源码扫描仪
Ⅰ java中怎么调用扫描仪
1。先搞清楚要在哪种类型的程序中调用扫描仪
如果开发的程序是java application或者基于 swing的程序,可以算作是单机或者 c/s架构的程序,applet和java fx技术也可以这么算,因为都是直接通过java程序去操控扫描仪设备。
如果是基于浏览器的应用,即b/s架构的程序,扫描图像的工作是在客户端完成的,这种情况下Java程序其实是接收和保存扫描仪读取的图像结果,并不需要直接的控制扫描仪工作,这一点上和c/s架构的程序有本质的区别。
2。架构与技术应用
2.1 c/s架构程序的扫描仪调用
c/s架构需要通过java代码直接操控扫描仪设备,java语言本身被设计为跨o/s平台,对特定平台的硬件操控能力有限,因此需要借助外部技术实现扫描仪控制调用,可以通过jni(java原生应用程序接口) 技术去实现扫描仪调用,具体的细节实现就是jni中定义扫描仪操作方法,如scan()等方法,然后使用javah生成c语言的.h头文件,然后使用vc等编程语言去实现jni接口方法。
在windows平台和mac平台上面,操作扫描仪都可以通过twain协议
总之c/s架构的java程序调用扫描仪通过jni+twain编程既可完成。
2.2 b/s架构程序的扫描仪调用
b/s架构的扫描仪调用在前面已经提到过,java程序实现上做的事情是接收扫描结果图像数据 ,例如在struts2的 action中或者jsp/servlet等等程序中接收扫描仪图像扫描结果,真实的客户端扫描仪调用应该借助客户端技术去实现。
在Linux中的Mozilla浏览器中如何调用扫描仪扫描图像呢?这个着实是个难题,需要做Mozilla的插件才可以,但是在windows平台有ActiveX技术供程序员使用,因此浏览器是在windows平台中的话借助Activex技术即可扩展浏览器能力。
Ⅱ C# USB读写速度测试源码
USB接口的通讯原理
1、USB设备的接入
USB接口中的+5V电源不但可以为外接设置提供小电流供应,并且还起着检测功能。当USB设置插入USB接口后,主机的+5V电源就会通过USB边线与USB设备相通。USB外设的控制芯片会通过两只10K的电阻来检查USB设备是否接入了主机的USB端口。如果这两个引脚一个为高电平,一个为低电平时就表示USB外设已经正常确连入USB接口,这时外设的控制芯片开始工作,并通过DATA+,DATA-向外送出数据。这时主机接收数据后,就会提示发现新硬件,并开始安装新硬件驱动。
2、USB设备的识别
在USB外设向外送出数据时,其中就包括设备自身的设备名及型号等相关参数,主机就是根据这些信息在显示器上显示出所发现的新硬件的名称型号的。
多说一点:如果现在闪存的价格降得更低时,我们就可以把扫描仪,打印机,数码相机的驱动程序存在设备内部。当主机需要驱动程序时,直接从设备内部读取就可以了,也就不再需要驱动光盘和安装驱动等繁琐手续了。
Ⅲ 如何用Scapy写一个端口扫描器
常见的端口扫描类型有:
1. TCP 连接扫描
2. TCP SYN 扫描(也称为半开放扫描或stealth扫描)
3. TCP 圣诞树(Xmas Tree)扫描
4. TCP FIN 扫描
5. TCP 空扫描(Null)
6. TCP ACK 扫描
7. TCP 窗口扫描
8. UDP 扫描
下面先讲解每种扫描的原理,随后提供具体实现代码。
TCP 连接扫描
客户端与服务器建立 TCP 连接要进行一次三次握手,如果进行了一次成功的三次握手,则说明端口开放。
客户端想要连接服务器80端口时,会先发送一个带有 SYN 标识和端口号的 TCP 数据包给服务器(本例中为80端口)。如果端口是开放的,则服务器会接受这个连接并返回一个带有 SYN 和 ACK 标识的数据包给客户端。随后客户端会返回带有 ACK 和 RST 标识的数据包,此时客户端与服务器建立了连接。如果完成一次三次握手,那么服务器上对应的端口肯定就是开放的。
当客户端发送一个带有 SYN 标识和端口号的 TCP 数据包给服务器后,如果服务器端返回一个带 RST 标识的数据包,则说明端口处于关闭状态。
代码:
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=80
tcp_connect_scan_resp = sr1(IP(dst=dst_ip)/TCP(sport=src_port,dport=dst_port,flags="S"),timeout=10)
