当前位置:首页 » 操作系统 » 算法怎么想

算法怎么想

发布时间: 2022-12-24 01:51:23

A. 算法思想可以简单说一下吗

业界公认的常用算法思想有8种,分别是枚举、递推、递归、分治、贪心、试探法、动态迭代和模拟。当然8种只是一个大概的划分,是一个“仁者见仁、智者见智”的问题。
枚举算法思想
枚举算法思想的最大特点是,在面对任何问题时它会去尝试每一种解决方法。在进行归纳推理时,如果逐个考察了某类事件的所有可能情况,因而得出一般结论,那么这个结论是可靠的,这种归纳方法叫作枚举法。
枚举算法基础
枚举算法的思想是:将问题的所有可能的答案一一列举,然后根据条件判断此答案是否合适,保留合适的,丢弃不合适的。在C语言中,枚举算法一般使用while循环实现。使用枚举算法解题的基本思路如下。
① 确定枚举对象、枚举范围和判定条件。
② 逐一列举可能的解,验证每个解是否是问题的解。
枚举算法一般按照如下3个步骤进行。
① 题解的可能范围,不能遗漏任何一个真正解,也要避免有重复。
② 判断是否是真正解的方法。
③ 使可能解的范围降至最小,以便提高解决问题的效率。

B. 算法怎么学

贪心算法的定义:

贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

解题的一般步骤是:

1.建立数学模型来描述问题;

2.把求解的问题分成若干个子问题;

3.对每一子问题求解,得到子问题的局部最优解;

4.把子问题的局部最优解合成原来问题的一个解。

如果大家比较了解动态规划,就会发现它们之间的相似之处。最优解问题大部分都可以拆分成一个个的子问题,把解空间的遍历视作对子问题树的遍历,则以某种形式对树整个的遍历一遍就可以求出最优解,大部分情况下这是不可行的。贪心算法和动态规划本质上是对子问题树的一种修剪,两种算法要求问题都具有的一个性质就是子问题最优性(组成最优解的每一个子问题的解,对于这个子问题本身肯定也是最优的)。动态规划方法代表了这一类问题的一般解法,我们自底向上构造子问题的解,对每一个子树的根,求出下面每一个叶子的值,并且以其中的最优值作为自身的值,其它的值舍弃。而贪心算法是动态规划方法的一个特例,可以证明每一个子树的根的值不取决于下面叶子的值,而只取决于当前问题的状况。换句话说,不需要知道一个节点所有子树的情况,就可以求出这个节点的值。由于贪心算法的这个特性,它对解空间树的遍历不需要自底向上,而只需要自根开始,选择最优的路,一直走到底就可以了。

话不多说,我们来看几个具体的例子慢慢理解它:

1.活动选择问题

这是《算法导论》上的例子,也是一个非常经典的问题。有n个需要在同一天使用同一个教室的活动a1,a2,…,an,教室同一时刻只能由一个活动使用。每个活动ai都有一个开始时间si和结束时间fi 。一旦被选择后,活动ai就占据半开时间区间[si,fi)。如果[si,fi]和[sj,fj]互不重叠,ai和aj两个活动就可以被安排在这一天。该问题就是要安排这些活动使得尽量多的活动能不冲突的举行。例如下图所示的活动集合S,其中各项活动按照结束时间单调递增排序。

