优化问题遗传算法
㈠ 如何用遗传算法实现多变量的最优化问题
将多个变量的数值编码编排进去,进行组合,只需要增长基因个体的燃搭长度,但是要明确每个变量具体的位置,然后让每个变量转化成二进制的等长编码,组合在一起,就可以来运算了。
㈡ 遗传算法的有效性和复杂度
遗传算法其实就是二重迭代,时间复杂度不超过n平方遗传算法是一种全局优化概率算法,主要的优点有
1.遗传算丛衫法对所求解的优化问题没有太多的数学要求,由于他的进化特性,搜素过程中不需要问题的内在性质,对于任意形式的目标函数和约束,无论是线性的还是非线性的,离散的还是连续的都可处理。
2.进化算子的各态历经性使得遗传算法能够春档非常有效地进行概率意义的全局搜素。
3.遗传算法对于各种特殊问题可以提供极大的灵活性来混合构造领域独立的启发式,从而保证算法的有效性。
目标函数就是你希望得到的优化结果,比如函数最大值或者最小值.而适应度函数是为了计算个体的适配值. 适配值是非负的,而且要求适配值越大则该个体越优越.而目标函数则有正有负,它们之间关系多种多样,比如求最小值时,目标函数最小,则适配值越大,求最大值时目标值越大,适配值越大。
只要目标函数是递增或者递减的就可以,但是目标函数值要为正,目标函数对遗传算法影响很大的,所以要经过渗森腔不断的尝试得出正确的结果,建议你把每一次的结果平均值都记录下来,然后画出图形观察遗传算法的有效性。
㈢ 遗传算法属于数学优化理论吗
算的
遗传算法是一种利用自然遗传规律来搜索最优解的数学优化工具。其基本过程及原理简单概括如下:
遗传算法是具有“生成+检测”迭代过程的搜索算法,是一种群体型操作。操作以群体中的所有个体为对象。它有三个基本操作算子:选择、变异和交叉。遗传算法中包含五个基本要素:参数编码;初始群体设定;适应度函数设计;遗传操作设计;控制参数设定(主要指群体大小和使用遗传操作的概率等)。这五个要素构成了遗传算法的核心内容。参数编码就是将优化问题变量通过一定的变换映射到染色体基因上面。初始群体设定应使其具有足够的规模和随机性。遗传算法根据染色体基因值来计算染色体适应度,并根据适应度值决定染色体的交配概率,适应度大的染色体交配概率大。染色体交配之后应对染色体进行变异,这样可以避免算法过早收敛。变异之后的群体就是子代,它将作为下一代群体的父代,进行同样的遗传操作,如此循环。在算法执行过程中,控制参数的设定直接影响算法的精度和效率,因此选定合适的控制参数是提高算法效率的关键之一。一般采用观察法来选定合适的控制参数
㈣ 用遗传算法工具箱求解一个多目标优化问题,现在需要一个matlab程序,求高人指点
用遗传算法工具箱求解一个多目标优化问题的步骤:
1、根据题意,建立自定义目标函数,ga_fun1(x)
2、在命令窗口中,输入
>> optimtool %调用遗传算法工具箱
3、在遗传算法工具箱界面中,分别对Fitnessfunction框内输入@ga_fun1();A框内输入[1,1,1];b框内输入16;Aeq框内输入[];beq框内输入[];Lower框内输入[0,0,0];Upper框内输入[];
4、单击Start。得到x=4.508 y=2.513 z=1.912值。
㈤ 关于遗传算法优化BP神经网络的问题
程序:
1、未经遗传算法优化的BP神经网络建模
clear;
clc;
%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%
N=2000; %数据总个数
M=1500; %训练数据
%%%%%%%%%%%%%训练数据%%%%%%%%%%%%%%
for i=1:N
input(i,1)=-5+rand*10;
input(i,2)=-5+rand*10;
end
output=input(:,1).^2+input(:,2).^2;
save data input output
load data.mat
%从1到N随机排序
k=rand(1,N);
[m,n]=sort(k);
%找出训练数据和预测数据
input_train=input(n(1:M),:)';
output_train=output(n(1:M),:)';
input_test=input(n((M+1):N),:)';
output_test=output(n((M+1):N),:)';
%数据归一化
[inputn,inputs]=mapminmax(input_train);
[outputn,outputs]=mapminmax(output_train);
%构建BP神经网络
net=newff(inputn,outputn,5);
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
net.trainParam.goal=0.0000004;
%BP神经网络训练
net=train(net,inputn,outputn);
%测试样本归一化
inputn_test=mapminmax('apply',input_test,inputs);
%BP神经网络预测
an=sim(net,inputn_test);
%%网络得到数据反归一化
BPoutput=mapminmax('reverse',an,outputs);
figure(1)
%plot(BPoutput,':og');
scatter(1:(N-M),BPoutput,'rx');
hold on;
%plot(output_test,'-*');