if(str(type(tcp_connect_scan_resp))=="<type 'NoneType'>"):
print "Closed"
elif(tcp_connect_scan_resp.haslayer(TCP)):
if(tcp_connect_scan_resp.getlayer(TCP).flags == 0x12):
send_rst = sr(IP(dst=dst_ip)/TCP(sport=src_port,dport=dst_port,flags="AR"),timeout=10)
print "Open"
elif (tcp_connect_scan_resp.getlayer(TCP).flags == 0x14):
print "Closed"
TCP SYN 扫描
这个技术同 TCP 连接扫描非常相似。同样是客户端向服务器发送一个带有 SYN 标识和端口号的数据包,如果目标端口开发,则会返回带有 SYN 和 ACK 标识的 TCP 数据包。但是,这时客户端不会返回 RST+ACK 而是返回一个只带有 RST 标识的数据包。这种技术主要用于躲避防火墙的检测。
如果目标端口处于关闭状态,那么同之前一样,服务器会返回一个 RST 数据包。
代码:
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=80
stealth_scan_resp = sr1(IP(dst=dst_ip)/TCP(sport=src_port,dport=dst_port,flags="S"),timeout=10)
if(str(type(stealth_scan_resp))=="<type 'NoneType'>"):
print "Filtered"
elif(stealth_scan_resp.haslayer(TCP)):
if(stealth_scan_resp.getlayer(TCP).flags == 0x12):
send_rst = sr(IP(dst=dst_ip)/TCP(sport=src_port,dport=dst_port,flags="R"),timeout=10)
print "Open"
elif (stealth_scan_resp.getlayer(TCP).flags == 0x14):
print "Closed"
elif(stealth_scan_resp.haslayer(ICMP)):
if(int(stealth_scan_resp.getlayer(ICMP).type)==3 and int(stealth_scan_resp.getlayer(ICMP).code) in [1,2,3,9,10,13]):
print "Filtered"
TCP 圣诞树(Xmas Tree)扫描
在圣诞树扫描中,客户端会向服务器发送带有 PSH,FIN,URG 标识和端口号的数据包给服务器。如果目标端口是开放的,那么不会有任何来自服务器的回应。
如果服务器返回了一个带有 RST 标识的 TCP 数据包,那么说明端口处于关闭状态。
但如果服务器返回了一个 ICMP 数据包,其中包含 ICMP 目标不可达错误类型3以及 ICMP 状态码为1,2,3,9,10或13,则说明目标端口被过滤了无法确定是否处于开放状态。
代码:
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=80
xmas_scan_resp = sr1(IP(dst=dst_ip)/TCP(dport=dst_port,flags="FPU"),timeout=10)
if (str(type(xmas_scan_resp))=="<type 'NoneType'>"):
print "Open|Filtered"
elif(xmas_scan_resp.haslayer(TCP)):
if(xmas_scan_resp.getlayer(TCP).flags == 0x14):
print "Closed"
elif(xmas_scan_resp.haslayer(ICMP)):
if(int(xmas_scan_resp.getlayer(ICMP).type)==3 and int(xmas_scan_resp.getlayer(ICMP).code) in [1,2,3,9,10,13]):
