当前位置:首页 » 操作系统 » 举一个算法

举一个算法

发布时间: 2023-05-07 07:01:42

Ⅰ 什么是算法,都什么,举个例子,谢谢

根据我个人的理解:
算法就是解决问题的具体的方法和步骤,所以具有以下性质:

1、有穷性: 一个算法必须保证执行有限步之后结束(如果步骤无限,问题就无法解决)
2、确切性:步骤必须明确,说清楚做什么。
3、输入:即解决问题前我们所掌握的条件。
4、输出:输出即我们需要得到的答案。
5、可行性:逻辑不能错误,步骤必须有限,必须得到结果。

算法通俗的讲:就是解决问题的方法和步骤。在计算机发明之前便已经存在。只不过在计算机发明后,其应用变得更为广泛。通过简单的算法,利用电脑的计算速度,可以让问题变得简单。

譬如:计算 1×2×3×4。。。。×999999999×1000000000
如果人为计算,可想而知,即使你用N卡车的纸张都很难计算出来,即使算出来了,也很难保证其准确性。
如果用VB算法:
dim a as integer
a=1
For i =1 to 1000000000
a=a*i
next i
input a
就这样,简单的算法,通过计算机强大的计算能力,问题就解决了。
关于这段算法的解释:i每乘一次,其数值都会增大1,一直乘到1000000000,这样,就将从1到1000000000的每个数都乘了。而且每乘一次,就将结束赋给a,这样,a就代表了前面的相乘的所有结果,一直乘到1000000000。最后得到的a,就是我们想要的。

〓以下是网络复制过来的,如果你有足够耐心,可以参考一下。

算法(Algorithm)是一系列解决问题的清晰指令,也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可以用空间复杂度与时间复杂度来衡量。
算法可以理解为有基本运算及规定的运算顺序所构成的完整的解题步骤。或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤和序列可以解决一类问题。
一个算法应该具有以下五个重要的特征:
1、有穷性: 一个算法必须保证执行有限步之后结束;
2、确切性: 算法的每一步骤必须有确切的定义;
3、输入:一个算法有0个或多个输入,以刻画运算对象的初始情况,所谓0个输入是指算法本身定除了初始条件;
4、输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的;
5、可行性: 算法原则上能够精确地运行,而且人们用笔和纸做有限次运算后即可完成。
计算机科学家尼克劳斯-沃思曾着过一本着名的书《数据结构十算法= 程序》,可见算法在计算机科学界与计算机应用界的地位。
[编辑本段]算法的复杂度
同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。一个算法的评价主要从时间复杂度和空间复杂度来考虑。
时间复杂度
算法的时间复杂度是指算法需要消耗的时间资源。一般来说,计算机算法是问题规模n 的函数f(n),算法的时间复杂度也因此记做
T(n)=Ο(f(n))
因此,问题的规模n 越大,算法执行的时间的增长率与f(n) 的增长率正相关,称作渐进时间复杂度(Asymptotic Time Complexity)。
空间复杂度
算法的空间复杂度是指算法需要消耗的空间资源。其计算和表示方法与时间复杂度类似,一般都用复杂度的渐近性来表示。同时间复杂度相比,空间复杂度的分析要简单得多。
详见网络词条"算法复杂度"
[编辑本段]算法设计与分析的基本方法
1.递推法
递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。它把问题分成若干步,找出相邻几步的关系,从而达到目的,此方法称为递推法。
2.递归
递归指的是一个过程:函数不断引用自身,直到引用的对象已知
3.穷举搜索法
穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。
4.贪婪法
贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。
5.分治法
把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。
6.动态规划法
动态规划是一种在数学和计算机科学中使用的,用于求解包含重叠子问题的最优化问题的方法。其基本思想是,将原问题分解为相似的子问题,在求解的过程中通过子问题的解求出原问题的解。动态规划的思想是多种算法的基础,被广泛应用于计算机科学和工程领域。
7.迭代法
迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法。
[编辑本段]算法分类
算法可大致分为基本算法、数据结构的算法、数论与代数算法、计算几何的算法、图论的算法、动态规划以及数值分析、加密算法、排序算法、检索算法、随机化算法、并行算法。
[编辑本段]举例
经典的算法有很多,如:"欧几里德算法"。
[编辑本段]算法经典专着
目前市面上有许多论述算法的书籍,其中最着名的便是《计算机程序设计艺术》(The Art Of Computer Programming) 以及《算法导论》(Introction To Algorithms)。
[编辑本段]算法的历史
“算法”即算法的大陆中文名称出自《周髀算经》;而英文名称Algorithm 来自于9世纪波斯数学家al-Khwarizmi,因为al-Khwarizmi在数学上提出了算法这个概念。“算法”原为"algorism",意思是阿拉伯数字的运算法则,在18世纪演变为"algorithm"。欧几里得算法被人们认为是史上第一个算法。 第一次编写程序是Ada Byron于1842年为巴贝奇分析机编写求解解伯努利方程的程序,因此Ada Byron被大多数人认为是世界上第一位程序员。因为查尔斯·巴贝奇(Charles Babbage)未能完成他的巴贝奇分析机,这个算法未能在巴贝奇分析机上执行。 因为"well-defined procere"缺少数学上精确的定义,19世纪和20世纪早期的数学家、逻辑学家在定义算法上出现了困难。20世纪的英国数学家图灵提出了着名的图灵论题,并提出一种假想的计算机的抽象模型,这个模型被称为图灵机。图灵机的出现解决了算法定义的难题,图灵的思想对算法的发展起到了重要作用的。

