人员检测算法方案
① 行人检测
参考资料:
行人检测算法
行人检测是使用计算机视觉技术来判断图像或视频中是否存在行人。可以通过跟行人跟踪,行人重识别技术,来应用于人工智能系统,车辆辅助驾驶系统、智能交通等领域
① 处理数据
② 训练模型
③ 输出目标位置
① 外观差异大。包括视觉、姿态、服饰和附着物、光照、成像距离等。行人不同的运动姿态、角度,都会显示出不同的外观,而且成像距离远近不一,也会造成外观大小不同
② 遮挡问题,在行人密集的地方,会发生行人被遮挡的问题,或者是被周围的建筑物遮挡住
③ 背景复杂,有些物体的外观、造型、颜色、纹理等都比较接近人体,例如雕塑或人像广告牌、假人等。之前就有个新闻说红绿灯行人越线检测时,把公共汽车上的代言人广告中的代言人也检测了出来
④ 检测速度,行人检测一般使用了比较复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化
Faster R-CNN
文献[16]分析了Faster R-CNN在行人检测问题上的表现,结果表明,直接使用这种算法进行行人检测效果并不满意。作者发现,Faster R-CNN中的RPN网络对提取行人候选区域是相当有效的,而下游的检测网络表现的不好。作者指出了其中的两个原因:对于小目标,卷积层给出的特征图像太小了,无法有效的描述目标;另外,也缺乏难分的负样本挖掘机制。作者在这里采用了一种混合的策略,用RPN提取出候选区域,然后用随机森林对候选区域进行分类。这一结构如下图所示:
DeepParts
文献[21]提出了一种基于部件的检测方案,称为DeepParts,致力于解决遮挡问题。这种方案将人体划分成多个部位,分别进行检测,然后将结果组合起来。部位划分方案如下图所示:
整个系统的结构如下图所示:
RepLoss
RepLoss[14]由face++提出,主要目标是解决遮挡问题。行人检测中,密集人群的人体检测一直是一个难题。物体遮挡问题可以分为类内遮挡和类间遮挡两类。类内遮挡指同类物体间相互遮挡,在行人检测中,这种遮挡在所占比例更大,严重影响着行人检测器的性能。
针对这个问题,作者设计也一种称为RepLoss的损失函数,这是一种具有排斥力的损失函数,下图为RepLoss示意图:
RepLoss 的组成包括 3 部分,表示为:
其中L_Attr 是吸引项,需要预测框靠近其指定目标;L_RepGT 和 L_RepBox 是排斥项,分别需要当前预测框远离周围其它的真实物体和该目标其它的预测框。系数充当权重以平衡辅助损失。
HyperLearner
文献[25]提出了一种称为HyperLearner的行人检测算法,改进自Faster R-CNN。在文中,作者分析了行人检测的困难之处:行人与背景的区分度低,在拥挤的场景中,准确的定义一个行人非常困难。
作者使用了一些额外的特征来解决这些问题。这些特征包括:
apparent-to-semantic channels
temporal channels
depth channels
为了将这些额外的特征也送入卷积网络进行处理,作者在VGG网络的基础上增加了一个分支网络,与主体网络的特征一起送入RPN进行处理:
其他的基本上遵循了Faster R-CNN框架的处理流程,只是将anchor参数做了改动。在实验中,这种算法相比Faster R-CNN有了精度上的提升。
从上面的回顾也可以看出,与人脸检测相比,行人检测难度要大很多,目前还远称不上已经解决,遮挡、复杂背景下的检测问题还没有解决,要因此还需要学术界和工业界的持续努力。
② 人脸识别测距原理
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
中文名
人脸识别
别名
人像识别、面部识别
工具
摄像机或摄像头
传统技术
可见光图像的人脸识别
处理方法
人脸识别算法
人脸识别技术有滥用趋势
10月13日,小蛮腰科技大会在广州开幕。在“后疫情时代的大数据应用与隐私保护”分论坛上,南方都市报人工智能伦理课题组和App专项治理工作组发布了《人脸识别应用公众调研报告(2020)》。《报告》显示,六成受访者认为人脸识别技术有滥用趋势,三成受访者表示已因人脸信息泄露、滥用而遭受隐私或财产损失。
