当前位置:首页 » 操作系统 » delphi算法

delphi算法

发布时间: 2023-05-01 22:04:45

㈠ delphi 算法问题!

左声道设置5个label,万千百十个。源橘
右声道设置5个label,万千百十个。
这雹饥团样够表达了吧,我看肢神行。

还有一种算法:
i=峰值位数,例如22362峰值万位,i=4,7220峰值千位i=3
个位=i*10+个位数值;十位=(i-1)+十位数值,如此类推,自己还可以优化

㈡ delphi 一个算法

//注锋念意: dataset 代表你要进行操作的数据集合
//cache 则是你要给记录减去的值的总和

procere doSubtraction();
var
cache: Integer; recValue: Integer;
begin
cache := 50;
//先将数据记录 移动到第一条
dataset.First;
//开始循环直到记录尾端
repeat
//如果数据集合的记录数为0,或者要减去的值的总和已被用光 则退出
if (dataset.RecordCount = 0) or (cache = 0) then break;

recValue := dataset.FieldByName('记录').AsInteger; //在数据集合中获取数据

//分条件进行减法运算 这是这个问题的核心
if recValue > cache then
begin
{ 如果当前 当前记录数值大于 要减去的值的总和 则设要减去的值为0
并用当前记录的值去减 要减去的值的总和
}
recValue := recValue - cache; cache := 0;
end
else
if recvalue = cache then
begin
{ 这一步一般可以合并到上/下一步中去, 但是 为了良好的编程风格.应该保留
果当前 当前记录数值等于 要减去的值的总和 则设双方丛瞎的值为0 }
cache := 0; recValue := 0;
end
else
begin
{ 如果当前 当前记录数值小于 要减去的值的总和 则当前的值为0
并用 要减去的值的总和 去减 当前记录的值 }
cache := cache - recValue; recValue := 0;
end;

//将 所有的变化反映到数据库中去
dataset.Edit;
dataset.FieldByName('记录').AsInteger := recValue;
dataset.Post;

dataset.Next; //老生常谈. 移动到下一条银郑困记录. 这里很重要 否则就会"死(循环)在里面"
until dataset.eof; //判断记录是否被移动到末尾
end;

㈢ 求delphi算法大全,越全越好

PASCAL语言培训教程.pdf
这个里面讲了几个算法.

㈣ Delphi加密算法

我用的加密解密
function EncryptString(Source, Key: string): string;
//对字符串加密(Source:源 Key:密匙)
var
KeyLen: integer;
KeyPos: integer;
Offset: integer;
Dest: string;
SrcPos: integer;
SrcAsc: integer;
Range: integer;
begin
KeyLen := Length(Key);
if KeyLen = 0 then
Key := 'delphi';
KeyPos := 0;
Range := 256;
randomize;
Offset := random(Range);
Dest := format('%1.2x', [Offset]);
for SrcPos := 1 to Length(Source) do
begin
SrcAsc := (Ord(Source[SrcPos]) + Offset) mod 255;
if KeyPos < KeyLen then
KeyPos := KeyPos + 1
else
KeyPos := 1;
SrcAsc := SrcAsc xor Ord(Key[KeyPos]);
Dest := Dest + format('%1.2x', [SrcAsc]);
Offset := SrcAsc;
end;
result := Dest;
end;
function UnEncryptString(Source, Key: string): string;
//对字符串解密(Src:源 Key:密匙)
var
KeyLen: integer;
KeyPos: integer;
Offset: integer;
Dest: string;
SrcPos: integer;
SrcAsc: integer;
TmpSrcAsc: integer;
begin
KeyLen := Length(Key);
if KeyLen = 0 then
Key := 'delphi';
KeyPos := 0;
Offset := strtoint('$' + (Source, 1, 2));
SrcPos := 3;
repeat
SrcAsc := strtoint('$' + (Source, SrcPos, 2));
if KeyPos < KeyLen then
KeyPos := KeyPos + 1
else
KeyPos := 1;
TmpSrcAsc := SrcAsc xor Ord(Key[KeyPos]);
if TmpSrcAsc <= Offset then
TmpSrcAsc := 255 + TmpSrcAsc - Offset
else
TmpSrcAsc := TmpSrcAsc - Offset;
Dest := Dest + chr(TmpSrcAsc);
Offset := SrcAsc;
SrcPos := SrcPos + 2;
until SrcPos >= Length(Source);
result := Dest;
end;