scatter(1:(N-M),output_test,'o');
legend('预测输出','期望输出','fontsize',12);
title('BP网络预测输出','fontsize',12);
xlabel('样本','fontsize',12);
xlabel('优化前输出的误差','fontsize',12);
figure(2)
error=BPoutput-output_test;
plot(1:(N-M),error);
xlabel('样本','fontsize',12);
ylabel('优化前输出的误差','fontsize',12);
%save net net inputs outputs
2、遗传算法优化的BP神经网络建模
(1)主程序
%清空环境变量
clc
clear
%读取数据
load data.mat
%节点个数
inputnum=2;
hiddennum=5;
outputnum=1;
%训练数据和预测数据
input_train=input(1:1500,:)';
input_test=input(1501:2000,:)';
output_train=output(1:1500)';
output_test=output(1501:2000)';
%选连样本输入输出数据归一化
[inputn,inputps]=mapminmax(input_train);
[outputn,outputps]=mapminmax(output_train);
%构建网络
net=newff(inputn,outputn,hiddennum);
%% 遗传算法参数初始化
maxgen=10; %进化代数,即迭代次数
sizepop=30; %种群规模
pcross=[0.3]; %交叉概率选择,0和1之间
pmutation=[0.1]; %变异概率选择,0和1之间
%节点总数
numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;
lenchrom=ones(1,numsum);
bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围
%------------------------------------------------------种群初始化------------------------------%------------------
--------
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体
%avgfitness=[]; %每一代种群的平均适应度
bestfitness=[]; %每一代种群的最佳适应度
bestchrom=[]; %适应度最好的染色体
%初始化种群
for i=1:sizepop
%随机产生一个种群
indivials.chrom(i,:)=Code(lenchrom,bound); %编码
x=indivials.chrom(i,:);
%计算适应度
indivials.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn); %染色体的适应度
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
%avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
%trace=[avgfitness bestfitness];
%% 迭代求解最佳初始阀值和权值
% 进化开始
for i=1:maxgen
i
% 选择
indivials=Select(indivials,sizepop);
% avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,i,maxgen,bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:); %解码
indivials.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn);
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
%avgfitness=sum(indivials.fitness)/sizepop;
% trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%% 遗传算法结果分析
%figure(3)
%[r c]=size(trace);
%plot([1:r]',trace(:,2),'b--');
%title(['适应度曲线 ' '终止代数=' num2str(maxgen)]);
%xlabel('进化代数');ylabel('适应度');
%legend('平均适应度','最佳适应度');
disp('适应度 变量');
x=bestchrom;
%% 把最优初始阀值权值赋予网络预测
% %用遗传算法优化的BP网络进行值预测
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x
(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%% BP网络训练