关于贪心算法的基础知识就简要介绍到这里,希望能作为大家继续深入学习的基础。

C. 算法到底应该怎么学

刷与不刷ACM ICPC的人在算法能力上会有巨大差距。
如果真想深入掌握各种算法,还是先刷题吧。刷到一定境界再去看更高级的算法书。
不得不承认现实生活中,一般码农工作对算法能力要求太低了,这一度让人们(包括我)认为算法似乎不那么重要。其实学习算法所锻炼出来的对各种问题敏感的反应和融会贯通能力还是非常重要的。
编程嘛,就是操作数据输出结果
算法和数据结构是配套的,你应该掌握的主要内容应该是:
这个问题用什么算法和数据结构能更快解决
这就要求你对常见的结构和算法了熟于心,你不一定要敲代码,用纸手写流程是更快的方式。
对你不懂的数据结构,你要去搜它主要拿来干嘛的,使用场景是什么。
细节出错是你对编程语言不熟悉才会导致的问题,跟你懂不懂算法没关系,这个你应该多写写练手小程序,背代码是很愚蠢的行为。
其实我觉得你这么迷茫不如实现一下stl的函数好了
我的经验就是去模拟(当然模拟只限于基础的算法)。甚至是手动模拟,比如我之前学深搜,学递归,代码很简单,但是因为涉及到栈,而你的大脑短时间内存储的栈深度只有几层(临时变量越多你大脑能模拟的栈深度就越少),实际上你没办法用大脑去想。比如学习图的深搜,一开始我是不理解的,对递归没办法理解。后来我就在纸上模拟出来,建立好邻接表以后,按照代码步骤一步步纸笔来模拟,慢慢就知道了代码的工作过程。你学习快排也是,当然你背代码也能写出来,但是可能不理解,很快就忘了。《算法导论》书上就有比较细致的执行过程,你手动模拟下partition和quicksort的过程,一开始就用很简单的用例,把整个过程都手动执行一遍,慢慢就了解了。很多算法都有一个循环不变式,你代码如果逻辑正确并且能够维持循环不变式,一般写出来就是正确的。
建议找本《算法》或者《算法导论》这些教材,每学习一个算法就先大致浏览下, 然后细致分析每一步代码的执行过程(纸笔模拟或者代码单步调试),当确认你真正明白之后,尝试不看代码就靠对算法过程的了解和正确的逻辑去自己实现。
当然,我不认为你写出很多算法就是高手了,现在大部分高级语言不需要你重复造轮子,你造出来的质量也远逊于库中那些高手的代码,可以去学习他们代码的实现,比如看看stl源码。真正工程用到的代码与一般算法实现还是有很多改进的。
最重要的不是你会写这些算法了,而是学会了很多思想。比如二分的思想,递归的思想,分治的思想,动态规划,贪心等,以及现实中很多数据结构的抽象等。难的不是学会了算法,而是如何运用这些算法思想去解决问题。

D. 算法该怎么学感觉好难

很多人都会说"学一样东西难",一开始我也觉得很大程度是因为每个人的智力水平等等不可改变的因素. 但是后来我发现,有一个东西也很能决定一个人是否会觉得一样东西难学,那就是理解方式.

一件事物通过不同的途径让一个人理解效果差异是很大的.就比如说数学里面教你一个圆,有的人看到一个圆就能很快明白什么是圆,有的人却非得看到x^2+y^2 = r^2这种式子才有感觉,甚至有的人需要"到定点距离为定长的点集"这种描述才能理解. 那这个不一定是说谁的智力水平更高,而是因为他们对不同形式事物的敏感程度不同.


回到算法上来.算法本质是一种数学.他是抽象的操作集合.(看这么说你可能会觉得不知所云,但是如果我说他只是一种解决问题的办法可能就好理解). 所以很多书,论文,或者很多老师教的都是一种数学描述的算法,这样子的算法就我个人而言相当难理解,看了就想到代数高数什么的.. 但是如果找一个图文并茂的解释,或者找个人一步一步把一个算法给你我比划一下,我立刻就能理解. 说白了,就是你一定要找很多很多不同的角度来尝试接受一种东西,你一定可以找到一种你相当敏感的角度,用这个角度学习你就会游刃有余. 智力因素并没有太大影响的.


具体点说,你可以试试这几种不同的角度.

  1. 直接看数学形式的算法.我个人最无法接受的形式,但是有人很喜欢..例子就是算法导论上面那种描述.

  2. 听一般语言描述,最理想是找一个明白的人,给你用通俗语言讲讲原理.这个不错,很多我是这么理解的

  3. 图形理解,叫理解的人给你画插图,分布图,结构图等等,来分解一个算法,找到他的思路.说到图,有一个人的博客这方面做得很好:matrix67.

  4. 程序理解.找到一种算法的实现程序,对着程序理解,可以尝试分布运行,观察一下变量的变化,这样来理解算法.

  5. 实在太难的算法,可以边写边改来理解.当时我学习插头dp的时候就是这样,不论怎么总是一知半解,最后硬着头皮写了一遍,改了很久,但是改过了的时候,也就真的明白了是怎么回事了.


也许还有别的什么办法,因为人对事物的接受角度实在是太多了.多想想你平时学习什么比较容易,找出你最敏感的理解方式就行了.


有感而发说的一些东西,不一定都是正确的,只供参考,欢迎指正.