print "Filtered"
TCP FIN扫描
FIN 扫描会向服务器发送带有 FIN 标识和端口号的 TCP 数据包。如果没有服务器端回应则说明端口开放。
如果服务器返回一个 RST 数据包,则说明目标端口是关闭的。
如果服务器返回了一个 ICMP 数据包,其中包含 ICMP 目标不可达错误类型3以及 ICMP 代码为1,2,3,9,10或13,则说明目标端口被过滤了无法确定端口状态。
代码:
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=80
fin_scan_resp = sr1(IP(dst=dst_ip)/TCP(dport=dst_port,flags="F"),timeout=10)
if (str(type(fin_scan_resp))=="<type 'NoneType'>"):
print "Open|Filtered"
elif(fin_scan_resp.haslayer(TCP)):
if(fin_scan_resp.getlayer(TCP).flags == 0x14):
print "Closed"
elif(fin_scan_resp.haslayer(ICMP)):
if(int(fin_scan_resp.getlayer(ICMP).type)==3 and int(fin_scan_resp.getlayer(ICMP).code) in [1,2,3,9,10,13]):
print "Filtered"
TCP 空扫描(Null)
在空扫描中,客户端发出的 TCP 数据包仅仅只会包含端口号而不会有其他任何的标识信息。如果目标端口是开放的则不会回复任何信息。
如果服务器返回了一个 RST 数据包,则说明目标端口是关闭的。
如果返回 ICMP 错误类型3且代码为1,2,3,9,10或13的数据包,则说明端口被服务器过滤了。
代码:
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=80
null_scan_resp = sr1(IP(dst=dst_ip)/TCP(dport=dst_port,flags=""),timeout=10)
if (str(type(null_scan_resp))=="<type 'NoneType'>"):
print "Open|Filtered"
elif(null_scan_resp.haslayer(TCP)):
if(null_scan_resp.getlayer(TCP).flags == 0x14):
print "Closed"
elif(null_scan_resp.haslayer(ICMP)):
if(int(null_scan_resp.getlayer(ICMP).type)==3 and int(null_scan_resp.getlayer(ICMP).code) in [1,2,3,9,10,13]):
print "Filtered"
TCP ACK扫描
ACK 扫描不是用于发现端口开启或关闭状态的,而是用于发现服务器上是否存在有状态防火墙的。它的结果只能说明端口是否被过滤。再次强调,ACK 扫描不能发现端口是否处于开启或关闭状态。
客户端会发送一个带有 ACK 标识和端口号的数据包给服务器。如果服务器返回一个带有 RST 标识的 TCP 数据包,则说明端口没有被过滤,不存在状态防火墙。
如果目标服务器没有任何回应或者返回ICMP 错误类型3且代码为1,2,3,9,10或13的数据包,则说明端口被过滤且存在状态防火墙。
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=80
ack_flag_scan_resp = sr1(IP(dst=dst_ip)/TCP(dport=dst_port,flags="A"),timeout=10)
if (str(type(ack_flag_scan_resp))=="<type 'NoneType'>"):
print "Stateful firewall presentn(Filtered)"
elif(ack_flag_scan_resp.haslayer(TCP)):