%网络进化参数
net.trainParam.epochs=100;
net.trainParam.lr=0.1;
%net.trainParam.goal=0.00001;
%网络训练
[net,per2]=train(net,inputn,outputn);
%% BP网络预测
%数据归一化
inputn_test=mapminmax('apply',input_test,inputps);
an=sim(net,inputn_test);
test_simu=mapminmax('reverse',an,outputps);
error=test_simu-output_test;
%figure(4);
hold on;plot(1:500,error,'r');
legend('优化前的误差','优化后的误差','fontsize',12)
(2)编码子程序code.m
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
(3)适应度函数fun.m
function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)
%该函数用来计算适应度值
%x input 个体
%inputnum input 输入层节点数
%outputnum input 隐含层节点数
%net input 网络
%inputn input 训练输入数据
%outputn input 训练输出数据
%error output 个体适应度值
%提取
w1=x(1:inputnum*hiddennum);
B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);
w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);
B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);
net=newff(inputn,outputn,hiddennum);
%网络进化参数
net.trainParam.epochs=20;
net.trainParam.lr=0.1;
net.trainParam.goal=0.00001;
net.trainParam.show=100;
net.trainParam.showWindow=0;
%网络权值赋值
net.iw{1,1}=reshape(w1,hiddennum,inputnum);
net.lw{2,1}=reshape(w2,outputnum,hiddennum);
net.b{1}=reshape(B1,hiddennum,1);
net.b{2}=B2;
%网络训练
net=train(net,inputn,outputn);
an=sim(net,inputn);
error=sum(abs(an-outputn));
(4)选择操作Select.m
function ret=select(indivials,sizepop)
% 该函数用于进行选择操作
% indivials input 种群信息
% sizepop input 种群规模
% ret output 选择后的新种群
%求适应度值倒数
[a bestch]=min(indivials.fitness);
%b=indivials.chrom(bestch);
%c=indivials.fitness(bestch);
fitness1=10./indivials.fitness; %indivials.fitness为个体适应度值
%个体选择概率
sumfitness=sum(fitness1);
sumf=fitness1./sumfitness;
%采用轮盘赌法选择新个体
index=[];
for i=1:sizepop %sizepop为种群数
pick=rand;
while pick==0
pick=rand;
end
for i=1:sizepop
pick=pick-sumf(i);
if pick<0
index=[index i];
break;
end
end
end
%index=[index bestch];
%新种群
indivials.chrom=indivials.chrom(index,:); %indivials.chrom为种群中个体
indivials.fitness=indivials.fitness(index);
%indivials.chrom=[indivials.chrom;b];
%indivials.fitness=[indivials.fitness;c];
ret=indivials;
(5)交叉操作cross.m
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;
(6)变异操作Mutation.m
function ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)
% 本函数完成变异操作
% pcorss input : 变异概率
% lenchrom input : 染色体长度
% chrom input : 染色体群
% sizepop input : 种群规模
% opts input : 变异方法的选择
