大数据十大经典算法
A. 大数据挖掘需要学习哪些技术大数据的工作
处理大数据需要一个综合、复杂、多方位的系统,系统中的处理模块有很多,而数据挖掘技术以一个独立的身份存在于处理大数据的整个系统之中,与其他模块之间相辅相成、协调发展。在大数据时代中,数据挖掘技术的地位是无可比拟的。
数据挖掘的基本流程
在正式讲数据挖掘知识清单之前,我先和你聊聊数据挖掘的基本流程。
数据挖掘的过程可以分成以下 6 个步骤。
商业理解:数据挖掘不是我们的目的,我们的目的是更好地帮助业务,所以第一步我们要从商业的角度理解项目需求,在这个基础上,再对数据挖掘的目标进行定义。
数据理解:尝试收集部分数据,然后对数据进行探索,包括数据描述、数据质量验证等。这有助于你对收集的数据有个初步的认知。
数据准备:开始收集数据,并对数据进行清洗、数据集成等操作,完成数据挖掘前的准备工作。
模型建立:选择和应用各种数据挖掘模型,并进行优化,以便得到更好的分类结果。
模型评估:对模型进行评价,并检查构建模型的每个步骤,确认模型是否实现了预定的商业目标。
上线发布:模型的作用是从数据中找到金矿,也就是我们所说的“知识”,获得的知识需要转化成用户可以使用的方式,呈现的形式可以是一份报告,也可以是实现一个比较复杂的、可重复的数据挖掘过程。数据挖掘结果如果是日常运营的一部分,那么后续的监控和维护就会变得重要。
数据挖掘的十大算法
为了进行数据挖掘任务,数据科学家们提出了各种模型,在众多的数据挖掘模型中,国际权威的学术组织 ICDM (the IEEE International Conference on Data Mining)评选出了十大经典的算法。
按照不同的目的,我可以将这些算法分成四类,以便你更好的理解。
分类算法:C4.5,朴素贝叶斯(Naive Bayes),SVM,KNN,Adaboost,CART
聚类算法:K-Means,EM
关联分析:Apriori
连接分析:PageRank
1. C4.5
C4.5 算法是得票最高的算法,可以说是十大算法之首。C4.5 是决策树的算法,它创造性地在决策树构造过程中就进行了剪枝,并且可以处理连续的属性,也能对不完整的数据进行处理。它可以说是决策树分类中,具有里程碑式意义的算法。
2. 朴素贝叶斯(Naive Bayes)
朴素贝叶斯模型是基于概率论的原理,它的思想是这样的:对于给出的未知物体想要进行分类,就需要求解在这个未知物体出现的条件下各个类别出现的概率,哪个最大,就认为这个未知物体属于哪个分类。
3. SVM
SVM 的中文叫支持向量机,英文是 Support Vector Machine,简称 SVM。SVM 在训练中建立了一个超平面的分类模型。如果你对超平面不理解,没有关系,我在后面的算法篇会给你进行介绍。
4. KNN
KNN 也叫 K 最近邻算法,英文是 K-Nearest Neighbor。所谓 K 近邻,就是每个样本都可以用它最接近的 K 个邻居来代表。如果一个样本,它的 K 个最接近的邻居都属于分类 A,那么这个样本也属于分类 A。
5. AdaBoost
Adaboost 在训练中建立了一个联合的分类模型。boost 在英文中代表提升的意思,所以 Adaboost 是个构建分类器的提升算法。它可以让我们多个弱的分类器组成一个强的分类器,所以 Adaboost 也是一个常用的分类算法。
6. CART
CART 代表分类和回归树,英文是 Classification and Regression Trees。像英文一样,它构建了两棵树:一棵是分类树,另一个是回归树。和 C4.5 一样,它是一个决策树学习方法。
7. Apriori
Apriori 是一种挖掘关联规则(association rules)的算法,它通过挖掘频繁项集(frequent item sets)来揭示物品之间的关联关系,被广泛应用到商业挖掘和网络安全等领域中。频繁项集是指经常出现在一起的物品的集合,关联规则暗示着两种物品之间可能存在很强的关系。
8. K-Means
K-Means 算法是一个聚类算法。你可以这么理解,最终我想把物体划分成 K 类。假设每个类别里面,都有个“中心点”,即意见领袖,它是这个类别的核心。现在我有一个新点要归类,这时候就只要计算这个新点与 K 个中心点的距离,距离哪个中心点近,就变成了哪个类别。
9. EM
