匹配算法研究
Ⅰ 字符串匹配的传统算法
传统的匹配算法
串匹配算法虽然发展了几十年,然而非常实用的算法是近年才出现。串匹配问题的研究存在理论研究和实际应用的脱节。那些专门从事算法研究的学者关心的只是理论上看起来很美妙的算法——具有很好的时间复杂度。而开发人员只追求实际应用中尽可能快的算法。两者之间从不注意对方在干什么。将理论研究和实际应用结合的算法(如BNDM算法)只是近年才出现。在实际应用中常常很难找到适合需求的算法——这样的算法实际上是存在的,但是只有资深专家才比较了解。考虑如下情况,一位软件开发人员,或者一位计算生物学家,或者一位研究人员,又或者一位学生,对字符串匹配领域并没有深入了解,可是现在需要处理一个文本搜索问题。那些汗牛充栋的书籍使得阅读者淹没在各种匹配算法的海洋中,却没有足够的知识选择最适用的算法。最后,常常导致这样的局面:选择一种最简单的算法加以实现。这往往导致很差的性能,从而影响整个开发系统的质量。更糟糕的是,选择了一个理论上看起来很漂亮的算法,并且花费了大量精力去实现。结果,却发现实际效果和一个简单算法差不多,甚至还不如简单算法。因此,应该选用一种“实用”算法,即在实际应用中性能较好,并且一个普通程序员能在几小时内完成算法的实现代码。另外,在字符串匹配研究领域中,一个人所共知的事实是“算法的思想越简单,实际应用的效果越好”。
传统的串匹配算法可以概括为前缀搜索、后缀搜索、子串搜索。代表算法有KMP,Shift-And,Shift-Or,BM,Horspool,BNDM,BOM等。所用到的技术包括滑动窗口、位并行、自动机、后缀树等。
Ⅱ SIFT匹配算法 匹配点少怎么办
用大图。
还有篇论文讲a-sift,不过不建议用。
Ⅲ 如何实现两个声音相似度匹配算法
作为自然语言理解的一项基础工作,词语语义相似度度量一直是研究的重点。语义相似度度量本身是一个中间任务,它是大多数自然语言处理任务中一个必不可少的中间层次,在自然语言处理中有着广泛的应用,如词义消歧、信息检索以及机器翻译等。 本文的核心内容是汉语词语语义相似度算法研究以及如何将其应用于跨语言信息检索(Cross-Language Information Retrieval, CLIR)领域。首先对语义相似度度量算法进行综述,然后重点描述基于HowNet的语义相似度度量算法,提出根据知识词典描述语言(Knowledge Dictionary Mark-up Language, KDML)的结构特性将词语语义相似度分为三部分进行计算,每部分采用最大匹配的算法,同时加入义原深度信息以区别对待不同信息含量的义原。较以往同类算法,其计算结果具有区分度,更加符合人的主观感觉。 本文尝试将所建立的汉语语义相似度度量模式应用于跨语言信息检索系统。跨语言信息检索结合传统文本信息检索技术和机器翻译技术,在多方面涉及到语义问题,是语义相似度良好的切入点。两者的结合主要体现在两方面:(1)将语义相似度度量应用于查询翻译,利用语义相似度对查询关键词进行消歧翻译,提高翻译质量;(2)将语义相似度应用于查询扩展,使扩展内容与原查询具有更高相关性,以提高检索的召回率和准确率。 本文提出相对客观的评价标准,如为单独衡量词义消歧的性能,而使用第三届词义消歧系统评价会议(The 3rd Evaluating Word Sense Disambiguation Systems, SENSEVAL-3)语料进行测试;为衡量应用语义相似度于跨语言检索后的性能,又使用第九届文本检索会议(The 9th Text Retrieval Conference, TREC-9) CLIR评价任务的查询集、语料库和结果集进行评估。这使得我们的实验结果相对公正客观,具有一定可比性。本文对原有英汉跨语言信息检索系统进行一定程度的改进,使得各种相关算法都可方便地在系统中进行集成,成为一个研究跨语言信息检索的实验平台,其系统的设计思想充分体现模块化和扩展性。 综上,本文通过综合分析主流的语义相似度算法,而提出一种新的基于HowNet的汉语语义相似度算法,并给出其在英汉跨语言信息检索中的尝试性应用,希望能给相关领域的研究者有所借鉴。
Ⅳ 光谱匹配算法设计原理
光谱匹配由于其潜在的组织保存能力而优于其他技术,这是评估归一化和引入噪声的基本标准。光谱匹配方法是基于颜色通道对色斑表示的估计和图像像素中色斑的浓度。因此,这些估计需要稳健和准确,以便可以保留组织结构,并且不会将噪声引入归一化图像。
Ⅳ 初识立体匹配算法
第一次接触立体匹配算法是源于师兄的一个项目,他需要我用立体像对进行三维重建,当时的我一脸懵逼,在多次求助度娘后,均指向了立体匹配这门技术,所以我才开始慢慢深入它。但是,在了解的过程中曾一度怀疑度娘是否给我了正确的答案,因为每一篇立体匹配相关的文献都会提到“立体匹配是计算机视觉领域中的重要研究方向...”,而我呢,呵呵~~~。
立体匹配在英文中叫做Stereo Matching或Stereo Correspondence,但是我没能在wiki上找到Stereo Matching的直接定义,反而简述了 Stereo Correspondence ,是 3D reconstruction 的一个重要部分。简单说,立体匹配算法就是要在一对有场景重叠的图片中寻找同名点。在此首先要安利两个立体匹配算法相关的重要网站:
1. KITTI 立体匹配算法排行榜
2. Middlebury 立体匹配算法排行榜
虽然这两个重要的排行榜榜首早已经被深度学习强行占领,但是对于所有学习或研究立体匹配算法的同学来讲,都是一个很好的学习网站, 同时也为大家推荐两篇立体匹配算法相关的综述性文献以及链接:
[1]. Affendi H R , Haidi I . Literature Survey on Stereo Vision Disparity Map Algorithms[J]. Journal of Sensors, 2016, 2016:1-23.