新华网 2020-10-19
快速
导航
技术特点
技术流程
识别算法
识别数据
配合程度
优势困难
主要用途
应用前景
主要产品
应用示例
发展历史
人脸识别系统的研究始于20世纪60年代,80年代后随着计算机技术和光学成像技术的发展得到提高,而真正进入初级的应用阶段则在90年后期,并且以美国、德国和日本的技术实现为主;人脸识别系统成功的关键在于是否拥有尖端的核心算法,并使识别结果具有实用化的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时需结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。[1]
技术特点
人脸识别
传统的人脸识别技术主要是基于可见光图像的人脸识别,这也是人们熟悉的识别方式,已有30多年的研发历史。但这种方式有着难以克服的缺陷,尤其在环境光照发生变化时,识别效果会急剧下降,无法满足实际系统的需要。解决光照问题的方案有三维图像人脸识别,和热成像人脸识别。但这两种技术还远不成熟,识别效果不尽人意。
迅速发展起来的一种解决方案是基于主动近红外图像的多光源人脸识别技术。它可以克服光线变化的影响,已经取得了卓越的识别性能,在精度、稳定性和速度方面的整体系统性能超过三维图像人脸识别。这项技术在近两三年发展迅速,使人脸识别技术逐渐走向实用化。
人脸与人体的其它生物特征(指纹、虹膜等)一样与生俱来,它的唯一性和不易被复制的良好特性为身份鉴别提供了必要的前提,与其它类型的生物识别比较人脸识别具有如下特点:
非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下就可获取人脸图像,这样的取样方式没有“强制性”;
非接触性:用户不需要和设备直接接触就能获取人脸图像;
并发性:在实际应用场景下可以进行多个人脸的分拣、判断及识别;
除此之外,还符合视觉特性:“以貌识人”的特性,以及操作简单、结果直观、隐蔽性好等特点。
技术流程
人脸识别系统主要包括四个组成部分,分别为:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取以及匹配与识别。
人脸图像采集及检测
人脸图像采集:不同的人脸图像都能通过摄像镜头采集下来,比如静态图像、动态图像、不同的位置、不同表情等方面都可以得到很好的采集。当用户在采集设备的拍摄范围内时,采集设备会自动搜索并拍摄用户的人脸图像。
人脸检测:人脸检测在实际中主要用于人脸识别的预处理,即在图像中准确标定出人脸的位置和大小。人脸图像中包含的模式特征十分丰富,如直方图特征、颜色特征、模板特征、结构特征及Haar特征等。人脸检测就是把这其中有用的信息挑出来,并利用这些特征实现人脸检测。
主流的人脸检测方法基于以上特征采用Adaboost学习算法,Adaboost算法是一种用来分类的方法,它把一些比较弱的分类方法合在一起,组合出新的很强的分类方法。
③ 人脸识别的算法
1、人体面貌识别技术的内容
人体面貌识别技术包含三个部分:
(1) 人体面貌检测
面貌检测是指在动态的场景与复杂的背景中判断是否存在面像,并分离出这种面像。一般有下列几种方法:
①参考模板法
首先设计一个或数个标准人脸的模板,然后计算测试采集的样品与标准模板之间的匹配程度,并通过阈值来判断是否存在人脸;
②人脸规则法
由于人脸具有一定的结构分布特征,所谓人脸规则的方法即提取这些特征生成相应的规则以判断测试样品是否包含人脸;
③样品学习法
这种方法即采用模式识别中人工神经网络的方法,即通过对面像样品集和非面像样品集的学习产生分类器;
④肤色模型法
这种方法是依据面貌肤色在色彩空间中分布相对集中的规律来进行检测。
⑤特征子脸法
这种方法是将所有面像集合视为一个面像子空间,并基于检测样品与其在子孔间的投影之间的距离判断是否存在面像。
值得提出的是,上述5种方法在实际检测系统中也可综合采用。
(2)人体面貌跟踪
面貌跟踪是指对被检测到的面貌进行动态目标跟踪。具体采用基于模型的方法或基于运动与模型相结合的方法。
