当前位置:首页 » 操作系统 » 算法的时间复杂度分析

算法的时间复杂度分析

发布时间: 2023-02-04 11:58:51

‘壹’ 算法的时间复杂度取决于什么

算法的时间复杂度取决于问题的规模,待处理数据的初态。

一个语句的频度是指该语句在算法中被重复执行的次数。算法中所有语句的频度之和记为T(n),它是该算法问题规模n的函数,时间复杂度主要分析T(n)的数量级。算法中基本运算(最深层循环内的语句)的频度与Tn)同数量级,因此通常采用算法中基本运算的频度fn)来分析算法的时间复杂度3。

算法的时间复杂度记为:T(n)= O(fn))式中,О 的含义是T(n)的数量级,其严格的数学定义是:若T(n)和fn)是定义在正整数集合上的两个函数,则存在正常数C和n,使得当n≥no时,都满足0≤T(n)≤Cfn)。

算法的时间复杂度不仅依赖于问题的规模n,也取决于待输入数据的性质(如输入数据元素的初始状态)。

‘贰’ 算法复杂度:时间复杂度和空间复杂度

本文部分摘抄于此
算法复杂度分为时间复杂度和空间复杂度。
时间复杂度是指执行算法所需要的计算工作量;
而空间复杂度是指执行这个算法所需要的内存空间。
(算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度)。

一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。 一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时, T(n)/f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O(f(n)), O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

将基本语句执行次数的数量级放入大Ο记号中。

如果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο( n 2),则整个算法的时间复杂度为Ο(n+ n 2)=Ο( n 2)。

Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。其中 Ο(log2n)、Ο(n)、 Ο(nlog2n)、Ο(n2)和Ο(n3) 称为多项式时间, 而Ο(2n)和Ο(n!)称为指数时间 。计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为 P(Polynomial,多项式)类问题 ,而把后者(即指数时间复杂度的算法)称为 NP(Non-Deterministic Polynomial, 非确定多项式)问题

(4)在计算算法时间复杂度时有以下几个简单的程序分析法则:

(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间

(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"

求和法则:是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1(n)+T2(n)=O(max(f(n), g(n)))

特别地, 若T1(m)=O(f(m)), T2(n)=O(g(n)),则 T1(m)+T2(n)=O(f(m) + g(n))

(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间

(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"

乘法法则 : 是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则T1 * T2=O(f(n) * g(n))

(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度

另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数

(5)下面分别对几个常见的时间复杂度进行示例说明:

(1)、O(1)

​ Temp=i; i=j; j=temp;

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。 注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

(2)、O(n2)

2.1. 交换i和j的内容

解: 因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);

2.2.

解: 语句1的频度是n-1

一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分,当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

(3)、O(n)

解:

(4)、O(log2n)

解:

(5)、O(n3)

解:

(5)常用的算法的时间复杂度和空间复杂度

一个经验规则: 其中c是一个常量,如果一个算法的复杂度为c 、 log2n 、n 、 n log2n ,那么这个算法时间效率比较高 ,如果是 2n * , 3n ,n!,那么稍微大一些的n就会令这个算法不能动了,居于中间的几个则差强人意。

​ 算法时间复杂度分析是一个很重要的问题,任何一个程序员都应该熟练掌握其概念和基本方法,而且要善于从数学层面上探寻其本质,才能准确理解其内涵。

2、算法的空间复杂度

​ 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。

算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。

算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;

有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如将在第九章介绍的快速排序和归并排序算法就属于这种情况。

如当一个算法的空间复杂度为一个常量,即不随被处理数据量n的大小而改变时,可表示为O(1);当一个算法的空间复杂度与以2为底的n的对数成正比时,可表示为O(log2n);当一个算法的空I司复杂度与n成线性比例关系时,可表示为O(n).

