将l_onoff设为非零,将l_linger设为零或需要的超时值(以秒为单位),然后调用setsockopt()。为了允许SO_DONTLINGER(亦即禁止SO_LINGER),l_onoff应设为零,然后调用setsockopt()。 缺省条件下,一个套接口不能与一个已在使用中的本地地址捆绑(参见bind())。但有时会需要“重用”地址。因为每一个连接都由本地地址和远端地址的组合唯一确定,所以只要远端地址不同,两个套接口与一个地址捆绑并无大碍。为了通知WINDOWS套接口实现不要因为一个地址已被一个套接口使用就不让它与另一个套接口捆绑,应用程序可在bind()调用前先设置SO_REUSEADDR选项。请注意仅在bind()调用时该选项才被解释;故此无需(但也无害)将一个不会共用地址的套接口设置该选项,或者在bind()对这个或其他套接口无影响情况下设置或清除这一选项。 一个应用程序可以通过打开SO_KEEPALIVE选项,使得WINDOWS套接口实现在TCP连接情况下允许使用“保持活动”包。一个WINDOWS套接口实现并不是必需支持“保持活动”,但是如果支持的话,具体的语义将与实现有关,应遵守RFC1122“Internet主机要求-通讯层”中第 4.2.3.6节的规范。如果有关连接由于“保持活动”而失效,则进行中的任何对该套接口的调用都将以WSAENETRESET错误返回,后续的任何调用将以WSAENOTCONN错误返回。 TCP_NODELAY选项禁止Nagle算法。Nagle算法通过将未确认的数据存入缓冲区直到蓄足一个包一起发送的方法,来减少主机发送的零碎小数据包的数目。但对于某些应用来说,这种算法将降低系统性能。所以TCP_NODELAY可用来将此算法关闭。应用程序编写者只有在确切了解它的效果并确实需要的情况下,才设置TCP_NODELAY选项,因为设置后对网络性能有明显的负面影响。TCP_NODELAY是唯一使用IPPROTO_TCP层的选项,其他所有选项都使用SOL_SOCKET层。 如果设置了SO_DEBUG选项,WINDOWS套接口供应商被鼓励(但不是必需)提供输出相应的调试信息。但产生调试信息的机制以及调试信息的形式已超出本规范的讨论范围。 setsockopt()支持下列选项。其中“类型”表明optval所指数据的类型。 选项 类型 意义 SO_BROADCAST BOOL 允许套接口传送广播信息。 SO_DEBUG BOOL 记录调试信息。 SO_DONTLINER BOOL 不要因为数据未发送就阻塞关闭操作。设置本选项相当于将SO_LINGER的l_onoff元素置为零。 SO_DONTROUTE BOOL 禁止选径;直接传送。 SO_KEEPALIVE BOOL 发送“保持活动”包。 SO_LINGER struct linger FAR* 如关闭时有未发送数据,则逗留。 SO_OOBINLINE BOOL 在常规数据流中接收带外数据。 SO_RCVBUF int 为接收确定缓冲区大小。 SO_REUSEADDR BOOL 允许套接口和一个已在使用中的地址捆绑(参见bind())。 SO_SNDBUF int 指定发送缓冲区大小。 TCP_NODELAY BOOL 禁止发送合并的Nagle算法。 setsockopt()不支持的BSD选项有: 选项名 类型 意义 SO_ACCEPTCONN BOOL 套接口在监听。 SO_ERROR int 获取错误状态并清除。 SO_RCVLOWAT int 接收低级水印。 SO_RCVTIMEO int 接收超时。 SO_SNDLOWAT int 发送低级水印。 SO_SNDTIMEO int 发送超时。 SO_TYPE int 套接口类型。 IP_OPTIONS 在IP头中设置选项。 返回值: 若无错误发生,setsockopt()返回0。否则的话,返回SOCKET_ERROR错误,应用程序可通过WSAGetLastError()获取相应错误代码。 错误代码: WSANOTINITIALISED:在使用此API之前应首先成功地调用WSAStartup()。 WSAENETDOWN:WINDOWS套接口实现检测到网络子系统失效。 WSAEFAULT:optval不是进程地址空间中的一个有效部分。 WSAEINPROGRESS:一个阻塞的WINDOWS套接口调用正在运行中。 WSAEINVAL:level值非法,或optval中的信息非法。 WSAENETRESET:当SO_KEEPALIVE设置后连接超时。 WSAENOPROTOOPT:未知或不支持选项。其中,SOCK_STREAM类型的套接口不支持SO_BROADCAST选项,SOCK_DGRAM 类型的套接口不支持SO_DONTLINGER 、SO_KEEPALIVE、SO_LINGER和SO_OOBINLINE选项。 WSAENOTCONN:当设置SO_KEEPALIVE后连接被复位。 WSAENOTSOCK:描述字不是一个套接口。