% pop input : 当前种群的进化代数和最大的进化代数信息
% bound input : 每个个体的上届和下届
% maxgen input :最大迭代次数
% num input : 当前迭代次数
% ret output : 变异后的染色体
for i=1:sizepop %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,
%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)
% 随机选择一个染色体进行变异
pick=rand;
while pick==0
pick=rand;
end
index=ceil(pick*sizepop);
% 变异概率决定该轮循环是否进行变异
pick=rand;
if pick>pmutation
continue;
end
flag=0;
while flag==0
% 变异位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick*sum(lenchrom)); %随机选择了染色体变异的位置,即选择了第pos个变量进行变异
pick=rand; %变异开始
fg=(rand*(1-num/maxgen))^2;
if pick>0.5
chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*fg;
else
chrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*fg;
end %变异结束
flag=test(lenchrom,bound,chrom(i,:)); %检验染色体的可行性
end
end
ret=chrom;
㈥ 遗传算法属于数学优化理论吗
遗传算法 (Genetic Algorithm, GA) 是一种基于遗传学原理的优化算法。它是一种模拟自然界中生物进化过程的算法。遗传算则纤法通过模拟遗传进化的过程来解决优化问题,是一种进化塌枣算法。
遗传算法属于数学优化理论的范畴, 数学优团盯拆化理论主要研究的是从数学的角度对优化问题进行研究的理论,包括非线性规划,凸优化,线性规划等。遗传算法就是这一理论的一个重要的分支。
㈦ 遗传算法怎么解决单目标优化问题
是不是像求函数最值那样子?建议你了解一下遗传算法的实数编码,这个对于求函数最值很方便,不用像二进制那样需要转换。 简单介绍一下思路: 最重要的是确定适应度函数,只要确定这个函数就很容易了,就用你不会编程,直接调用matlab的工具箱就行了。 1st.设置种群规模,并初始化种群p,并计算各个个体的适应度。 例如,20个个体,每个个体包含5个变量,x1,x2,x3,x4,x5. 如果你用matlab来编程的话,这个可以很容易实现,会用到random('unif',a,b)这个函数吧。 例如x1的取值范围是[0,1],那么x1=random('unif',0,1). 2nd.采用轮盘赌选出可以产生后代的父本,p_parents。 额,轮盘赌的实质就是适应度大的被选出的概率大。这个不难,但说起来比较长,你可以自己去看一下。 3rd.杂交过程的思路随机将p_parents中的个体随机两两配对,然后随机产生一个1到n的数(n为变量的个数),设为i,交换每对父本中i之后的变量值。交换以后的p_parents成为后代p_offspring. 这里变起来有点点复杂,不过只要耐心一点,编好配对过程和交换过程。 4th.变异过程,这个比较简单,不过需要自己把握的较好。 基本的思路是设置一个概率,例如0.05,然后产生一个随机数如果随机数比0.05小那么这个变量值就要产生微小的增加或减少。 这个变异过程要历遍p_offspring所有的变量喔。 5th.将p和p_offspring合并起来,然后选出适应度大的,重新构成一个如原始种群规模相等的种群。
㈧ 遗传算法中,种群规模越小,一般优化结果越好
遗传算法是一种进化算法,它通过模拟自然进化过程来寻找最优解。在遗传算法中,种群规模通常越大,随机性越强,因此越容易找到全局最优解。然而,当种群规模较小时,遗传算法可能会更快地找到伍档本地最优解,因为它更容易被陷入局部最优解。因此,种群规模对遗传算法的性能有很大影响。
在实际应用中,种群规模的选择取决于问题的复杂性和优化目标。如果问题具有多个局部最优解,则需链迟要更大的种群腔唤乱规模来寻找全局最优解。如果问题具有高度非线性性,则需要更小的种群规模来降低随机性。
综上所述,种群规模越小并不一定优化结果越好,种群规模的选择应该根据具体问题来确定。
㈨ 遗传算法具体应用
1、函数优化
函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。
2、组合优化
随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。
此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。
3、车间调度
车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。
从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。
(9)优化问题遗传算法扩展阅读:
遗传算法的缺点
