滤波中值算法
‘壹’ 中值滤波
中值滤波与前面介绍的滤波方式不同,不再采用加权求均值的方式计算滤波结果。它用邻域内所有像素值的中间值来替代当前像素点的像素值。
中值滤波会取当前像素点及其周围临近像素点(一共有奇数个像素点)的像素值,将这些像素值排序,然后将位于中间位置的像素值作为当前像素点的像素值。
例如,针对图7-27中第4行第4列的像素点,计算它的中值滤波值。
将其邻域设置为3×3大小,对其3×3邻域内像素点的像素值进行排序(升序降序均可),按升序排序后得到序列值为:[66,78,90,91,93,94,95,97,101]。在该序列中,处于中心位置(也叫中心点或中值点)的值是“93”,因此用该值替换原来的像素值78,作为当前点的新像素值,处理结果如图7-28所示。
在OpenCV中,实现中值滤波的函数是cv2.medianBlur(),其语法格式如下:
式中:
【例7.7】针对噪声图像,对其进行中值滤波,显示滤波的结果。
从图中可以看到,由于没有进行均值处理,中值滤波不存在均值滤波等滤波方式带来的细节模糊问题。在中值滤波处理中,噪声成分很难被选上,所以可以在几乎不影响原有图像的情况下去除全部噪声。但是由于需要进行排序等操作,中值滤波需要的运算量较大。
‘贰’ 中值滤波
中值滤波是把所取范围内所有像素的值取平均,然后设置为当前像素的值,例如,如果当前像素位置为(3, 3),那么就是把以它为中心的3*3范围的像素值取平均设置为(3,3)的值
是每个像素都是这样处理的~
也就是说,你不能直接在原图像上改,而是要新建一个图像来做~
‘叁’ 中值滤波怎么算
中值滤波medfilt2,用法b
=
medfilt2(a,
[m
n])
你的两点错误
一、输入图像a,应该是二维矩阵
你用输入图像b是由imread得到的a加上噪声得到的
而imread读到的图像a通常是3维rgb图,是三维矩阵
直接用medfilt2是不对的,可以先用rgb2gray(a)将a先转换为灰度矩阵
二、中值滤波也要指定滤波模版的大小
medfilt2需要两个输入参数,第一个是图像a
第二个参数需要输入一个长度是二的向量,[m
n]
指定模版的大小,m行n列
‘肆’ c语言中值滤波问题
1. 是规定做中值滤波的点不含边缘的点(取决于中值滤波窗口大小)。 2,对图像边缘部分的信息进行镜像处理。
‘伍’ 滤波在数学上是如何实现的
在单片机进行数据采集时,会遇到数据的随机误差,随机误差是由随机干扰引起的,其特点是在相同条件下测量同一量时,其大小和符号会现无规则的变化而无法预测,但多次测量的结果符合统计规律。为克服随机干扰引起的误差,硬件上可采用滤波技术,软件上可采用软件算法实现数字滤波。滤波算法往往是系统测控算法的一个重要组成部分,实时性很强。
采用数字滤波算法克服随机干扰的误差具有以下优点:
1、数字滤波无需其他的硬件成本,只用一个计算过程,可靠性高,不存在阻抗匹配问题。尤其是数字滤波可以对频率很低的信号进行滤波,这是模拟滤波器做不到的。
2、数字滤波使用软件算法实现,多输入通道可共用一个滤波程序,降低系统开支。
3、只要适当改变滤波器的滤波程序或运算,就能方便地改变其滤波特性,这对于滤除低频干扰和随机信号会有较大的效果。
4、在单片机系统中常用的滤波算法有限幅滤波法、中值滤波法、算术平均滤波法、加权平均滤波法、滑动平均滤波等。
(1)限幅滤波算法
该运算的过程中将两次相邻的采样相减,求出其增量,然后将增量的绝对值,与两次采样允许的最大差值A进行比较。A的大小由被测对象的具体情况而定,如果小于或等于允许的最大差值,则本次采样有效;否则取上次采样值作为本次数据的样本。
算法的程序代码如下:
#defineA //允许的最大差值
chardata; //上一次的数据
char filter()
{
chardatanew; //新数据变量
datanew=get_data(); //获得新数据变量
if((datanew-data)>A||(data-datanew>A))
return data;
else
returndatanew;
}
说明:限幅滤波法主要用于处理变化较为缓慢的数据,如温度、物体的位置等。使用时,关键要选取合适的门限制A。通常这可由经验数据获得,必要时可通过实验得到。
(2)中值滤波算法
该运算的过程是对某一参数连续采样N次(N一般为奇数),然后把N次采样的值按从小到大排列,再取中间值作为本次采样值,整个过程实际上是一个序列排序的过程。
算法的程序代码如下:
#define N11 //定义获得的数据个数
char filter()
{
charvalue_buff[N]; //定义存储数据的数组
char count,i,j,temp;
for(count=0;count
{
value_buf[count]=get_data();