EM 算法也叫最大期望算法,是求参数的最大似然估计的一种方法。原理是这样的:假设我们想要评估参数 A 和参数 B,在开始状态下二者都是未知的,并且知道了 A 的信息就可以得到 B 的信息,反过来知道了 B 也就得到了 A。可以考虑首先赋予 A 某个初值,以此得到 B 的估值,然后从 B 的估值出发,重新估计 A 的取值,这个过程一直持续到收敛为止。
EM 算法经常用于聚类和机器学习领域中。
10. PageRank
PageRank 起源于论文影响力的计算方式,如果一篇文论被引入的次数越多,就代表这篇论文的影响力越强。同样 PageRank 被 Google 创造性地应用到了网页权重的计算中:当一个页面链出的页面越多,说明这个页面的“参考文献”越多,当这个页面被链入的频率越高,说明这个页面被引用的次数越高。基于这个原理,我们可以得到网站的权重划分。
最后
算法可以说是数据挖掘的灵魂,也是最精华的部分。这 10 个经典算法在整个数据挖掘领域中的得票最高的,后面的一些其他算法也基本上都是在这个基础上进行改进和创新。今天你先对十大算法有一个初步的了解,你只需要做到心中有数就可以了。
B. 数据挖掘十大经典算法(1)——朴素贝叶斯(Naive Bayes)
在此推出一个算法系列的科普文章。我们大家在平时埋头工程类工作之余,也可以抽身对一些常见算法进行了解,这不仅可以帮助我们拓宽思路,从另一个维度加深对计算机技术领域的理解,做到触类旁通,同时也可以让我们搞清楚一些既熟悉又陌生的领域——比如数据挖掘、大数据、机器学习——的基本原理,揭开它们的神秘面纱,了解到其实很多看似高深的领域,其实背后依据的基础和原理也并不复杂。而且,掌握各类算法的特点、优劣和适用场景,是真正从事数据挖掘工作的重中之重。只有熟悉算法,才可能对纷繁复杂的现实问题合理建模,达到最佳预期效果。
本系列文章的目的是力求用最干练而生动的讲述方式,为大家讲解由国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 于2006年12月评选出的数据挖掘领域的十大经典算法。它们包括:
本文作为本系列的第一篇,在介绍具体算法之前,先简单为大家铺垫几个数据挖掘领域的常见概念:
在数据挖掘领域,按照算法本身的行为模式和使用目的,主要可以分为分类(classification),聚类(clustering)和回归(regression)几种,其中:
打几个不恰当的比方 :
另外,还有一个经常有人问起的问题,就是 数据挖掘 和 机器学习 这两个概念的区别,这里一句话阐明我自己的认识:机器学习是基础,数据挖掘是应用。机器学习研制出各种各样的算法,数据挖掘根据应用场景把这些算法合理运用起来,目的是达到最好的挖掘效果。
当然,以上的简单总结一定不够准确和严谨,更多的是为了方便大家理解打的比方。如果大家有更精当的理解,欢迎补充和交流。
好了,铺垫了这么多,现在终于进入正题!
作为本系列入门的第一篇,先为大家介绍一个容易理解又很有趣的算法—— 朴素贝叶斯 。
先站好队,朴素贝叶斯是一个典型的 有监督的分类算法 。
光从名字也可以想到,要想了解朴素贝叶斯,先要从 贝叶斯定理 说起。
贝叶斯定理是我们高中时代学过的一条概率学基础定理,它描述了条件概率的计算方式。不要怕已经把这些知识还给了体育老师,相信你一看公式就能想起来。
P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:
其中,P(AB)表示A和B同时发生的概率,P(B)标识B事件本身的概率。
贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A)。
而贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面不加证明地直接给出贝叶斯定理:
有了贝叶斯定理这个基础,下面来看看朴素贝叶斯算法的基本思路。
你看,其思想就是这么的朴素。那么,属于每个分类的概率该怎么计算呢?下面我们先祭出形式化语言!
那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:
因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:
如果你也跟我一样,对形式化语言有严重生理反应,不要怕,直接跳过前面这一坨,我们通过一个鲜活的例子,用人类的语言再解释一遍这个过程。
某个医院早上收了六个门诊病人,如下表。
现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他最有可能患有何种疾病?