㈦ Linux里面tcp协议属于四层服务吗

TCP/IP 的分层管理
TCP/IP 协议按照层次分为 4 层:应用层、传输层、网络层、数据链路层。 对于分层这个概念,大家一定不陌生,比如我们的分布式架构体系中会分为业务层、服务层、基础支撑层。比如docker,也是基于分层来实现。所以我们会发现,复杂的程序都需要分层,这个是软件设计的要求,每一层专注于当前领域的事情。如果某些地方需要修改,我们只需要把变动的层替换掉就行,一方面改动影响较少,另一方面整个架构的灵活性也更高。 最后,在分层之后,整个架构的设计也变得相对简单了。
分层负载

了解了分层的概念以后,我们再去理解所谓的二层负载、三层负载、四层负载、七层负载就容易多了。
一次 http 请求过来,一定会从应用层到传输层,完成整个交互。只要是在网络上跑的数据包,都是完整的。可以有下层没上层,绝对不可能有上层没下层。
二层负载

二层负载是针对 MAC,负载均衡服务器对外依然提供一个 VIP(虚 IP),集群中不同的机器采用相同 IP 地址,但是机器的 MAC 地址不一样。当负载均衡服务器接受到请求之后,通过改写报文的目标 MAC 地址的方式将请求转发到目标机器实现负载均衡
二层负载均衡会通过一个虚拟 MAC 地址接收请求,然后再分配到真实的 MAC 地址
三层负载均衡

三层负载是针对 IP,和二层负载均衡类似,负载均衡服务器对外依然提供一个 VIP(虚 IP),但是集群中不同的机器采用不同的 IP 地址。当负载均衡服务器接受到请求之后,根据不同的负载均衡算法,通过 IP 将请求转发至不同的真实服务器
三层负载均衡会通过一个虚拟 IP 地址接收请求,然后再分配到真实的 IP 地址
四层负载均衡

四层负载均衡工作在 OSI 模型的传输层,由于在传输层,只有 TCP/UDP 协议,这两种协议中除了包含源 IP、目标 IP 以外,还包含源端口号及目的端口号。四层负载均衡服务器在接受到客户端请求后,以后通过修改数据包的地址信息(IP+端口号)将流量转发到应用服务器。
四层通过虚拟 IP + 端口接收请求,然后再分配到真实的服务器
七层负载均衡

七层负载均衡工作在 OSI 模型的应用层,应用层协议较多,常用 http、radius、dns 等。七层负载就可以基于这些协议来负载。这些应用层协议中会包含很多有意义的内容。比如同一个Web 服务器的负载均衡,除了根据 IP 加端口进行负载外,还可根据七层的 URL、浏览器类别来决定是否要进行负载均衡
比如:在nginx层做7层均衡,让一个uid的请求尽量落到同一个机器上

热点内容
缓存数据生产服务 发布:2025-05-16 01:08:58 浏览:583
普通电脑服务器图片 发布:2025-05-16 01:04:02 浏览:970
服务器地址和端口如何区分 发布:2025-05-16 01:03:17 浏览:833
重新编目数据库 发布:2025-05-16 00:54:34 浏览:513
android语音控制 发布:2025-05-16 00:53:50 浏览:265
win8windows无法访问 发布:2025-05-16 00:37:53 浏览:894
八种排序算法 发布:2025-05-16 00:37:17 浏览:55
左旋螺纹数控编程实例 发布:2025-05-16 00:11:49 浏览:10
安卓游戏旧版本从哪个软件下载 发布:2025-05-16 00:00:20 浏览:329
连接聚类算法 发布:2025-05-15 23:55:09 浏览:978