delay(); //如果采集数据比较慢,那么就需要延时或中断
}
for(j=0;j
{
for(value_buff[i]>value_buff[i+1]
{
temp=value_buff[i];
value_buff[i]=value_buff[i+1];
value_buff[i+1]=temp;
}
}
returnvalue_buff[(N-1)/2];
}
说明:中值滤波比较适用于去掉由偶然因素引起的波动和采样器不稳定而引起的脉动干扰。若被测量值变化比较慢,采用中值滤波法效果会比较好,但如果数据变化比较快,则不宜采用此方法。
(3)算术平均滤波算法
该算法的基本原理很简单,就是连续取N次采样值后进行算术平均。
算法的程序代码如下:
char filter()
{
int sum=0;
for(count=0;count
{
sum+=get_data();
delay():
}
return (char)(sum/N);
}
说明:算术平均滤波算法适用于对具有随机干扰的信号进行滤波。这种信号的特点是有一个平均值,信号在某一数值附近上下波动。信号的平均平滑程度完全到决于N值。当N较大时,平滑度高,灵敏度低;当N较小时,平滑度低,但灵敏度高。为了方便求平均值,N一般取4、8、16、32之类的2的整数幂,以便在程序中用移位操作来代替除法。
(4)加权平均滤波算法
由于前面所说的“算术平均滤波算法”存在平滑度和灵敏度之间的矛盾。为了协调平滑度和灵敏度之间的关系,可采用加权平均滤波。它的原理是对连续N次采样值分别乘上不同的加权系数之后再求累加,加权系数一般先小后大,以突出后面若干采样的效果,加强系统对参数变化趋势的认识。各个加权系数均小于1的小数,且满足总和等于1的结束条件。这样加权运算之后的累加和即为有效采样值。其中加权平均数字滤波的数学模型是:
式中:D为N个采样值的加权平均值:XN-i为第N-i次采样值;N为采样次数;Ci为加权系数。加权系数Ci体现了各种采样值在平均值中所占的比例。一般来说采样次数越靠后,取的比例越大,这样可增加新采样在平均值中所占的比重。加权平均值滤波法可突出一部分信号抵制另一部分信号,以提高采样值变化的灵敏度。
样例程序代码如下:
char codejq[N]={1,2,3,4,5,6,7,8,9,10,11,12}; //code数组为加权系数表,存在程序存储区
char codesum_jq=1+2+3+4+5+6+7+8+9+10+11+12;
char filter()
{
char count;
char value_buff[N];
int sum=0;
for(count=0;count
{
value_buff[count]=get_data();
delay();
}
for(count=0;count
sum+=value_buff[count]*jq[count];
return(char)(sum/sum_jq);
}
(5)滑动平均滤波算法
以上介绍和各种平均滤波算法有一个共同点,即每获取一个有效采样值必须连续进行若干次采样,当采速度慢时,系统的实时得不到保证。这里介绍的滑动平均滤波算法只采样一次,将一次采样值和过去的若干次采样值一起求平均,得到的有效采样值即可投入使用。如果取N个采样值求平均,存储区中必须开辟N个数据的暂存区。每新采集一个数据便存入暂存区中,同时去掉一个最老数据,保存这N个数据始终是最新更新的数据。采用环型队列结构可以方便地实现这种数据存放方式。
程序代码如下:
char value_buff[N];
char i=0;
char filter()
{
char count;
int sum=0;
value_buff[i++]=get_data();
if(i==N)
i=0;
for(count=0;count
sum=value_buff[count];
return (char)(sum/N);
}
(6)低通滤波
将普通硬件RC低通滤波器的微分方程用差分方程来表求,变可以采用软件算法来模拟硬件滤波的功能,经推导,低通滤波算法如下:
Yn=a* Xn+(1-a) *Yn-1
式中 Xn——本次采样值
Yn-1——上次的滤波输出值;
,a——滤波系数,其值通常远小于1;
Yn——本次滤波的输出值。
由上式可以看出,本次滤波的输出值主要取决于上次滤波的输出值(注意不是上次的采样值,这和加权平均滤波是有本质区别的),本次采样值对滤波输出的贡献是比较小的,但多少有些修正作用,这种算法便模拟了具体有教大惯性的低通滤波器功能。滤波算法的截止频率可用以下式计算:
fL=a/2Pit pi为圆周率3.14…
式中 a——滤波系数;
, t——采样间隔时间;
例如:当t=0.5s(即每秒2次),a=1/32时;