此外,利用肤色模型跟踪也不失为一种简单而有效的手段。
(3)人体面貌比对
面貌比对是对被检测到的面貌像进行身份确认或在面像库中进行目标搜索。这实际上就是说,将采样到的面像与库存的面像依次进行比对,并找出最佳的匹配对象。所以,面像的描述决定了面像识别的具体方法与性能。目前主要采用特征向量与面纹模板两种描述方法:
①特征向量法
该方法是先确定眼虹膜、鼻翼、嘴角等面像五官轮廓的大小、位置、距离等属性,然后再计算出它们的几何特征量,而这些特征量形成一描述该面像的特征向量。
②面纹模板法
该方法是在库中存贮若干标准面像模板或面像器官模板,在进行比对时,将采样面像所有象素与库中所有模板采用归一化相关量度量进行匹配。
此外,还有采用模式识别的自相关网络或特征与模板相结合的方法。
人体面貌识别技术的核心实际为“局部人体特征分析”和“图形/神经识别算法。”这种算法是利用人体面部各器官及特征部位的方法。如对应几何关系多数据形成识别参数与数据库中所有的原始参数进行比较、判断与确认。一般要求判断时间低于1秒。
2、人体面貌的识别过程
一般分三步:
(1)首先建立人体面貌的面像档案。即用摄像机采集单位人员的人体面貌的面像文件或取他们的照片形成面像文件,并将这些面像文件生成面纹(Faceprint)编码贮存起来。
(2)获取当前的人体面像
即用摄像机捕捉的当前出入人员的面像,或取照片输入,并将当前的面像文件生成面纹编码。
(3)用当前的面纹编码与档案库存的比对
即将当前的面像的面纹编码与档案库存中的面纹编码进行检索比对。上述的“面纹编码”方式是根据人体面貌脸部的本质特征和开头来工作的。这种面纹编码可以抵抗光线、皮肤色调、面部毛发、发型、眼镜、表情和姿态的变化,具有强大的可靠性,从而使它可以从百万人中精确地辩认出某个人。
人体面貌的识别过程,利用普通的图像处理设备就能自动、连续、实时地完成。
④ 监测人脸识别系统的原理是什么
人脸识别系统的技术原理是以人脸识别技术为核心,是一项新兴的生物识别技术,是当今国际科技领域攻关的高精尖技术。它广泛采用区域特征分析算法,融合了计算机图像处理技术与生物统计学原理于一体,利用计算机图像处理技术从视频中提取人像特征点,利用生物统计学的原理进行分析建立数学模型,具有广阔的发展前景。
用人脸识别会议签到系统正是应用先进的面部自动识别技术来实现与会人员的自主签到,智能化办公,提高办事效率,增加与会人员身份准确定位,从而大大提高了会前会务组织、会中会议签到和会后数据查询统计速度,并节省经费。
迎宾机系统会议签到应用方案是现代会议管理中的一项重要环节,会议签到流程一改传统签到的弊端,与会人员只需从摄像机前走过,利用人体生物特征的唯一性进行身份认证,即时完成到会签到,还能有效识别假冒人员,同时,能即时统计、打印出到会人员名单。缩短到会人员签到时间,减轻工作人员与会人数统计强度,统计数准确、快捷。
3系统设计
3.1系统结构
本方案可应用于各种企事业单位和会议中心,用于与会人员的签到管理,主要由摄像机、显示设备、人脸识别分析盒、管理客户端组成。
在会议室入口签到处安装一台网络摄像机,通过交换机将采集图像传输到迎宾主机,主机可通过串口数据线连接会议室门禁系统,以识别结果通过串口信息来控制门禁打开,有效防止会议无关人员进入,同时连接到显示设备上,在显示器上实时显示识别结果,以及设置的欢迎致辞或提示信息,或用于会议宣传内容播放等。
以上设备通过局域网内的客户端进行管理和配置信息的下发,在客户端可进行人脸识别库的建立,会议签到统计等功能。系统拓扑如下:
⑤ 人脸识别有什么优化算法还请各位大神赐教,简单一点的。谢谢
人脸识别技术概述
广义的人脸识别主要分为人脸检测(face detection)、特征提取(feature extraction)和人脸识别(face recognition)三个过程,如图1所示。
人脸,人脸识别,人脸识别技术
图1 典型的人脸识别过程