1、编码不规范及编码存在表示的不准确性。
2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。
3、遗传算法通常的效率比其他传统的优化方法低。
4、遗传算法容易过早收敛。
5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。
㈩ 优化算法笔记(六)遗传算法
遗传算法(Genetic Algorithms,GA)是一种粗衡模拟自然中生物的遗传、进化以适应环境的智能算法。由于其算法流程简单,参数较少优化速度较快,效果较好,在图像处理、函数优化、信号处理、模式识别等领域有着广泛的应用。
在遗传算法(GA)中,每一个待求问题的候选解被抽象成为种群中一个个体的基因。种群中个体基因的好坏由表示个体基因的候选解在待求问题中的所的得值来评判。种群中的个体通过与其他个体交叉产生下一代,每一代中个体均只进行一次交叉。两个进行交叉的个体有一定几率交换一个或者多个对应位的基因来产生新的后代。每个后代都有一定的概率发生变异。发生变异的个体的某一位或某几位基因会变异成其他值。最终将以个体的适应度值为概率选取个体保留至下一代。
遗传算法启发于生物的繁殖与dna的重组,本次的主角选什么呢?还是根据大家熟悉的孟德尔遗传规律选豌豆吧,选动物的话又会有人疑车,还是植物比较好,本次的主角就是它了。
遗传算法包含三个操作(算子):交叉,变异和选择操作。下面我们将详细介绍这三个操作。
大多数生物的遗传信息都储存在DNA,一种双螺旋结构的复杂有机化合物。其含氮碱基为腺嘌呤、鸟嘌呤、胞嘧啶及胸腺嘧啶。
表格中表示了一个有10个基因的个体,它们每一个基因的值为0或者1。
生物的有性生殖一般伴随着基因的重组。遗传算法中父辈和母辈个体产生子代个体的过程称为交叉。
表中给出了两个豌豆的基因,它们均有10个等位基因(即编号相同的基因)。
遗传算法的交叉过程会在两个个体中随机选择1位或者n位基因进行交叉,即这两个个体交换等位基因。
如,A豌豆和B豌豆在第6位基因上进行交叉,则其结果如下
当两个个体交叉的等位基因相同时,交叉过程也有可能没有产生新慧衡的个体,如交叉A豌豆和B豌豆的第2位基因时,交叉操作并没有产生新的基因。
一般的会给群体设定一个交叉率,crossRate,表示会在群体中选取一定比例的个体进行交叉,交叉率相对较大,一般取值为0.8。
基因的变异是生物进化的一个主要因素。
遗传算法中变异操作相对简单,只需要将一个随机位基因的值修改就行了,因为其值只为0或1,那么当基因为0时,变异操作会将其值设为1,当基因值为1时,变异操作会将其值设为0。
上图表示了A豌豆第3位基因变异后的基因编码。
与交叉率相似,变异操作也有变异率,alterRate,但是变异率会远低于交叉率,否则会产生大量的随机基因。一般变异率为0.05。
选择操作是遗传算法中的一个关键操作,它的主要作用就是根据一定的策略随机选择个体保留至下一代。适应度越优的岩碧做个体被保留至下一代的概率越大。
实现上,我们经常使用“轮盘赌”来随机选择保留下哪个个体。
假设有4个豌豆A、B、C、D,它们的适应度值如下:
适应度值越大越好,则它们组成的轮盘如下图:
但由于轮盘赌选择是一个随机选择过程,A、B、C、D进行轮盘赌选择后产生的下一代也有可能出现A、A、A、A的情况,即虽然有些个体的适应度值不好,但是运气不错,也被选择留到了下一代。
遗产算法的三个主要操作介绍完了,下面我们来看看遗传算法的总体流程:
前面我们说了遗传算法的流程及各个操作,那么对于实际的问题我们应该如何将其编码为基因呢?
对于计算机来所所有的数据都使用二进制数据进行存放,如float类型和double类型的数据。
float类型的数据将保存为32位的二进制数据:1bit(符号位) 8bits(指数位) 23bits(尾数位)
如-1.234567f,表示为二进制位
Double类型的数据将保存为64位的二进制数据:1bit(符号位) 11bits(指数位) 53bits(尾数位)
如-1.234567d,表示为二进制为
可以看出同样的数值不同的精度在计算机中存储的内容也不相同。之前的适应度函数 ,由于有两个double类型的参数,故其进行遗传算法基因编码时,将有128位基因。
虽然基因数较多,但好在每个基因都是0或者1,交叉及变异操作非常简单。
相比二进制编码,十进制编码的基因长度更短,适应度函数 有两个输入参数,那么一个个体就有2个基因,但其交叉、变异操作相对复杂。
交叉操作
方案1:将一个基因作为一个整体,交换两个个体的等位基因。
交换前
交换第1位基因后
方案2:将两个个体的等位基因作为一个整体,使其和不变,但是值随机
交换前
交换第1位基因后
假设A、B豌豆的第一位基因的和为40,即 ,第一位基因的取值范围为0-30,那么A、B豌豆的第一位基因的取值范围为[10,30],即 为[0,30]的随机数, 。
变异操作,将随机的一位基因设置为该基因取值范围内的随机数即可。
这个过程说起来简单但其实现并不容易。
我们要将它们的值映射到一个轴上才能进行随机选择,毕竟我们无法去绘制一个轮盘来模拟这个过程
如图,将ABCD根据其值按顺序排列,取[0,10]内的随机数r,若r在[0,1]内则选择A,在(1,3]内则选择B,在(3,6]内则选择C,在(6,10]则选择D。
当然这仍然会有问题,即当D>>A、B、C时,假如它们的值分布如下
那么显然,选D的概率明显大于其他,根据轮盘赌的选择,下一代极有可能全是D的后代有没有办法均衡一下呢?