if(ack_flag_scan_resp.getlayer(TCP).flags == 0x4):
print "No firewalln(Unfiltered)"
elif(ack_flag_scan_resp.haslayer(ICMP)):
if(int(ack_flag_scan_resp.getlayer(ICMP).type)==3 and int(ack_flag_scan_resp.getlayer(ICMP).code) in [1,2,3,9,10,13]):
print "Stateful firewall presentn(Filtered)"
TCP窗口扫描
TCP 窗口扫描的流程同 ACK 扫描类似,同样是客户端向服务器发送一个带有 ACK 标识和端口号的 TCP 数据包,但是这种扫描能够用于发现目标服务器端口的状态。在 ACK 扫描中返回 RST 表明没有被过滤,但在窗口扫描中,当收到返回的 RST 数据包后,它会检查窗口大小的值。如果窗口大小的值是个非零值,则说明目标端口是开放的。
如果返回的 RST 数据包中的窗口大小为0,则说明目标端口是关闭的。
代码:
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=80
window_scan_resp = sr1(IP(dst=dst_ip)/TCP(dport=dst_port,flags="A"),timeout=10)
if (str(type(window_scan_resp))=="<type 'NoneType'>"):
print "No response"
elif(window_scan_resp.haslayer(TCP)):
if(window_scan_resp.getlayer(TCP).window == 0):
print "Closed"
elif(window_scan_resp.getlayer(TCP).window > 0):
print "Open"
UDP扫描
TCP 是面向连接的协议,而UDP则是无连接的协议。
面向连接的协议会先在客户端和服务器之间建立通信信道,然后才会开始传输数据。如果客户端和服务器之间没有建立通信信道,则不会有任何产生任何通信数据。
无连接的协议则不会事先建立客户端和服务器之间的通信信道,只要客户端到服务器存在可用信道,就会假设目标是可达的然后向对方发送数据。
客户端会向服务器发送一个带有端口号的 UDP 数据包。如果服务器回复了 UDP 数据包,则目标端口是开放的。
如果服务器返回了一个 ICMP 目标不可达的错误和代码3,则意味着目标端口处于关闭状态。
如果服务器返回一个 ICMP 错误类型3且代码为1,2,3,9,10或13的数据包,则说明目标端口被服务器过滤了。
但如果服务器没有任何相应客户端的 UDP 请求,则可以断定目标端口可能是开放或被过滤的,无法判断端口的最终状态。
代码:
#! /usr/bin/python
import logging
logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
from scapy.all import *
dst_ip = "10.0.0.1"
src_port = RandShort()
dst_port=53
dst_timeout=10
def udp_scan(dst_ip,dst_port,dst_timeout):
udp_scan_resp = sr1(IP(dst=dst_ip)/UDP(dport=dst_port),timeout=dst_timeout)
if (str(type(udp_scan_resp))=="<type 'NoneType'>"):
retrans = []
for count in range(0,3):
retrans.append(sr1(IP(dst=dst_ip)/UDP(dport=dst_port),timeout=dst_timeout))
for item in retrans:
if (str(type(item))!="<type 'NoneType'>"):
udp_scan(dst_ip,dst_port,dst_timeout)
return "Open|Filtered"
elif (udp_scan_resp.haslayer(UDP)):