其中,第三步提到的人脸识别是狭义的人脸识别,即将待识别人脸所提取的特征与数据库中人脸的特征进行对比,根据相似度判别分类。而人脸识别又可以分为两个大类:一类是确认(verification),这是人脸图像与数据库中已存的该人图像比对的过程,回答你是不是你的问题;另一类是辨认(identification),这是人脸图像与数据库中已存的所有图像匹配的过程,回答你是谁的问题。显然,人脸辨认要比人脸确认困难,因为辨认需要进行海量数据的匹配。在辨认过程中,海量数据的处理、特征提取和分类算法的选择变得非常重要。识别率和识别速度是人脸识别技术中主要的衡量算法性能的指标。本文后面提到的人脸识别,主要指的是人脸辨认。
人脸识别技术原理
人脸识别算法发展到今天,大致上可以分为两类:基于特征的人脸识别算法和基于外观的人脸识别算法。其中,多数基于特征的人脸识别算法属于早期的人脸识别算法,现在已经不再使用。不过近些年出现了一些新的基于特征的算法,并取得不错的效果。而基于外观的人脸识别算法是由于实现简单,受到广泛关注。接下来将分别介绍两类人脸识别算法。
基于特征的人脸识别算法:早期的人脸识别算法主要是基于特征模板和几何约束来实现的。这一类算法首先对输入图像进行处理,提取出如眼睛、鼻子和嘴等面部特征和外观轮廓。然后计算这些面部特征之间的几何关系,如距离、面积和角度等。这样将输入图像转换为几何特征向量后,使用标准的统计模式识别技术进行匹配分类。由于算法利用了一些直观的特征,计算量小。不过,由于其所需的特征点不能精确选择,限制了它的应用范围。另外,当光照变化、人脸有外物遮挡、面部表情变化时,特征变化较大。所以说,这类算法只适合于人脸图像的粗略识别,无法在实际中应用。
人脸,人脸识别,人脸识别技术
图2 一些典型的面部几何特征示意图
以上这些方法都是通过一些特征模板和几何约束来检测特定的面部特征,并计算特征之间的关系。还有一些方法使用了图像的局部表示来提取特征。其中最受关注的方法是局部二值模式(LBP)算法。LBP方法首先将图像分成若干区域,在每个区域的像素3x3邻域中用中心值作阈值化,将结果看成是二进制数。图3显示了一个LBP算子。LBP算子的特点是对单调灰度变化保持不变。每个区域通过这样的运算得到一组直方图,然后将所有的直方图连起来组成一个大的直方图并进行直方图匹配计算进行分类。
人脸,人脸识别,人脸识别技术
图3 LBP算子
基于特征的人脸识别算法主要的优势在于对姿态、尺度和光照等变化鲁棒。由于多数特征是基于手动选择和先验知识,受图像本身的成像质量影响较少。另外,提取出的面部特征往往维数较低,匹配速度快。这些方法的缺点是自动特征提取的难度较大。如果特征集的鉴别能力弱,再多的后续处理也无法补偿本身的不足。
基于外观的人脸识别算法:基于外观的人脸识别算法也称为整体方法。它们使用图像的全局信息来辨识人脸。最简单的整体方法是用二维数组来存放图像的灰度值,然后直接对输入图像和数据库中的所有图像进行相关性比较。这种方法的缺点非常多,如易受环境影响、计算耗时等。其中一个重要的问题是这样的分类是在一个非常高维的空间中进行的。为了克服维数问题,一些算法使用统计降维方法来获取和保留更有用的信息,最典型的算法就是主成分分析(PCA)算法和线性鉴别分析(LDA)算法。
PCA算法指出任何特定的人脸可以由一个低维的特征子空间表示,并可以用这个特征子空间近似地重建。将输入人脸图像投影到特征子空间上得到的特征与已知的数据库进行比对来确定身份。PCA算法选取的特征最大化了人脸样本间的差异,但也保留了一些由于光照和面部表情产生的不必要的变化。而同一个人由于光照产生的变化可能会大于不同人之间的变化,如图4所示。LDA算法在最大化不同个体之间的样本差异的同时,最小化同一个体内部的样本差异。这样达到了人脸特征子空间的划分。图5是PCA和LDA算法的示例。其中,PCA的特征脸是由组成PCA特征子空间的特征向量按二维图像来排列得到的类似人脸的图像。LDA的Fisher脸也是同样道理。经过特征脸和Fisher脸重构得到的人脸图像在第四行。可以看到,PCA重构脸与输入人脸差异较小,但LDA的Fisher脸很难辨认,但突出了该个体的显着特征。PCA和LDA方法都假设存在一个最优的投影子空间。这个子空间的每个区域对应唯一的一个人。然而,事实上在人脸空间中许多人经常会映射到相同的区域中,因此这种假设并不成立。
来源:海鑫科金
http://www.hisign.com.cn/news/instry/2699.html