【1】如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

解答:
T(n)=O(1),
这个程序看起来有点吓人,总共循环运行了1100次,但是我们看到n没有?
没。这段程序的运行是和n无关的,
就算它再循环一万年,我们也不管他,只是一个常数阶的函数

【2】当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。

该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:
则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)

【3】算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。

在数值A[0..n-1]中查找给定值K的算法大致如下:

此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:

(5)时间复杂度评价性能

有两个算法A1和A2求解同一问题,时间复杂度分别是T1(n)=100n2,T2(n)=5n3。
(1)当输入量n<20时,有T1(n)>T2(n),后者花费的时间较少。
(2)随着问题规模n的增大,两个算法的时间开销之比5n3/100n2=n/20亦随着增大。
即当问题规模较大时,算法A1比算法A2要有效地多。它们的渐近时间复杂度O(n2)和O(n3)从宏观上评价了这两个算法在时间方面的质量。

在算法分析时,往往对算法的时间复杂度和渐近时间复杂度不予区分,而经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

其实生活很美好,只是你想的太多了。没有,不会,有差距很正常,因为我不会

‘叁’ 时间复杂度

求解算法的时间复杂度的具体步骤是:

⑴ 找出算法中的基本语句;

算法中执行次数最多的那条语句就是基本语句,通常是最内层循环的循环体。

⑵ 计算基本语句的执行次数的数量级;

只需计算基本语句执行次数的数量级,这就意味着只要保证基本语句执行次数的函数中的最高次幂正确即可,可以忽略所有低次幂和最高次幂的系数。这样能够简化算法分析,并且使注意力集中在最重要的一点上:增长率。

⑶ 用大Ο记号表示算法的时间性能。
将基本语句执行次数的数量级放入大Ο记号中。
果算法中包含嵌套的循环,则基本语句通常是最内层的循环体,如果算法中包含并列的循环,则将并列循环的时间复杂度相加。例如:

第一个for循环的时间复杂度为Ο(n),第二个for循环的时间复杂度为Ο(n2),则整个算法的时间复杂度为Ο(n+n2)=Ο(n2)。
Ο(1)表示基本语句的执行次数是一个常数,一般来说,只要算法中不存在循环语句,其时间复杂度就是Ο(1)。

其中Ο(log2n)、Ο(n)、 Ο(nlog2n)、Ο(n2)和Ο(n3)称为多项式时间,而Ο(2n)和Ο(n!)称为指数时间。计算机科学家普遍认为前者(即多项式时间复杂度的算法)是有效算法,把这类问题称为P(Polynomial,多项式)类问题,而把后者(即指数时间复杂度的算法)称为NP(Non-Deterministic Polynomial, 非确定多项式)问题。

一般来说多项式级的复杂度是可以接受的,很多问题都有多项式级的解——也就是说,这样的问题,对于一个规模是n的输入,在n^k的时间内得到结果,称为P问题。有些问题要复杂些,没有多项式时间的解,但是可以在多项式时间里验证某个猜测是不是正确。

4)在计算算法时间复杂度时有以下几个简单的程序分析法则:

(1).对于一些简单的输入输出语句或赋值语句,近似认为需要O(1)时间

(2).对于顺序结构,需要依次执行一系列语句所用的时间可采用大O下"求和法则"

求和法则:是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1(n)+T2(n)=O(max(f(n), g(n)))

特别地,若T1(m)=O(f(m)), T2(n)=O(g(n)),则 T1(m)+T2(n)=O(f(m) + g(n))

(3).对于选择结构,如if语句,它的主要时间耗费是在执行then字句或else字句所用的时间,需注意的是检验条件也需要O(1)时间

(4).对于循环结构,循环语句的运行时间主要体现在多次迭代中执行循环体以及检验循环条件的时间耗费,一般可用大O下"乘法法则"

乘法法则: 是指若算法的2个部分时间复杂度分别为 T1(n)=O(f(n))和 T2(n)=O(g(n)),则 T1 T2=O(f(n) g(n))

(5).对于复杂的算法,可以将它分成几个容易估算的部分,然后利用求和法则和乘法法则技术整个算法的时间复杂度

另外还有以下2个运算法则:(1) 若g(n)=O(f(n)),则O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一个正常数

简单的说 就是可以将两个算法的时间复杂度 相加或相乘

(1)、O(1)

以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。

(2)、O(n2)

2.1. 交换i和j的内容

解:因为Θ(2n2+n+1)=n2(Θ即:去低阶项,去掉常数项,去掉高阶项的常参得到),所以T(n)= =O(n2);

去低阶项,去掉常数项,去掉高阶项的常参得到
该算法的时间复杂度T(n)=O(n^2).