fL=(1/32)/(2*3.14*0.5)=0.01Hz
当目标参数为变化很慢的物理量时,这是很有效的。另外一方面,它不能滤除高于1/2采样频率的干搅信号,本例中采样频率为2Hz,故对1Hz以上的干搅信号应采用其他方式滤除,
低通滤波算法程序于加权平均滤波相似,但加权系数只有两个:a和1-a。为计算方便,a取一整数,1-a用256-a,来代替,计算结果舍去最低字节即可,因为只有两项,a和1-a,均以立即数的形式编入程序中,不另外设表格。虽然采样值为单元字节(8位A/D)。为保证运算精度,滤波输出值用双字节表示,其中一个字节整数,一字节小数,否则有可能因为每次舍去尾数而使输出不会变化。
设Yn-1存放在30H(整数)和31H(小数)两单元中,Yn存放在32H(整数)和33H(小数)中。滤波程序如下:
虽千万里,吾往矣。
‘陆’ VC中值滤波快速算法
unsigned char WINAPI GetMedianNum(unsigned char * bArray, int iFilterH,int iFilterW)
{
/* unsigned char m = mid(
mid(bArray[0],bArray[1],bArray[2]),
mid(bArray[3],bArray[4],bArray[5]),
mid(bArray[6],bArray[7],bArray[8]));
return m;*/
// 循环变量
int i;
int j;
int k;
// 中间变量
unsigned char bTemp;
int iFilterLen=iFilterH*iFilterW;
float average=0;//用于均值加速
//求均值
for (i=0;i<iFilterLen;i++)
{
average+=bArray[i];
}
average=average/iFilterLen;
unsigned char pixel_mid;
pixel_mid=bArray[(iFilterH-1)/2*iFilterW+(iFilterW-1)/2];//滤波窗口中心的取中值前的像素值
if (abs(average-pixel_mid)>10) //均值加速,其中“10”为原中值和均值之差,根据你的实际情况自行设置大小
//if(1) //不用均值加速时选此
{
//超快速中值法(本质就是伪中值法)
//行排列
if (0)
{
for (k = 0; k < iFilterH; k ++)
{
for (j = 0; j < iFilterH-1; j ++)
{
for (i = 0; i < iFilterW-1-j; i++)
{
number++;
if (bArray[i+iFilterH*k] > bArray[i+iFilterH*k+1])
{ // 互换
bTemp = bArray[i+iFilterH*k];
bArray[i+iFilterH*k] = bArray[i+iFilterH*k+1];
bArray[i+iFilterH*k+1] = bTemp;
}
}
还有什么疑问,把邮箱发给我。
‘柒’ 中值滤波的定义
中值滤波对脉冲噪声有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。这些优良特性是线性滤波方法所不具有的。此外,中值滤波的算法比较简单,也易于用硬件实现。所以,中值滤波方法一经提出后,便在数字信号处理领得到重要的应用。
中值滤波方法:对一个数字信号序列xj(-∞<j<∞)进行滤波处理时,首先要定义一个长度为奇数的L长窗口,L=2N+1,N为正整数。设在某一个时刻,窗口内的信号样本为x(i-N),…,x(i),…,x(i+N),其中x(i)为位于窗口中心的信号样本值。对这L个信号样本值按从小到大的顺序排列后,其中值,在i处的样值,便定义为中值滤波的输出值,写为如图1.
中值滤波是在“最小绝对误差”准则下的最优滤波。
在实际应用中,随着所选用窗口长度的增加,滤波的计算量将会迅速增加。因此,寻求中值滤波的快速算法,是中值滤波理论的一个重要研究内容。中值滤波的快速算法,一般采用下述三种方式:①直方图数据修正法;②样本值二进制表示逻辑判断法;③数字和模拟的选择网络法。
对中值滤波的理论研究,还集中于统计特性分析和根序列的描述方面。当一个信号序列经一特定窗口长度的中值滤波反复处理后,它会收敛于某一个不再变化的序列,这个序列称为中值滤波的根序列。根序列是描述中值滤波特性的一个重要概念。通过对根序列结构的研究,可以确定原信号序列中,哪些成分可以经中值滤波后保留下来,哪些成分将被抑制。这对确定中值滤波器的窗口长度,提供了重要依据。用VLSI实现的中值滤波器芯片,可供实时处理中应用。