[2]. D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms . nternational Journal of Computer Vision , 47(1/2/3):7-42, April-June 2002.
有了这两篇综述性文献,大家肯定能在细细研读后对立体匹配有更为深入的理解和体会。但是,这里需要说明的是,立体匹配算法虽然和特征匹配等技术一样是在两幅图像中寻找同名点,但是他的目标不是要改变两幅图像之间的坐标系统,也不会改变两幅图像之间的坐标系。
Ⅵ 如何比较SIFT,SURF,Harris-SIFT图像匹配算法性能
SIFT匹配(Scale-invariant feature transform,尺度不变特征转换)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置、尺度、旋转不变量,此算法由 David Lowe 在1999年所发表,2004年完善总结。其应用范围包含物体辨识、机器人地图感知与导航、影像缝合、3D模型建立、手势辨识、影像追踪和动作比对。
局部影像特征的描述与侦测可以帮助辨识物体,SIFT 特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、些微视角改变的容忍度也相当高。基于这些特性,它们是高度显着而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用 SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。
2、SIFT特征的主要特点
从理论上说,SIFT是一种相似不变量,即对图像尺度变化和旋转是不变量。然而,由于构造SIFT特征时,在很多细节上进行了特殊处理,使得SIFT对图像的复杂变形和光照变化具有了较强的适应性,同时运算速度比较快,定位精度比较高。如:
在多尺度空间采用DOG算子检测关键点,相比传统的基于LOG算子的检测方法,运算速度大大加快;
关键点的精确定位不仅提高了精度,而且大大提高了关键点的稳定性;
在构造描述子时,以子区域的统计特性,而不是以单个像素作为研究对象,提高了对图像局部变形的适应能力;
Ⅶ 串模式匹配算法
你的财富太低了。。这个写起来貌似很多东东的
不过我想问下KMP改进算法(NextVal[])是什么?
Ⅷ 计算机视觉中,目前有哪些成熟的匹配定位算法
计算机视觉既是工程领域,也是科学领域中的一个富有挑战性重要研究领域。计算机视觉是一门综合性的学科,它已经吸引了来自各个学科的研究者参加到对它的研究之中。其中包括计算机科学和工程、信号处理、物理学、应用数学和统计学,神经生理学和认知科学等。 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战(grand challenge)。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。[Neg91]作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。现在计算机视觉已成为一门不同于人工智能、图象处理、模式识别等相关领域的成熟学科。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。为此我们将先介绍人类视觉。
Ⅸ 串的模式匹配算法
本文主要讲述了串的模式匹配算法,包括BF算法、RK算法、KMP算法、BM算法,使用不同的算法实现目标串查找子串,重点在于分析的过程,通过不同的算法分析提高逻辑思维能力
模式匹配的目的就是在目标串中查找与模式串相等的子串。在这里称呼主串为s,模式串为t,主串的长度为n,模式串的长度为m
暴力算法,将目标串和模式串的每个字符都进行一一比较。性能最差,但是使用最广,因为实现简单,而且在字符串较小的情况下耗费的性能也很小。
O(n*m)
RK算法把字符串比较问题,转换为了Hash值比较问题。
将模式串t的每个字符的比较改成了将串作为整体与目标串进行哈希值比较,这样就减少了比较次数
以前模式串与子串的比较需要比较每个字符,现在只要整体比较依次哈希值就可以。所以减少了比较次数。
哈希算法
这里我们可以发现一个Hash冲突问题,比如"abc"和"bc"的Hash值是一样的,因为最高位是0。所以还需要进行哈希冲突算法。
哈希冲突算法:
利用前一个结果计算下一个哈希值
这是因为目标串的相邻子串,其实相差的只有第一个字符和最后一个字符,其他字符是相同的,
所以我们可以利用前一个计算结果减去前一个字符串的第一个字符串,加上这个字符串的最后一个字符就够了。
针对BF的弊端,在KMP算法中可以进行多字符的跳跃对比,以此来避免目标串的不必要回溯。
例子:
简单说明一下:
真子串:
匹配:
例如:目标串:"abxabcabcaby",模式串:"abcaby"
模式串的最大真子串为ab,
我们在匹配时,发现目标串的子串abcabc与模式串的前字符都匹配,最后一个字符不匹配
所以就从目标串的abcabc的后面abc开始与模式串进行匹配,而不需要匹配前面的abc了。
也就是从上一个a字符直接跳跃到了下一个a字符,而不是从b字符开始。
会存在一种情况:
实现思想:
它是一种非常高效的字符串匹配算法,有实验统计,它的性能是着名的KMP算法的三四倍。BM算法的原理很多复杂,比较难懂,学起来比较烧脑。
实现思想和KMP算法基本上是一样的,都是先计算模式串的真子串,之后再查找真子串的大小,当出现不匹配时,直接在真子串后进行匹配,区别于KMP算法,它是从后往前匹配的
这里比上面的KMP算法增加了一个坏字符规则,可以更快的跳跃,当然KMP算法本身也可以使用坏字符规则
坏字符规则
好后缀规则
Ⅹ 求求各位大神,帮忙找一找这篇论文。张棠辉,指纹匹配算法的研究与应用,中科院自动化所博士学位论文
留下邮箱,给你发过去。