(3)、O(n)

T(n)=2+n+3(n-1)=4n-1=O(n).
该算法程序的时间复杂度为 O(n)

后续更新

‘肆’ 如何分析算法的复杂度

算法的复杂性
算法的复杂性是算法效率度量,是评价算法优劣的重要依据。一个算法的复杂性的高低体现在运行该算法所需要的计算机资源的多少上面,所需的资源越多,我们就说该算法的复杂性越高;反之,所需的资源越低,则该算法的复杂性越低。
计算机的资源,最重要的是时间和空间(即存储器)资源。因而,算法的复杂性有时间复杂性和空间复杂性之分。
不言而喻,对于任意给定的问题,设计出复杂性尽可能低的算法是我们在设计算法时追求的一个重要目标;另一方面,当给定的问题已有多种算法时,选择其中复杂性最低者,是我们在选用算法适应遵循的一个重要准则。因此,算法的复杂性分析对算法的设计或选用有着重要的指导意义和实用价值。
简言之,在算法学习过程中,我们必须首先学会对算法的分析,以确定或判断算法的优劣。
1.时间复杂性:
例1:设一程序段如下(为讨论方便,每行前加一行号)
(1) for i:=1 to n do
(2) for j:=1 to n do
(3) x:=x+1
......
试问在程序运行中各步执行的次数各为多少?
解答:
行号 次数(频度)
(1) n+1
(2) n*(n+1)
(3) n*n
可见,这段程序总的执行次数是:f(n)=2n2+2n+1。在这里,n可以表示问题的规模,当n趋向无穷大时,如果 f(n)的值很小,则算法优。作为初学者,我们可以用f(n)的数量级O来粗略地判断算法的时间复杂性,如上例中的时间复杂性可粗略地表示为T(n)=O(n2)。

‘伍’ 算法的时间复杂度取决于什么

算法的时间复杂度取决于问题的规模,待处理数据的初态。

一个语句的频度是指该语句在算法中被重复执行的次数。算法中所有语句的频度之和记为T(n),它是该算法问题规模n的函数,时间复杂度主要分析T(n)的数量级。算法中基本运算(最深层循环内的语句)的频度与Tn)同数量级,因此通常采用算法中基本运算的频度fn)来分析算法的时间复杂度3。

算法的时间复杂度记为:T(n)= O(fn))式中,О 的含义是T(n)的数量级,其严格的数学定义是:若T(n)和fn)是定义在正整数集合上的两个函数,则存在正常数C和n,使得当n≥no时,都满足0≤T(n)≤Cfn)。

算法的时间复杂度不仅依赖于问题的规模n,也取决于待输入数据的性质(如输入数据元素的初始状态)。

‘陆’ 算法的时间复杂度是指什么

时间复杂性,又称时间复杂度,算法的时间复杂度是一个函数,它定性描述该算法的运行时间。

这是一个代表算法输入值的字符串的长度的函数。时间复杂度常用大O符号表述,不包括这个函数的低阶项和首项系数。使用这种方式时,时间复杂度可被称为是渐进的,亦即考察输入值大小趋近无穷时的情况。

相关介绍:

时间复杂度是同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度,记做S(n)=O(f(n))。比如直接插入排序的时间复杂度是O(n^2),空间复杂度是O(1) 。而一般的递归算法就要有O(n)的空间复杂度了,因为每次递归都要存储返回信息。一个算法的优劣主要从算法的执行时间和所需要占用的存储空间两个方面衡量。

算法的复杂性体现在运行该算法时的计算机所需资源的多少上,计算机资源最重要的是时间和空间(即寄存器)资源,因此复杂度分为时间和空间复杂度。

‘柒’ 算法时间复杂度分析

这里我们只列举一些简单的算法时间复杂度分析

一重循环的时间复杂度为0(n)。

二重循环的时间复杂度为0(n 2 )。

三重循环的时间复杂度为0(n 3 )。以此类推。

举个简单的例子

看了这个你大概就能估算出log的数大概有多大。根据评测机的运算速度判断是否超时。

int的范围为-2147483648~2147483647。大概在±2×10 9

long long的范围大概在±10 18

应该记一下的一些数的次方。

‘捌’ 算法的时间复杂度是什么

执行一个算法所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。一个算法花费的时间与算法中语句的执行次数成正比例,算法中哪个语句的执行次数多,它花费的时间就多。