本质上,这就是一个典型的分类问题, 症状 和 职业 是特征属性, 疾病种类 是目标类别
根据 贝叶斯定理
可得
假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了
这是可以计算的。
因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。
接下来,我们再举一个朴素贝叶斯算法在实际中经常被使用的场景的例子—— 文本分类器 ,通常会用来识别垃圾邮件。
首先,我们可以把一封邮件的内容抽象为由若干关键词组成的集合,这样是否包含每种关键词就成了一封邮件的特征值,而目标类别就是 属于垃圾邮件 或 不属于垃圾邮件
假设每个关键词在一封邮件里出现与否的概率相互之间是独立的,那么只要我们有若干已经标记为垃圾邮件和非垃圾邮件的样本作为训练集,那么就可以得出,在全部垃圾邮件(记为Trash)出现某个关键词Wi的概率,即 P(Wi|Trash)
而我们最重要回答的问题是,给定一封邮件内容M,它属于垃圾邮件的概率是多大,即 P(Trash|M)
根据贝叶斯定理,有
我们先来看分子:
P(M|Trash) 可以理解为在垃圾邮件这个范畴中遇见邮件M的概率,而一封邮件M是由若干单词Wi独立汇聚组成的,只要我们所掌握的单词样本足够多,因此就可以得到
这些值我们之前已经可以得到了。
再来看分子里的另一部分 P(Trash) ,这个值也就是垃圾邮件的总体概率,这个值显然很容易得到,用训练集中垃圾邮件数除以总数即可。
而对于分母来说,我们虽然也可以去计算它,但实际上已经没有必要了,因为我们要比较的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一样的,因此只需要比较分子大小即可。
这样一来,我们就可以通过简单的计算,比较邮件M属于垃圾还是非垃圾二者谁的概率更大了。
朴素贝叶斯的英文叫做 Naive Bayes ,直译过来其实是 天真的贝叶斯 ,那么他到底天真在哪了呢?
这主要是因为朴素贝叶斯的基本假设是所有特征值之间都是相互独立的,这才使得概率直接相乘这种简单计算方式得以实现。然而在现实生活中,各个特征值之间往往存在一些关联,比如上面的例子,一篇文章中不同单词之间一定是有关联的,比如有些词总是容易同时出现。
因此,在经典朴素贝叶斯的基础上,还有更为灵活的建模方式—— 贝叶斯网络(Bayesian Belief Networks, BBN) ,可以单独指定特征值之间的是否独立。这里就不展开了,有兴趣的同学们可以做进一步了解。
最后我们来对这个经典算法做个点评:
优点:
缺点:
好了,对于 朴素贝叶斯 的介绍就到这里,不知道各位看完之后是否会对数据挖掘这个领域产生了一点兴趣了呢?
C. 大数据最常用的算法有哪些
奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出最重要的算法,以下是这次调查的结果,按照英文名称字母顺序排序。
大数据等最核心的关键技术:32个算法
1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。
2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。
3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。
5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
9、离散微分算法(Discrete differentiation)。
10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法
11、欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。
12、期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。
13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。
14、梯度下降(Gradient descent)——一种数学上的最优化算法。
15、哈希算法(Hashing)。
16、堆排序(Heaps)。
17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。
18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。
19、最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的最大流。
20、合并排序(Merge Sort)。
21、牛顿法(Newton’s method)——求非线性方程(组)零点的一种重要的迭代法。
22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。
23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。
24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。
25、RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。
26、Sch?nhage-Strassen算法——在数学中,Sch?nhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。
27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。
28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。
29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。
30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。
31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:
查找:判断某特定元素属于哪个组。
合并:联合或合并两个组为一个组。
32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。
以上就是Christoph博士对于最重要的算法的调查结果。你们熟悉哪些算法?又有哪些算法是你们经常使用的?
D. 大数据挖掘的算法有哪些
大数据挖掘的算法:
1.朴素贝叶斯,超级简单,就像做一些数数的工作。如果条件独立假设成立的话,NB将比鉴别模型收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,NB在实际中仍然表现出惊人的好。
2. Logistic回归,LR有很多方法来对模型正则化。比起NB的条件独立性假设,LR不需要考虑样本是否是相关的。与决策树与支持向量机不同,NB有很好的概率解释,且很容易利用新的训练数据来更新模型。如果你想要一些概率信息或者希望将来有更多数据时能方便的更新改进模型,LR是值得使用的。
3.决策树,DT容易理解与解释。DT是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题,DT的主要缺点是容易过拟合,这也正是随机森林等集成学习算法被提出来的原因。
4.支持向量机,很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。SVM在维数通常很高的文本分类中非常的流行。
如果想要或许更多更详细的讯息,建议您去参加CDA数据分析课程。大数据分析师现在有专业的国际认证证书了,CDA,即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证, 旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。 “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。点击预约免费试听课。
E. 大数据经典算法解析(5)一EM算法
姓名:崔升 学号:14020120005
【嵌牛导读】:
EM作为一种经典的处理大数据的算法,是我们在学习互联网大数据时不得不去了解的一种常用算法
【嵌牛鼻子】:经典大数据算法之EM简单介绍
【嵌牛提问】:EM是一种怎么的算法,其如何去观测其中隐变量的?