return "Open"
elif(udp_scan_resp.haslayer(ICMP)):
if(int(udp_scan_resp.getlayer(ICMP).type)==3 and int(udp_scan_resp.getlayer(ICMP).code)==3):
return "Closed"
elif(int(udp_scan_resp.getlayer(ICMP).type)==3 and int(udp_scan_resp.getlayer(ICMP).code) in [1,2,9,10,13]):
return "Filtered"
print udp_scan(dst_ip,dst_port,dst_timeout)
下面解释下上述代码中的一些函数和变量:
RandShort():产生随机数
type():获取数据类型
sport:源端口号
dport:目标端口号
timeout:等待相应的时间
haslayer():查找指定层:TCP或UDP或ICMP
getlayer():获取指定层:TCP或UDP或ICMP
以上扫描的概念可以被用于“多端口扫描”,源码可以参考这里:https://github.com/interference-security/Multiport
Scapy 是一个非常好用的工具,使用它可以非常简单的构建自己的数据包,还可以很轻易的处理数据包的发送和相应。
(译者注:上述所有代码均在Kali 2.0下测试通过,建议读者在Linux环境下测试代码,如想在Windows上测试,请参见 Scapy官方文档 配置好scapy环境)
Ⅳ 怎样用普通打印机打印出可被条码扫描仪识别的条码,要源码的,拒绝广告
不知道你要的是什么样的码字。code128还是code39.还有一套软件可以用普通的打印机打印。我的邮箱是[email protected]
Ⅳ 多线程(端口扫描器)是如何提高程序的执行效率的
你认为多线程CPU时间片不断切换是影响多线程执行的原因,对吧。
但是呢,要知道现在CPU主频都是很快的(微秒级甚至纳秒级),所以有一些操作CPU只需要很少时间就可以完成了,其它的时间,如果没有主动调度它,CPU都处于空闲状态。比方说,TCP/UDP连接时,一方发出数据包,在等待另一方返回数据包的过程中(毫秒级)(最简单的,可以参考TCP三次握手的过程),这段时间就处于空闲状态。
这就是多线程为什么高效率的原因了,操作系统可以充分把这毫秒级的时间利用起来,发起另一个TCP连接,然后再在这个连接的网络延迟时间内,继续新的连接扫描……
这就是多线程的优势了,楼主忽略了多线程可以利用CPU空余时间这个关键问题,哪怕多线程之间的时间片会额外花费更多的CPU时间,但是空余时间的利用完全可以弥补这相当小的开销。
Ⅵ Web漏洞扫描:场景可视化重现技术
随着公众对Web安全的聚焦,越来越多的行业领域如运营商、政府电子政务互动平台、企事业门户网站及教育医疗机构等都已经开始频繁使用扫描器去评估其风险性,以便提前发现潜在的安全隐患,及时安全加固以保障网站业务的正常持续运转。反观扫描器使用群体的变化,已由专业安全人士更多地转向网站安全运维人员,这就给扫描器自身的可用性和易用性提出高要求。而扫描器的核心能力,如何帮助用户快速发现漏洞、识别漏洞并定位漏洞,以及什么样的验证场景可以确定漏洞真实存在就成为亟待解1. 现状
由于Web安全技术功底的薄弱,在网站安全运维人员眼里,现有的扫描器依然显得过于专业。一份扫描报告中,大量显示漏洞存在的URL、弱点参数以及扫描器自身所构造的各种请求等晦涩难懂的内容,常常让安全运维人员不知所云,甚至不得不专请专业人员进行二次解读。而且这种易读性差的扫描报告不能让运维人员第一时间识别出漏洞风险分布并制定相应漏洞的修补计划,从而无法真正贯彻防微杜渐的安全思路,保障网站业务安全可靠地运行。
由于受限于目标网站环境的复杂性、漏洞种类的多样性,扫描器或多或少存在误报。为保证漏洞发现的权威性,增强报告内容的可信度,扫描器本身必须能清晰地给出:漏洞是如何被发现的,哪些页面及参数有问题,风险详情如何,有无重现该漏洞发现的场景分析文件,向导式的二次验证等。而如何对发现的漏洞进行权威验证这一点,一直是业界关注的焦点话题。
2.可视化漏洞分析