1.语句频度在算法中一个语句的执行次数称为语句频度或时间频度,记为T(n)。

2)算法的渐进时间复杂度一般情况下,算法的执行时间T是问题规模n的函数,记作T(n)。要精确地表示算法的运行时间函数常常是很困难的,即使能够给出,也可能是个相当复杂的函数,函数的求解本身也是相当复杂的。为了客观地反映一个算法的执行时间,可以用算法中基本语句的执行次数的数量级来度量算法的工作量,称作算法的渐进时间复杂度,简称时间复杂度,通常用O来表示。

‘玖’ 递归算法时间复杂度怎么分析

1、递归
是指对一个问题的求解,可以通过同一问题的更简单的形式的求解来表示. 并通过问题的简单形式的解求出复杂形式的解. 递归是解决一类问题的重要方法. 递归程序设计是程序设计中常用的一种方法,它可以解决所有有递归属性的问题,并且是行之有效的. 但对于递归程序运行的效率比较低,无论是时间还是空间都比非递归程序更费,若在程序中消除递归调用,则其运行时间可大为节省. 以下讨论递归的时间效率分析方法,以及与非递归设计的时间效率的比较.
2 时间复杂度的概念及其计算方法
算法是对特定问题求解步骤的一种描述. 对于算法的优劣有其评价准则,主要在于评价算法的时间效率,算法的时间通过该算法编写的程序在计算机中运行的时间来衡量,所花费的时间与算法的规模n有必然的联系,当问题的规模越来越大时,算法所需时间量的上升趋势就是要考虑的时间度量.
算法的时间度量是依据算法中最大语句频度(指算法中某条语句重复执行的次数)来估算的,它是问题规模n的某一个函数f(n). 算法时间度量记作:T(n)=O(f(n))
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的时间复杂度,简称时间复杂度[2].
例如下列程序段:
(1)x=x+1;(2)for(i=1;i<=n;i++) x=x+1;(3)for(j=1;j<=n;j++) for(k=1;k<=n;k++) x=x+1. 以上三个程序段中,语句x=x+1的频度分别为1,n,n2,则这三段程序的时间复杂度分别为O(1),O(n),O(n2).
求解过程为:先给出问题规模n的函数的表达式,然后给出其时间复杂度T(n).
但是在现实程序设计过程中,往往遇到的问题都是比较复杂的算法,就不能很容易地写出规模n的表达式,也比较难总结其时间复杂度. 递归函数就是属于这种情况. 下面举例说明递归函数的时间复杂度的分析方法.

‘拾’ 算法的时间复杂度是指什么

算法的时间复杂度是指算法在编写成可执行程序后,运行时所需要的资源,资源包括时间资源和内存资源。

一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。

时间复杂度:

(1)时间频度:一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。

并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。算法的时间复杂度是指执行算法所需要的计算工作量。

(2)时间复杂度:在刚才提到的时间频度中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律。为此,我们引入时间复杂度概念。

热点内容
我的世界怎么扩容服务器内存 发布:2024-05-05 17:19:54 浏览:46
java读取文件字符 发布:2024-05-05 17:15:18 浏览:10
三星怎么应用加密 发布:2024-05-05 17:13:18 浏览:151
cad字体在那个文件夹 发布:2024-05-05 17:08:20 浏览:329
什么时候用编译器 发布:2024-05-05 17:08:20 浏览:764
应急救援脚本 发布:2024-05-05 17:08:17 浏览:336
我的世界搭建无正版验证服务器 发布:2024-05-05 17:03:48 浏览:817
我的世界服务器地址宝可梦 发布:2024-05-05 17:00:16 浏览:254
dede企业源码 发布:2024-05-05 16:57:53 浏览:786
如何查看java版本 发布:2024-05-05 16:45:05 浏览:494