【嵌牛正文】:
1. 极大似然
极大似然(Maximum Likelihood)估计为用于已知模型的参数估计的统计学方法。比如,我们想了解抛硬币是正面(head)的概率分布θθ;那么可以通过最大似然估计方法求得。假如我们抛硬币1010次,其中88次正面、22次反面;极大似然估计参数θθ值:
θ^=argmaxθl(θ)=argmaxθθ8(1−θ)2θ^=argmaxθl(θ)=argmaxθθ8(1−θ)2
其中,l(θ)l(θ)为观测变量序列的似然函数(likelihood function of the observation sequence)。对l(θ)l(θ)求偏导
∂l(θ)∂θ=θ7(1−θ)(8−10θ)⇒θ^=0.8∂l(θ)∂θ=θ7(1−θ)(8−10θ)⇒θ^=0.8
因为似然函数l(θ)l(θ)不是凹函数(concave),求解极大值困难。一般地,使用与之具有相同单调性的log-likelihood,如图所示
凹函数(concave)与凸函数(convex)的定义如图所示:
从图中可以看出,凹函数“容易”求解极大值,凸函数“容易”求解极小值。
2. EM算法
EM算法(Expectation Maximization)是在含有隐变量(latent variable)的模型下计算最大似然的一种算法。所谓隐变量,是指我们没有办法观测到的变量。比如,有两枚硬币A、B,每一次随机取一枚进行抛掷,我们只能观测到硬币的正面与反面,而不能观测到每一次取的硬币是否为A;则称每一次的选择抛掷硬币为隐变量。
用Y表示观测数据,Z表示隐变量;Y和Z连在一起称为完全数据( complete-data ),观测数据Y又称为不完全数据(incomplete-data)。观测数据的似然函数:
P(Y|θ)=∑ZP(Z|θ)P(Y|Z,θ)P(Y|θ)=∑ZP(Z|θ)P(Y|Z,θ)
求模型参数的极大似然估计:
θ^=argmaxθlogP(Y|θ)θ^=argmaxθlogP(Y|θ)
因为含有隐变量,此问题无法求解。因此,Dempster等人提出EM算法用于迭代求解近似解。EM算法比较简单,分为两个步骤:
E步(E-step),以当前参数θ(i)θ(i)计算ZZ的期望值
Q(θ,θ(i))=EZ[logP(Y,X|θ)|Y,θ(i)]Q(θ,θ(i))=EZ[logP(Y,X|θ)|Y,θ(i)]
M步(M-step),求使Q(θ,θ(i))Q(θ,θ(i))极大化的θθ,确定第i+1i+1次迭代的参数的估计值θ(i+1)θ(i+1)
θ(i+1)=argmaxθQ(θ,θ(i))θ(i+1)=argmaxθQ(θ,θ(i))
如此迭代直至算法收敛。关于算法的推导及收敛性证明,可参看李航的《统计学习方法》及Andrew Ng的《CS229 Lecture notes》。 这里 有一些极大似然以及EM算法的生动例子。
3. 实例
[2]中给出极大似然与EM算法的实例。如图所示,有两枚硬币A、B,每一个实验随机取一枚抛掷10次,共5个实验,我们 可以 观测到每一次所取的硬币,估计参数A、B为正面的概率θ=(θA,θB)θ=(θA,θB),根据极大似然估计求解
如果我们 不能 观测到每一次所取的硬币,只能用EM算法估计模型参数,算法流程如图所示:
隐变量ZZ为每次实验中选择A或B的概率,则第一个实验选择A的概率为
P(z1=A|y1,θ(0))=P(z1=A|y1,θ(0))P(z1=A|y1,θ(0))+P(z1=B|y1,θ(0))=0.65∗0.450.65∗0.45+0.510=0.45P(z1=A|y1,θ(0))=P(z1=A|y1,θ(0))P(z1=A|y1,θ(0))+P(z1=B|y1,θ(0))=0.65∗0.450.65∗0.45+0.510=0.45
按照上面的计算方法可依次求出隐变量ZZ,然后计算极大化的θ(i)θ(i)。经过10次迭代,最终收敛。
4. 参考资料
[1] 李航,《统计学习方法》.
