当前位置:首页 » 操作系统 » 算法的衡量

算法的衡量

发布时间: 2022-12-21 11:23:00

A. 衡量算法的方法

衡量一个算法的好坏,可以从算法的正确性、健壮性、可读性和效率上进行分析:

(1)迭代:级数求和
(2)递归:递归跟踪 + 递归方程式
(3)猜测 + 验证

笔记出处:《清华大学-邓俊辉MOOC数据结构与算法全套》

B. 如何衡量一个算法的快慢

如何衡量一个算法的快慢
用具体的操作数来衡量

当我们说衡量一个算法的快慢时,我们是希望找到一种方便的统一标准,使得对于同一个算法,我们的衡量标准不会受到一些不重要的因素影响而保持一致;对于不同的算法,我们能够比较它们的优劣并在实际的应用中进行选择。

一个自然的想法是测量这个算法运行所需要的时间,然后选择跑得快的算法。但是不同的机器运行的速度是不一样的,一个同样的算法在不同机器上测出来的时间可能非常不同。而且,每次想要知道一个算法的快慢如果都要在机器上通过计时来测量的话,是一件非常痛苦的事情,因为有些算法可能一次要跑上一天,一个月,甚至一个世纪。

一个有效的替代方法是通过计算一个算法用了多少次操作(或者说运算量)来衡量它运行的快慢,比如用了多少次加减法,乘除法,函数调用和赋值等操作。操作数越多,运行的所需要的时间就越多。这样的一种想法保证了我们对算法的衡量不会因为测试环境的变化而变化,也不用通过实际运行来测量,只需通过计算就能得到操作数的数量。

用函数来衡量

仅仅计算操作数的一个问题是:一个固定的算法,针对不同的输入规模,它所需要的操作数量是不一样的。比如一个排序的算法,排100个数字和排10000个数字相比,排10000个数字所需要的运算量会大很多。也就是,操作数是随输入规模变化的一个函数。

所以,我们假如输入规模是n,那么操作数就是f(n)。有时候,输入规模不只有一个,比如关于一个矩阵的算法需要的操作数,可能和矩阵的长和宽都有关系,这时候,ff就变成了一个关于长和宽的二元函数,比如f(w,h)。这种扩展是合理的,但是为了讨论方便,我们先只考虑规模只是一个变量n的情况。

C. 衡量算法性能优劣的标准

品牌型号:HUAWEI P50 Pocket
系统:HarmonyOS 3

衡量算法性能优劣的标准是时间复杂度、空间复杂度、正确性、可读性、健壮性。

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n的函数f(n),算法的时间复杂度也因此记做。空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。

D. 算法的评价指标有哪些

时间复杂度和空间复杂度。

1、时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。

T(n)=Ο(f(n))

因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。

2、空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

空间复杂度记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

(4)算法的衡量扩展阅读:

算法的方法:

1、递推法

递推是序列计算机中的一种常用算法。它是按照一定的规律来计算序列中的每个项,通常是通过计算机前面的一些项来得出序列中的指定项的值。其思想是把一个复杂的庞大的计算过程转化为简单过程的多次重复,该算法利用了计算机速度快和不知疲倦的机器特点。

2、递归法

程序调用自身的编程技巧称为递归(recursion)。一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。

一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

注意:

(1) 递归就是在过程或函数里调用自身.

(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

E. 一个算法的评价主要从哪些方面来考虑

一个算法的评价主要从以下几个方面来考虑:

1、时间复杂度

算法的时间复杂度是指执行算法所需要的计算工作量。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做。

T(n)=Ο(f(n))

因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。

2、空间复杂度

算法的空间复杂度是指算法需要消耗的内存空间。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。

3、正确性

算法的正确性是评价一个算法优劣的最重要的标准。

4、可读性

算法的可读性是指一个算法可供人们阅读的容易程度。

5、健壮性

健壮性是指一个算法对不合理数据输入的反应能力和处理能力,也称为容错性。

(5)算法的衡量扩展阅读:

算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法,厄米变形模型,随机森林算法。

算法可以宏泛的分为三类:

一、有限的,确定性算法 这类算法在有限的一段时间内终止。他们可能要花很长时间来执行指定的任务,但仍将在一定的时间内终止。这类算法得出的结果常取决于输入值。

二、有限的,非确定算法 这类算法在有限的时间内终止。然而,对于一个(或一些)给定的数值,算法的结果并不是唯一的或确定的。

三、无限的算法 是那些由于没有定义终止定义条件,或定义的条件无法由输入的数据满足而不终止运行的算法。通常,无限算法的产生是由于未能确定的定义终止条件。

F. 衡量算法好坏的标准

1:时间复杂度:

可以简单的说就是:大概程序要被执行的次数,而非时间。注意:是次数,不是时间,因为不同机器的性能是不一样的,不要用计时器在那里计时谁的更快。当然,如果在同一台电脑上运行计时另说。
Question:怎样看待一个程序执行的速度是快还是慢?
Answer:要看他里边最关键的运行次数最多的那一个步骤到底执行了几次,用这个来衡量算法的时间复杂度

2:空间复杂度:

同样简单来说就是:算法执行过程中大概所占用的最大的内存。

3:难易程度:

所研究的算法尽可能让大家能看懂。

4:健壮性:

简单来说哦,不要一碰就完不结实

5:正确性:

一定要正确,感觉这一特性说不说都是可以,不正确也不能用,这一切的前提都是以正确为前提的。

G. 如何评价一个算法的好坏

首先,这个算法必须是正确的
其次,好的算法应该是友好的,便于人们理解和交流,并且是机器可执行的。
这个算法还需要足够健壮,即当输入的数据非法或不合理时,也能适当的做出正确的反应或进行相应的处理
最后它还必须拥有高效率和低存储量要求。
也就是所谓的时间复杂度和空间复杂度

1.时间复杂度

定义:在计算机科学中,算法的时间复杂度是一个函数,他定量描述了该算法的运行时间.一个算法执行所耗费的时间,从理论上讲,只有你把你的程序放机器上跑起来,才能知道.然而我们有一套时间复杂度的分析方式.一个算法所花费的时间与其中语句的执行次数成正比例.算法中的基本操作的执行次数,为算法的时间复杂度.

2.时间复杂度为什么不使用时间来衡量而使用基本语句的运行次数来衡量?

算法的执行时间依赖于具体的软硬件环境,所以,不能用执行时间的长短来衡量算法的时间复杂度,而要通过基本语句执行次数的数量级来衡量。

3.时间复杂度的O渐进表示法(Big O notation)

是用于描述函数渐进行为的数学符号.

大O阶方法推导:
计算基本语句的执行次数的数量级;
只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。
如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

for (i=1; i<=n; i++)
x++;
for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
x++;

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。

4.时间复杂度的:最优、平均、最差情况,为什么时间复杂度看的是最差情况?

最差情况下的复杂度是所有可能的输入数据所消耗的最大资源,如果最差情况下的复杂度符合我们的要求,我们就可以保证所有的情况下都不会有问题。

某些算法经常遇到最差情况。比如一个查找算法,经常需要查找一个不存在的值。
也许你觉得平均情况下的复杂度更吸引你,可是平均情况也有几点问题。第一,难计算,多数算法的最差情况下的复杂度要比平均情况下的容易计算的多,第二,有很多算法的平均情况和最差情况的复杂度是一样的. 第三,什么才是真正的平均情况?如果你假设所有可能的输入数据出现的概率是一样的话,也是不合理的。其实多数情况是不一样的。而且输入数据的分布函数很可能是你没法知道。
考虑最好情况的复杂度更是没有意义。

5.如何求解:二分查找、递归求阶乘、递归斐波那契的时间复杂度?

二分查找:通过折纸查找求解时间复杂度为O(logN);
递归求阶乘:数基本操作递归N次得到时间复杂度为O(N);
递归斐波那契:分析得出基本操作递归了2N次,时间复杂度为O(2N);

6.什么是空间复杂度?

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的度量.空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数.空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进法表示.

7.如何求空间复杂度? 普通函数&递归函数

一个算法的空间复杂度只考虑在运行过程中为局部变量分配的存储空间的大小,它包括为参数表中形参变量分配的存储空间和为在函数体中定义的局部变量分配的存储空间两个部分。若一个算法为 递归算法,其空间复杂度为递归所使用的堆栈空间的大小,它等于一次调用所分配的临时存储空间的大小乘以被调用的次数(即为递归调用的次数加1,这个1表示开始进行的一次非递归调用)。算法的空间复杂度一般也以数量级的形式给出。如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空间复杂度与n成线性比例关系时,可表示为O(n).若形参为数组,则只需要为它分配一个存储由实参传送来的一个地址指针的空间,即一个机器字长空间;若形参为引用方式,则也只需要为其分配存储一个地址的空间,用它来存储对应实参变量的地址,以便由系统自动引用实参变量。
8. 分析递归斐波那契数列的:时间、空间复杂度,并对其进行优化,伪递归优化->循环优化

long long Fib(int N) {
if (N < 3)
return 1;
return Fib(N - 1) + Fib(N - 2);
}

普通递归实现的斐波那契数列:
时间复杂度:O(2^n)

计算并根据O渐进表示法得出时间复杂度.

空间复杂度:O(N);递归深度乘以(每一次递归的空间占用{有辅助空间或常量})

伪递归优化:

long long fib (long long first, longlong second, int N) {
if(N <3)
return 1;
if(N == 3)
return first + second;
return fib(second, first+second,N-1);
}

时间复杂度:
O(N);
递归深度乘以每次递归的循环次数
空间复杂度:
O(1)或O(N)
关键看编译器是否优化,优化则为O(1)否则O(N);

循环优化:

long long Fib(int N) {
long long first = 1;
long long second = 1;
long long ret = 0;
for (int i = 3; i <= N ; ++i) {
ret = first + second;
first = second;
second = ret;
}
return second;
}

时间复杂度:O(N);

空间复杂度:O(1);

9.常见时间复杂度

常见的算法时间复杂度由小到大依次为: Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!) Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。Ο(log2n)、Ο(n)、Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。