基于现状,绿盟科技提出了一种可视化的 Web漏洞 分析方法。该方法依据漏洞种类的不同,从扫描器判断漏洞存在的角度:首先从逻辑层面给出相关标准,作为判断此漏洞是否存在的条件依据;其次从漏洞触发层面列出该漏洞发现时的具体交互方式,如通过哪些检测手段,构造哪些URL参数;再从数据支撑层面列出漏洞检测过程中所交互的所有数据信息,如扫描器发送的网络请求与站点响应报文以及对应的具体页面源码文件等;最后,整个漏洞分析过程统一打包成离线场景文件。此方法可让评估者轻松还原漏洞发现场景,重现漏洞发现的每一步直至全过程,真正实现漏洞分析过程的简单可视、通俗易懂,进而为下一步可能进行的漏洞误报确认提供可视化验证场景,达到准确识别的权威效果。
1、 判断标准
Web漏洞的形成有很多因素,不同漏洞的表现形式和产生原因差异很大,扫描器在确认漏洞的同时,需要给出针对该漏洞的判断标准和参考依据。
2、 执行详情
知道漏洞的产生原因和表现形式外,还需要构造可以产生这个漏洞的充分必要条件,明确哪些具体的操作和方法能够触发这个漏洞,使其通过可理解的直观现象展示出来,并最终与判断标准相符合。
3、 过程报文
漏洞的探索和发现不是一蹴而就的,是一个有强烈依赖关系的发包探测、规则匹配的逻辑过程。过程报文还原了整个探测过程中的收发包情况,探测方对被探测Web站点都发送了哪些请求,对方服务器是如何应答的,过程报文都一一记录,为分析漏洞和网站实时响应提供有利数据。
以下给出了几种常见的漏洞类型,利用本文所介绍的可视化分析方法分别进行具体阐述。
2.1 XSS漏洞
基于特征值匹配来进行检测的XSS漏洞类型,其常见的检测逻辑如图 3 所示,是一个反复探测和验证的过程。
扫描器通过爬虫爬取Web站点的有效链接后,传递给相关插件进行探测扫描。插件在获取链接后,需要判断此链接是否有存在该漏洞的条件,抽取所有可能存在漏洞的位置点,构造请求URL和参数值去探测和发包,根据该漏洞的表现形式来判断返回的页面是否存在漏洞。
对应的特征值匹配检测逻辑条件满足后,漏洞发现条件也同步形成。此时,扫描器会把如下内容一一罗列出来:尝试探测的URL链接,具体的请求方式,在哪个参数字段上构造的特征值,相关的判断标准,最终构造的请求变量和URL语句函数,执行结果与预期结果的差异,页面请求和响应报文结果等漏洞确认的详情。
这样,就为此类XSS漏洞的发现提供了一个完整的检测可视化过程,让评估者清晰知晓XSS漏洞存在的相关判断依据、具体位置及如何验证和结果对比等。
2.2 SQL盲注
对于像SQL盲注这样的检测是不能通过特征值匹配来检测的,需要构造多次相似请求,根据返回页面的不同来判断,如图 6。
插件在获取到被检测URL后,抽取可能存在漏洞的注入点,会尝试发送三次请求获取充分条件。第一次采样,原始请求,将原始页面内容作为采样标准A;第二次采样,伪真页面B;第三次采样,false页面C。SQL盲注的检测,需要计算B/A和 C/A 之间的相似度,在某个确定的范围内就可以判定是否存在注入。
此基于相似度对比的检测过程对于评估者来说完全是黑盒的,根本无法获知真假页面之间的区别和差异,直观感受更无从谈起。而若采用本文介绍的可视化漏洞分析方法,如图7-1所示,扫描器通过提供可视化的漏洞检测过程,在判断标准中给出了插件的检测过程和漏洞表现形式,判断详情中给出了发送的伪真、错误请求URL,以及原始URL的请求和对应响应报文。
根据如上两组数据的页面相似度对比结果可以清楚看出两者之间的差异,当这个差异落在特定范围内时,就判断SQL盲注存在。从探测到展示,给评估者提供了重现该漏洞的完整场景。
2.3 弱口令猜测
在检测表单登录是否存在弱口令时,扫描器会根据预配置的弱口令列表或者自定义弱口令字典,通过枚举用户名和口令尝试登录,进行扫描确认。如图8所示,在获取到登录页面后,扫描器会根据配置的弱口令进行登录探测。
在检测出弱口令漏洞后,会给出具体的用户名、密码。评估者可以直接用给出的弱口令尝试登录漏洞URL。如图9的判断详情中,给出了具体的登录页面,检测出来的弱口令为admin,admin,看到请求响应,发现页面跳转到了主页面,登录成功,表示存在漏洞,从而重现这一探测过程。
3 结束语
通过上述简单介绍的可视化漏洞分析方法,评估者在看到扫描报告时,通过漏洞的判断标准、执行详情、过程报文,再也无须因不了解漏洞成因而困惑为什么Web环境会存在这样的漏洞,或者质疑是否存在误报,相关漏洞到底是如何被发现和确认的。此外,通过从扫描器给出的离线版漏洞场景文件,可以重现漏洞发现及确认全过程,从而进一步获取漏洞详情,为下一步的漏洞验证、漏洞修复提供更有效的参考数据。