[2] Chuong B Do & Serafim Batzoglou, What is the expectation maximization algorithm?
[3] Pieter Abbeel, Maximum Likelihood (ML), Expectation Maximization (EM) .
[4] Rudan Chen, 【机器学习算法系列之一】EM算法实例分析 .
F. 大数据常用的各种算法
我们经常谈到的所谓的 数据挖掘 是通过大量的数据集进行排序,自动化识别趋势和模式并且建立相关性的过程。那现在市面的数据公司都是通过各种各样的途径来收集海量的信息,这些信息来自于网站、公司应用、社交媒体、移动设备和不断增长的物联网。
比如我们现在每天都在使用的搜索引擎。在自然语言处理领域,有一种非常流行的算法模型,叫做词袋模型,即把一段文字看成一袋水果,这个模型就是要算出这袋水果里,有几个苹果、几个香蕉和几个梨。搜索引擎会把这些数字记下来,如果你想要苹果,它就会把有苹果的这些袋子给你。
当我们在网上买东西或是看电影时,网站会推荐一些可能符合我们偏好的商品或是电影,这个推荐有时候还挺准。事实上,这背后的算法,是在数你喜欢的电影和其他人喜欢的电影有多少个是一样的,如果你们同时喜欢的电影超过一定个数,就把其他人喜欢、但你还没看过的电影推荐给你。 搜索引擎和推荐系统 在实际生产环境中还要做很多额外的工作,但是从本质上来说,它们都是在数数。
当数据量比较小的时候,可以通过人工查阅数据。而到了大数据时代,几百TB甚至上PB的数据在分析师或者老板的报告中,就只是几个数字结论而已。 在数数的过程中,数据中存在的信息也随之被丢弃,留下的那几个数字所能代表的信息价值,不抵其真实价值之万一。 过去十年,许多公司花了大价钱,用上了物联网和云计算,收集了大量的数据,但是到头来却发现得到的收益并没有想象中那么多。
所以说我们现在正处于“ 数字化一切 ”的时代。人们的所有行为,都将以某种数字化手段转换成数据并保存下来。每到新年,各大网站、App就会给用户推送上一年的回顾报告,比如支付宝会告诉用户在过去一年里花了多少钱、在淘宝上买了多少东西、去什么地方吃过饭、花费金额超过了百分之多少的小伙伴;航旅纵横会告诉用户去年做了多少次飞机、总飞行里程是多少、去的最多的城市是哪里;同样的,最后让用户知道他的行程超过了多少小伙伴。 这些报告看起来非常酷炫,又冠以“大数据”之名,让用户以为是多么了不起的技术。
实际上,企业对于数据的使用和分析,并不比我们每年收到的年度报告更复杂。已经有30多年历史的商业智能,看起来非常酷炫,其本质依然是数数,并把数出来的结果画成图给管理者看。只是在不同的行业、场景下,同样的数字和图表会有不同的名字。即使是最近几年炙手可热的大数据处理技术,也不过是可以数更多的数,并且数的更快一些而已。
在大数据处理过程中会用到那些算法呢?
1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的较佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是较佳优先搜索的范例。
2、集束搜索(又名定向搜索,Beam Search)——较佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。
3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。
4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。
5、Buchberger算法——一种数学算法,可将其视为针对单变量较大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。
6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。
7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。
8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。
9、离散微分算法(Discrete differentiation)。
10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法
11、欧几里得算法(Euclidean algorithm)——计算两个整数的较大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。
12、期望-较大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-较大算法在概率模型中寻找可能性较大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其较大可能估计值;第二步是较大化,较大化在第一步上求得的较大可能值来计算参数的值。
13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。
14、梯度下降(Gradient descent)——一种数学上的最优化算法。
15、哈希算法(Hashing)。
16、堆排序(Heaps)。
17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。
18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。
19、较大流量算法(Maximum flow)——该算法试图从一个流量网络中找到较大的流。它优势被定义为找到这样一个流的值。较大流问题可以看作更复杂的网络流问题的特定情况。较大流与网络中的界面有关,这就是较大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的较大流。
20、合并排序(Merge Sort)。
21、牛顿法(Newton's method)——求非线性方程(组)零点的一种重要的迭代法。
22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。
23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。
24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。
25、RSA——公钥加密算法。较早的适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。
26、Schönhage-Strassen算法——在数学中,Schönhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。
27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待较大化(或最小化)的固定线性函数。
28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。
29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。
30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。
31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:
查找:判断某特定元素属于哪个组。
合并:联合或合并两个组为一个组。
32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。
G. 大数据经典算法解析(8)一KNN算法
姓名:崔升 学号:14020120005
【嵌牛导读】:
本文讨论的kNN算法是监督学习中分类方法的一种。所谓监督学习与非监督学习,是指训练数据是 否有标注类别,若有则为监督学习,若否则为非监督学习。监督学习是根据输入数据(训练数据) 学习一个模型,能对后来的输入做预测。在监督学习中,输入变量与输出变量可以是连续的,也可 以是离散的。若输入变量与输出变量均为连续变量,则称为 回归 ;输出变量为有限个离散变量,则 称为 分类 ;输入变量与输出变量均为变量序列,则称为 标注 [2]。
【嵌牛鼻子】:经典大数据算法之kNN算法的简单介绍
【嵌牛提问】:kNN是一种怎么的算法,其数学原理又是如何?