E. Java一些经典算法自己想不出来怎么办比如,斐波那契,冒泡,一直都看别人写,然后理解。

认真读完算法(Algorithm)第4版这本书,你会有很大收获。

F. 编程想不出算法怎么办

首先假设你是计算机专业的大学生,或准备报考计算机专业的高中生。

需要先搞清楚自己是以下哪一类症状:
1. 对于简单的数学问题(如楼主提到的找质数、算阶乘)想不出思路(想出非最优思路也算合格)。
2. 想得出数学思路,但是不会转化为代码(代码冗长也算合格)。

如果是第1类,那么考虑转行比较实在吧;
如果是第2类,而且题主学习编程语言已经超过1个月,那么也请考虑转行吧;
如果是第2类,但是题主初学编程语言时间<1个月,那么请继续坚持,多读现成代码,然后自己编写。如此1个月仍不乐观,参考上一条。

对于用程序来解决数学问题,一个比较有效的方式是从对数学问题的定义入手。
再强调一遍,没有思路的时候,试着从定义入手。

比如寻找质数的简单(并不高效)算法,有如下思维过程:
1. 质数的定义:只能被1和自身整除的大于1的正整数。
2. 从定义提炼判断条件:
2.a. 不能被1或自身之外的任何数整除;
2.b. 大于1的正整数。
3. 用自然语言描述算法过程:
3.a. 2是质数;
3.b. 对每一个大于2的正整数(N)进行如下验证:用2到N-1除N(实际上到N的正平方根即可),若出现整除,则此数不是质数,否则是质数。
4. 将上述步骤翻译为伪代码或代码。
5. 优化算法(如剔除不必要的除法操作)。

熟练之后对于简单问题可以在脑中进行迅速的问题定义和条件提炼,并在脑中想出模糊的算法过程,然后直接写代码。

G. 如何做算法研究

一、DSP与TI

为什么提到电机控制很多人首先会联想到DSP?而谈到DSP控制总绕不过TI,首先DSP芯片是一种具有特殊结构的微处理器。该芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,提供特殊的指令,可以用来快速地实现各种数字信号处理算法。基于DSP芯片构成的控制系统事实上是一个单片系统,因此整个控制所需的各种功能都可由DSP芯片来实现。因此,可以减小目标系统的体积,减少外部元件的个数,增加系统的可靠性。优点是稳定性好、精度高、处理速度快,目前在变频器、伺服行业有大量使用。主流的DSP厂家有美国德州仪器(Texas Instruments,TI)、ADI、motorola、杰尔等其他厂商,其中TI的TMS320系列以数字控制和运动控制为主,以价格低廉、简单易用、功能强大很是受欢迎。

二、常见的电机控制算法及研究方法

1、电机控制按工作电源种类划分:可分为直流电机和交流电机。按结构和工作原理可划分:可分为直流电动机、异步电动机、同步电动机。不同的电机所采用的驱动方式也是不相同的,这次主要介绍伺服电机,伺服主要靠脉冲来定位,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因此,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,同时又与伺服电机接受的脉冲形成了呼应,或者叫闭环,进而很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。伺服电机相比较普通电机优势在于控制精度、低频扭矩,过载能力,响应速度等方面,所以被广泛使用于机器人,数控机床,注塑,纺织等行业
三、PWM控制及测试结果

脉冲宽度调制是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中,脉冲宽度调制是一种模拟控制方式,其根据相应载荷的变化来调制晶体管基极或MOS管栅极的偏置,来实现晶体管或MOS管导通时间的改变,从而实现开关稳压电源输出的改变

H. 谈谈你对算法的理解

算法可以帮助我们解决生活中很多很多的小问题,可以说算法在我们平时生活中都存在。

I. 想学习算法,如何入门

入门的话推荐两本书:《算法图解》和《大话数据结构》,

另外推荐一门视频课程《300分钟搞定数据结构与算法》,不想花时间看书的同学,建议看这个视频课程,是关于数据结构和算法很好的一个课程。

热点内容
c语言定义体 发布:2025-05-11 10:20:41 浏览:252
linuxwhichis 发布:2025-05-11 10:20:09 浏览:262
花雨庭服务器如何发消息 发布:2025-05-11 10:20:08 浏览:144
安卓系统时间在哪里设置 发布:2025-05-11 10:10:37 浏览:986
我的世界租赁服务器怎么换皮肤 发布:2025-05-11 10:09:59 浏览:949
sql插入两张表 发布:2025-05-11 09:55:33 浏览:758
日本编程语言 发布:2025-05-11 09:53:52 浏览:844
手机店设置的初始密码一般是多少 发布:2025-05-11 09:33:15 浏览:402
昂科威选择哪个配置 发布:2025-05-11 09:25:50 浏览:36
怎么解决安卓视频全屏卡顿 发布:2025-05-11 09:14:55 浏览:726