㈤ 求delphi的算法大全,越全越好

1 、数论算法

1.求两数的最悉局拍大公约数
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

2.求两数的最小公倍数
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;

3.素数的求法
A.小范围内判断一个数是否为质数:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判断longint范围内的数睁羡是否为素数(包含求50000以内的素数表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}

二、图论算法

1.最小生成树

A.Prim算法:

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{寻找离生成树最近的未加入顶点k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {将顶点k加入生成树}
{生成树中增加一条新的边k到closest[k]}
{修正各点的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal算法:(贪心)

按权值递增腊或顺序删去图中的边,若不形成回路则将此边加入最小生成树。
function find(v:integer):integer; {返回顶点v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I}
p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针}
sort;
{对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.最短路径

A.标号法求解单源点最短路径:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1为源点}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {对每一个已计算出最短路径的点}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed算法求解所有顶点对之间的最短路径:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点}
for k:=1 to n do {枚举中间结点}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 算法:

var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数}
min:=maxint; u:=0; {u记录离1集合最近的结点}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.计算图的传递闭包

Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

4.无向图的连通分量

A.深度优先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {对结点I染色}
c[i]:=color;
dfs(I,color);
end;
end;

B 宽度优先(种子染色法)

5.关键路径

几个定义: 顶点1为源点,n为汇点。
a. 顶点事件最早发生时间Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 顶点事件最晚发生时间 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 边活动最早开始时间 Ee[I], 若边I由<j,k>表示,则Ee[I] = Ve[j];
d. 边活动最晚开始时间 El[I], 若边I由<j,k>表示,则El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,则活动j为关键活动,由关键活动组成的路径为关键路径。
求解方法:
a. 从源点起topsort,判断是否有回路并计算Ve;
b. 从汇点起topsort,求Vl;
c. 算Ee 和 El;

6.拓扑排序

找入度为0的点,删去与其相连的所有边,不断重复这一过程。
例 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.

7.回路问题

Euler回路(DFS)
定义:经过图的每条边仅一次的回路。(充要条件:图连同且无奇点)

Hamilton回路
定义:经过图的每个顶点仅一次的回路。

一笔画
充要条件:图连通且奇点个数为0个或2个。

9.判断图中是否有负权回路 Bellman-ford 算法

x[I],y[I],t[I]分别表示第I条边的起点,终点和权。共n个结点和m条边。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚举每一条边}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10.第n最短路径问题

*第二最短路径:每举最短路径上的每条边,每次删除一条,然后求新图的最短路径,取这些路径中最短的一条即为第二最短路径。
*同理,第n最短路径可在求解第n-1最短路径的基础上求解。

三、背包问题

*部分背包问题可有贪心法求解:计算Pi/Wi
数据结构:
w[i]:第i个背包的重量;
p[i]:第i个背包的价值;

1.0-1背包: 每个背包只能使用一次或有限次(可转化为一次):

A.求最多可放入的重量。
NOIP2001 装箱问题
有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。
l 搜索方法
procere search(k,v:integer); {搜索第k个物品,剩余空间为v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]为前n个物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
实现:将最优化问题转化为判定性问题
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 边界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
优化:当前状态只与前一阶段状态有关,可降至一维。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大价值。
F[I,j] 为容量为I时取前j个背包所能获得的最大价值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }

C.求恰好装满的情况数。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重复背包

A求最多可放入的重量。
F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。
状态转移方程为
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大价值。
USACO 1.2 Score Inflation
进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。
*实现:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好装满的情况数。
Ahoi2001 Problem2
求自然数n本质不同的质数和的表达式的数目。
思路一,生成每个质数的系数的排列,在一一测试,这是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此过程计算当前系数的计算结果,now为结果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系数}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,递归搜索效率较高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }

㈥ delphi分组算法

MD5即Message-Digest Algorithm 5(信息-摘要算法 5),是在计算机语言当中普遍使用的一种杂凑程序,由于它类似于函数,我们称为算法。此杂凑函数是由MD2、MD3和MD4完善而来。其基本原理就是将一个字符串(包括汉亮御字等)通过一定的函数转换为一种新的字符串,并且这种杂凑运算是以不可逆转的形式存在。在1992年8月Ronald L. Rivest在向IEFT提交了一份重要文件,描述了这种算法的原理,由于这种算法的公开性和安全性,在90年代被广泛使用在各种程序语言中,用以确保资料传递无误等。

由于MD5算法的可靠性,被广泛用于杂凑资料正确性验证。经过许多程序员的努力,MD5算法已经被各种语言实现,.asp,.php,.java ,c,c#,vb,vc++,delphi等语言。

MD5算法以16个32位子分组即512位分组来提供数据杂凑,经过程序流程,生成四个32位数据,最后联合起来成为一个128位散列。基本方式为,求余、取余、调整长度、与链接变量进行循环运算。得出结果。

MD5由MD4、MD3、MD2改进而来,主要是增加了算敬激岩法难度和不可逆性。

虽然目前对MD5算法本身还没有已知或已公布的攻击方法,但是由于它是一种比较老的算法,使用MD5计算出的的散列值长度只有128位,随着现代计算机运算能力的提高,通过一些方式,寻找一个可能的“碰撞”(冲突)已经变得可能。因此,MD5在一些对安全要求比较高的场合已经逐步被其它的算法所替代。

由于MD5使用的广泛性和可靠性,铅睁诸多程序员对其进行了大量的研究,并取得了一些成果,但是并未改变MD5算法的可逆性,没有完整的反MD5函数出现。

㈦ delphi实现常用的几种排序算法

  1. 冒泡排序 2.选择排誉消序3.插入排序 4.希尔排序 庆岩知5.快速排序 6.归并排序 7.堆排序(

具体代码可以查看CSDN论坛枣冲

㈧ Delphi加密算法

你要是只对数字进行加密,加密后的密文也绝枝灶是数字,其实你就加个运算就可以了。比如 对123进行加密:用 123*564 加密后是69372,,解密就用 69372去除以564 就可以了,,这个是最简单的方法了,你可以搭老把这个运算写的复杂并扮一些!

㈨ Delphi中生成随机数的算法

FormatDateTime('空闷YYMMDDHHMMSSZZZ',Now)+Format('%.4d'迅早,[Random(9999)]);
年月日时分秒毫秒+4位随亩亏雀机数。99% 不会重复!

热点内容
编程大冒险 发布:2024-05-20 03:19:27 浏览:636
阿瓦隆九个人怎么配置 发布:2024-05-20 02:57:47 浏览:757
sqlnotinexcept 发布:2024-05-20 02:53:10 浏览:341
激光切割编程教程难吗 发布:2024-05-20 02:49:57 浏览:925
sqlbool 发布:2024-05-20 02:49:57 浏览:721
如何把文件压缩到最小 发布:2024-05-20 02:25:03 浏览:452
javash脚本文件 发布:2024-05-20 01:43:11 浏览:830
安卓手机如何登陆刺激战场国际服 发布:2024-05-20 01:29:02 浏览:861
服务器核库怎么找 发布:2024-05-20 01:28:14 浏览:375
盐存储水分 发布:2024-05-20 01:09:03 浏览:810