首先我想到了一个函数,
不要问我为什么我不知道什么是神经什么网络的,什么softmax、cnn统统没听说过。
这样一来,它们之间的差距没有之前那么大了,只要个体适应度值在均值以上那么它被保留至下一代的概率会相对较大,当然这样缩小了个体之间的差距,对真正优秀的个体来说不太公平,相对应,我们可以在每次选择过程中保留当前的最优个体到下一代,不用参与轮盘赌这个残酷的淘汰过程。
最令人高兴的环节到了,又可以愉快的凑字数了。
由于遗传算法的收敛速度实在是太慢,区区50代,几乎得不到好的结果,so我们把它的最大迭代次数放宽到200代。
使用二进制编码来进行求解
参数如下:
求解过程如上图,可以看出基因收敛的很快,在接近20代时就图中就只剩一个点了,之后的点大概是根据变异操作产生。看一下最后的结果。
可以看出最好的结果已经得到了最优解,但是10次实验的最差值和平均值都差的令人发指。为什么会这样呢?
问题出在二进制编码上,由于double类型的编码有11位指数位和52位小数位,这会导致交叉、变异操作选到指数位和小数位的概率不均衡,在小数位上的修改对结果的影响太小而对指数为的修改对结果的影响太大,
如-1.234567d,表示为二进制为
对指数为第5位进行变异操作后的结果为-2.8744502924382686E-10,而对小数位第5为进行变异操作后的结果为-1.218942。可以看出这两部分对数值结果的影响太不均衡,得出较好的结果时大概率是指数位与解非常相近,否则很难得出好的结果,就像上面的最差值和均值一样。
所以使用上面的二进制编码不是一个好的基因编码方式,因此在下面的实验中,将使用十进制来进行试验。
使用:十进制编码来进行求解
参数如下:
我们可以看到直到40代时,所有的个体才收束到一点,但随后仍不断的新的个体出现。我们发现再后面的新粒子总是在同一水平线或者竖直线上,因为交叉操作直接交换了两个个体的基因,那么他们会相互交换x坐标或者y坐标,导致新个体看起来像在一条直线上。
我们来看看这次的结果。
这次最优值没有得到最优解,但是最差值没有二进制那么差,虽然也不容乐观。使用交换基因的方式来进行交叉操作的搜索能力不足,加之轮盘赌的选择会有很大概率选择最优个体,个体总出现在矩形的边上。
下面我们先改变轮盘赌的选择策略,使用上面的sigmod函数方案,并且保留最优个体至下一代。
使用:十进制编码来进行求解
参数如下:
看图好像跟之前的没什么区别,让我们们看看最终的结果:
可以看出,最优值没有什么变化,但是最差值和平均值有了较大的提升,说明该轮盘赌方案使算法的鲁棒性有了较大的提升。在每次保留最优个体的情况下,对于其他的个体的选择概率相对平均,sigmod函数使得即使适应度函数值相差不太大的个体被选到的概率相近,增加了基因的多样性。
使用:十进制编码来进行求解,改变交叉方案,保持两个个体等位基因和不变的情况下随机赋值。
参数如下:
上图可以看出该方案与之前有明显的不同,在整个过程中,个体始终遍布整个搜索空间,虽然新产生的个体大多还是集中在一个十字架型的位置上,但其他位置的个体比之前的方案要多。
看看结果,
这次的结果明显好于之前的所有方案,但仍可以看出,十进制的遗传算法的精度不高,只能找到最优解的附近,也有可能是算法的收敛速度实在太慢,还没有收敛到最优解。
遗传算法的探究到此也告一段落,在研究遗传算法时总有一种力不从心的感觉,问题可能在于遗传算法只提出了一个大致的核心思想,其他的实现细节都需要自己去思考,而每个人的思维都不一样,一万个人能写出一万种遗传算法,其实不仅是遗传算法,后面的很多算法都是如此。
为什么没有对遗传算法的参数进行调优,因为遗传算法的参数过于简单,对结果的影响的可解释性较强,意义明显,实验的意义不大。
遗传算法由于是模仿了生物的进化过程,因此我感觉它的求解速度非常的慢,而且进化出来的结果不一定是最适应环境的,就像人的阑尾、视网膜结构等,虽然不是最佳的选择但是也被保留到了今天。生物的进化的随机性较大,要不是恐龙的灭绝,也不会有人类的统治,要不是人类有两只手,每只手有5根手指,也不会产生10进制。
以下指标纯属个人yy,仅供参考
目录
上一篇 优化算法笔记(五)粒子群算法(3)
下一篇 优化算法笔记(七)差分进化算法
优化算法matlab实现(六)遗传算法matlab实现