H. 如何衡量一个时间算法的时间效率

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。算法的时间复杂度是指执行算法所需要的计算工作量。

时间效率,一定生产时间内,机器实际运转时间与理论运转时间之比,通常用百分率表示。与设备自动化程度、速度、卷装尺寸、工人操作熟练程度及看台数有关。

(8)算法的衡量扩展阅读:

点在空间中变化对点的描述称为被描述点相当于该点的时间【该点运动到某一位置时,被描述点都会有唯一的对应位置,称为此时被描述点的位置】。被描述点可以随时间变化位置不变,可知时间与被描述点的位置有函数关系。

空间使事物具有了变化性,即因为空间的存在,所以事物才可以发生变化。空间是没有能量的事物,即当事物能产生变化时,变化产生的能量已经和阻碍的能量相互抵消。

天文测时所依赖的是地球自转,而地球自转的不均匀性使得天文方法所得到的时间(世界时)精度只能达到10-9,无法满足二十世纪中叶社会经济各方面的需求。一种更为精确和稳定的时间标准应运而生,这就是“原子钟”。

世界各国都采用原子钟来产生和保持标准时间,这就是“时间基准”,然后,通过各种手段和媒介将时间信号送达用户,这些手段包括:短波、长波、电话网、互联网、卫星等。这一整个工序,就称为“授时系统”。

I. 评价算法的四个标准是什么

评价算法的四个标准:

1.正确性

能正确地实现预定的功能,满足具体问题的需要。处理数据使用的算法是否得当,能不能得到预想的结果。

2.易读性

易于阅读、理解和交流,便于调试、修改和扩充。写出的算法,能不能让别人看明白,能不能让别人明白算法的逻辑?如果通俗易懂,在系统调试和修改或者功能扩充的时候,使系统维护更为便捷。

3.健壮性

输入非法数据,算法也能适当地做出反应后进行处理,不会产生预料不到的运行结果。数据的形式多种多样,算法可能面临着接受各种各样的数据,当算法接收到不适合算法处理的数据,算法本身该如何处理呢?如果算法能够处理异常数据,处理能力越强,健壮性越好。

4.时空性

算法的时空性是该算法的时间性能和空间性能。主要是说算法在执行过程中的时间长短和空间占用多少问题。

算法处理数据过程中,不同的算法耗费的时间和内存空间是不同的。

(9)算法的衡量扩展阅读:

算法是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。此外,一个算法还具有下列5个重要的特性。

(1)、有穷性

一个算法必须总是(对任何合法的输入值)在执行有穷步之后结束,且每一步都可在有穷时间内完成。

(2)、确定性

算法中每一条指令必须有明确的含义,读者理解时不会产生二义性。即对于相同的输入只能得到相同的输出。

(3)、可行性

一个算法是可行的,即算法中描述的操作都是可以通过已经实现的基本运算执行有限次来实现的。

(4)、输入

一个算法有零个或多个的输入,这些输入取自于某个特定的对象的集合。

(5)、输出

一个算法有一个或多个的输出,这些输出是同输入有着某种特定关系的量。

J. 如何衡量一个算法的优劣有哪些标准

如何衡量一个算法的优劣,见人见智。一个好的算法首先是要能够满足场景的需求,其次是在能够最大限度的节省资源(最低成本原则),最后是实现逻辑简单,比较容易理解(本质上也是最低成本原则)。但是,在现实中硬件资源不变,算法不变情况下,算法执行的效率提高,相对应往往是资源消耗增加。一个合格的算法是在一个可以接受的范围内满足场景需求,而一个优秀的算法则是在满足场景需求的基础上,最大限度的节省资源,简化逻辑。

比如我要完成一项计算任务,要求是在5分钟执行完成。现在有算法1:需要执行1分钟,消耗内存8G;算法2需要执行3分钟,需要消耗内存256M。那么,我们应该如何选择呢?首先,这两种方案都能满足我们的需求;其次:算法1的需要消耗的资源是算法2的32倍,算法1的效率是算法2的3倍。在这种满足需求的情况下,往往更倾向于选择算法2。衡量一个算法的优劣往往要评估多方因素,结合实践,综合比较最终得出结论。

衡量一个算法的的标准主要有3个: 算法的执行效率 算法的内存消耗 算法的稳定性

热点内容
数控系统主轴配置参数有哪些 发布:2025-05-14 05:25:55 浏览:819
二级缓存微服务 发布:2025-05-14 05:13:55 浏览:101
sqlserverwhencase 发布:2025-05-14 05:11:35 浏览:434
安卓odd是什么意思 发布:2025-05-14 04:49:57 浏览:921
安卓哪个app能查询航班 发布:2025-05-14 04:49:04 浏览:558
linux定时shell脚本 发布:2025-05-14 04:49:00 浏览:684
审计需要什么配置 发布:2025-05-14 04:48:55 浏览:550
安卓软件为什么经常自启动 发布:2025-05-14 04:38:17 浏览:160
谭浩强c语言第三版课后答案 发布:2025-05-14 04:37:31 浏览:60
san存储和nas存储 发布:2025-05-14 04:34:44 浏览:153