朝鲜指纹算法
① 朝鲜用指纹锁吗
可能用指纹锁的不多,但是朝鲜的指纹识别算法那是相当牛逼,特别是大容量指纹处理算法是世界上公认的较好的算法……
② 安朗指纹锁值得购买吗
安朗A1000指纹锁
半导体指纹头,自动开关门,万能互换,一键快锁,反锁时间可调 个性化时间设置,双重开启模式自由选择。
指纹算法:采用朝鲜指纹处理算法,动态更新用户指纹库,带自学习模式。100枚指纹尽情不断。
密码功能:采用防窥密码输入。
刷卡功能:采用微波寻卡技术,可识别二代身份证,银行卡,小区卡等。
LED提示:触摸面板拥有红白双色LED背关灯。
夜晶显示:人性菜单,智能化人机交互界面。
③ 指纹识别算法都有哪些,最先进的是什么算法
现在国内外大都采用基于细节特征点的指纹识别技术,即采用基于图像处理的指纹识别算法,有两种比较有代表性的。一种是基于方向滤波增强,并在指纹细化图上提取特征点的算法,另一种是直接从指纹灰度图上提取特征点的算法。难题在于有些算法会由于指纹图像的噪音、皮肤弹性引起的非线性形变等多方面因素,导致在识别过程中出现误差,影响识别率等[1-2]
指纹算法存在的难题与方向
指纹图像预处理:预处理的目的是改善输入指纹图像的质量,以提高特征提取的准确性。本文采用灰度分割法对指纹图像进行分割。利用中值滤波去噪。通过自适应二值化的方法处理指纹图像,最后再对图像进行细化处理并去除毛刺,断裂等干扰。
指纹图像特征提取:对指纹图像的特征点进行提取。由于经过预处理后的细化图像上存在大量的伪特征点,这些伪特征点的存在,不但使匹配的速度大大降低,还使指纹识别性能急剧下降,造成识别系统的误拒率和误识率的上升。因此在进行指纹匹配之前,应尽可能将伪特征点去除,针对提取出的指纹细节特征点含有大量的伪特征点这一问题,提出了一种边缘信息判别法,有效地去除了边界伪特征点,再根据脊线结构特性去除其毛刺和短脊等伪特征点,明显的减少了伪特征点。
指纹匹配:对指纹图像的匹配算法进行研究。特征匹配是识别系统的关键环节,匹配算法的好坏直接影响识别的性能、速度和效率。为了克服指纹图像非线性形变的影响,采用基于结构特征的点匹配算法,对校准后的点集进行匹配,匹配的特征点个数在两个点集中所占比例大约百分之六十五的范围内就可判为匹配成功。
④ 指纹识别是怎么进行的
导语:指纹识别技术通常使用指纹的总体特征如纹形、三角点等来进行分类,再用局部特征如位置和方向等来进行用户身份识别。尽管指纹只是人体皮肤的小部分,但是,它蕴涵着大量的信息。那么,接下来就让我们一起来具体的了解以下关于指纹识别是怎么进行的内容吧。文章仅供大家的参考!
指纹识别是怎么进行的
1.指纹图像的获取
指纹图像的采集是自动指纹识别系统的重要组成部分。早期的指纹采集都是通过油墨按压在纸张上产生的。20世纪80年代,随着光学技术和计算机技术的发展,现代化的采集设备开始出现。
传感器是一种能把物理量或化学量变成便于利用的电信号的器件。在测量系统中它是一种前置部件,它是被测量信号输入后的第一道关口,是生物认证系统中的采集设备。
这些传感器根据探测对象的不同,可分为光学传感器、热敏传感器和超声传感器;根据器件的不同,可分为CMOS器件传感器和CCD器件传感器。它们的工作原理都是:将生物特征经过检测后转化为系统可以识别的图像信息。在生物认证系统中,可靠和廉价的'图像采集设备是系统运行正常、可靠的关键。
2.指纹图像的增强
常见的预处理方法如下:
(1)采用灰度的均衡化,可以消除不同图像之间对比度的差异。
(2)使用简单的低通滤波消除斑点噪声、高斯噪声。
(3)计算出图像的边界,进行图像的裁剪,这样可以减少多余的计算量,提高系统的速度。
常用图像增强算法具体包括以下几种:
(1)基于傅里叶滤波的低质量指纹增强算法;
(2)基于Gabor滤波的增强方法;
(3)多尺度滤波方法;
(4)改进的方向图增强算法;
(5)基于知识的指纹图像增强算法;
(6)非线性扩散模型及其滤波方法;
(7)改进的非线性扩散滤波方法。
目前最新的分割算法有以下几种:
(1)基于正态模型进行的指纹图像分割算法;
(2)基于马尔科夫随机场的指纹图像分割算法;
(3)基于数学形态学闭运算的灰度方差法;
(4)基于方向场的指纹图像分割算法。
3.指纹特征的提取
近年来,新的指纹特征提取算法主要包括以下几种:
(1)基于Gabor滤波方法对指纹局部特征的提取算法。
(2)基于CNN通用编程方法对指纹特征的提取算法。
(3)基于IFS编码的图像数字化技术,即建立IFS模型,计算源图像与再生图像之间的相似性,快速提取指纹图像的特征。
(4)基于脊线跟踪的指纹图像特征点提取算法。该算法可以直接从灰度指纹图像中有效提取细节点和脊线骨架信息。
(5)基于小波变换和ART(自适应共振理论)神经网络的指纹特征提取算法。
4.指纹图像的分类与压缩
常用的指纹分类技术有以下几种:
(1)基于规则的方法,即根据指纹奇异点的数目和位置分类。
(2)基于句法的方法。这种方法的语法复杂,推导语法的方法复杂、不固定。这种方法已经逐渐被淘汰了。
(3)结构化的方法,即寻找低层次的特征到高层次的结构之间相关联的组织。
(4)统计的方法。
(5)结合遗传算法和BP神经元网络的方法。
(6)多分类器方法。
常用的压缩算法有以下两种:
(1)图像压缩编码方法:包括无损压缩(熵编码)和有损压缩(量化)。
(2)基于小波变换的指纹压缩算法:包括WSQ算法、DjVu算法、改进的EZW算法等。
5.指纹图像的匹配
传统的指纹匹配算法有很多种:
(1)基于点模式的匹配方法:如基于Hough变换的匹配算法、基于串距离的匹配算法、基于N邻近的匹配算法等。
(2)图匹配及其他方法:如基于遗传算法的匹配、基于关键点的初匹配等。
(3)基于纹理模式的匹配:如PPM匹配算法等。
(4)混合匹配方法等。
近几年,又出现了如下新的匹配算法:
(1)基于指纹分类的矢量匹配。该法首先利用指纹分类的信息进行粗匹配,然后利用中心点和三角点的信息进一步匹配,最后以待识别图像和模板指纹图像的中心点为基准点,将中心点与邻近的36个细节点形成矢量,于是指纹的匹配就转变为矢量组数的匹配。
(2)基于PKI(Public Key Infrastructure,公钥基础设施)的开放网络环境下的指纹认证系统。
(3)实时指纹特征点匹配算法。该算法的原理是:通过由指纹分割算法得到圆形匹配限制框和简化计算步骤来达到快速匹配的目的。
(4)一种基于FBI(Federal Bureauof Investigation)细节点的二次指纹匹配算法。
(5)基于中心点的指纹匹配算法。该算法利用奇异点或指纹有效区域的中心点寻找匹配的基准特征点对和相应的变换参数,并将待识别指纹相对于模板指纹作姿势纠正,最后采用坐标匹配的方式实现两个指纹的比对。