【嵌牛正文】:
1. 引言
顶级数据挖掘会议ICDM于2006年12月评选出了数据挖掘领域的 十大经典算法 :C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naïve Bayes与 CART。 以前看过关于这些数据挖掘算法,但对背后数学原理未做过多探究,因而借此整理以更深入地理解这些算法。
2. kNN算法
kNN算法的核心思想非常简单:在训练集中选取离输入的数据点最近的k个邻居,根据这个k个邻居中出现次数最多的类别(最大表决规则),作为该数据点的类别。
算法描述
训练集T={(x1,y1),(x2,y2),⋯,(xN,yN)}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其类别yi∈{c1,c2,⋯,cK}yi∈{c1,c2,⋯,cK},训练集中样本点数为NN,类别数为KK。输入待预测数据xx,则预测类别
y=argmaxcj∑xi∈Nk(x)I(yi=cj),i=1,2,⋯,N;j=1,2,⋯,K(1)(1)y=argmaxcj∑xi∈Nk(x)I(yi=cj),i=1,2,⋯,N;j=1,2,⋯,K
其中,涵盖xx的k邻域记作Nk(x)Nk(x),当yi=cjyi=cj时指示函数I=1I=1,否则I=0I=0。
分类决策规则
kNN学习模型:输入XX,通过学习得到决策函数:输出类别Y=f(X)Y=f(X)。假设分类损失函数为0-1损失函数,即分类正确时损失函数值为0,分类错误时则为1。假如给xx预测类别为cjcj,即f(X)=cjf(X)=cj;同时由式子 (1) (1)可知k邻域的样本点对学习模型的贡献度是均等的,则kNN学习模型误分类率为
1k∑xi∈Nk(x)I(yi≠f(xi))=1k∑xi∈Nk(x)I(yi≠cj)=1−1k∑xi∈Nk(x)I(yi=cj)(2)(2)1k∑xi∈Nk(x)I(yi≠f(xi))=1k∑xi∈Nk(x)I(yi≠cj)=1−1k∑xi∈Nk(x)I(yi=cj)
若要最小化误分类率,则应
maxcj∑xi∈Nk(x)I(yi=cj)maxcj∑xi∈Nk(x)I(yi=cj)
所以,最大表决规则等价于经验风险最小化。
存在问题
k值得选取对kNN学习模型有着很大的影响。若k值过小,预测结果会对噪音样本点显得异常敏感。特别地,当k等于1时,kNN退化成最近邻算法,没有了显式的学习过程。若k值过大,会有较大的邻域训练样本进行预测,可以减小噪音样本点的减少;但是距离较远的训练样本点对预测结果会有贡献,以至于造成预测结果错误。下图给出k值的选取对于预测结果的影响:
前面提到过,k邻域的样本点对预测结果的贡献度是相等的;但距离更近的样本点应有更大的相似度,其贡献度应比距离更远的样本点大。可以加上权值wi=1/∥xi−x∥wi=1/‖xi−x‖进行修正,则最大表决原则变成:
maxcj∑xi∈Nk(x)wi∗I(yi=cj)maxcj∑xi∈Nk(x)wi∗I(yi=cj)
3. 参考资料
[1] Michael Steinbach and Pang-Ning Tan, The Top Ten Algorithms in Data Mining.
[2] 李航,《统计学习方法》.