Ⅱ 二进制的算法 多举个例子。

1、加法法则: 0+0=0,0+1=1+0=1,1+1=10

2、减法法则: 0 - 0 = 0 1 - 0 = 1 1 - 1 = 0 0 - 1 = 1 有借位,借1当(10)2 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。减法,当需要向上一位借数时,必须把上一位的1看成下一位的(2)10。

3、乘法法则: 0×0=0,0×1=1×0=0,1×1=1

4、除法法则: 0÷1=0,1÷1=1 除法应注意: 0÷0 = 0 0÷1 = 0 1÷0 = 0 (无意义)

(2)举一个算法扩展阅读

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。

Ⅲ 谁能举一个Pascal中Dijkstra算法求单源最短路径问题的例子并作一些说明

[问题分析]
对于一个含有n个顶点和e条边的图来说,从某一个顶点Vi到其余任一顶点Vj的最短路径,可能是它们之间的边(Vi,Vj),也可能是经过k个中间顶点和k+1条边所形成的路径(1≤k≤n-2)。下面给出解决这个问题的Dijkstra算法思想。
设图G用邻接矩阵的方式存储在GA中,GA[i,j]=maxint表示Vi,Vj是不关联的,否则为权租举值(大于0的实数)。设集合S用来保存已求得最短路径的终点序号,初始时S=[Vi]表示只有源点,以后每求出一个终点Vj,就把它加入到集合中并作为新考虑的中间顶点。设数组dist[1..n]用来存储当前求得的最短路径,初始时Vi,Vj如果是关联的,则dist[j]等于权值,否则等于maxint,以后随着新考虑的中间顶点越来越多,dist[j]可能越来越小。再设一个与dist对应的数组path[1..n]用来存放当前最短路径的边,初始时为Vi到Vj的边,如果不存在边则为空。
执行时,先从S以外的顶点(即待求出最短路径的终点)所对应的dist数组元素中,找出其值最小的元素(假设源型晌为dist[m]),该元素值就是从源点Vi到终点Vm的最短路径长度,对应的path[m]中的顶点或边的序列即为最短路径。接着把Vm并入集合S中,然后以Vm作为新考虑的中间顶点,对S以外的每个顶点Vj,比较dist[m]+GA[m,j]的dist[j]的大小,若前者小,表明加入了新的中间顶点后可以得到更好的方案,即可求得更短的路径,则用它代替dist[j],同时把Vj或边(Vm,Vj)并入到path[j]中。重复以上过程n-2次,即可在dist数组中得到从源点到其余各终点的最段路径长度,对应的path数组中保存着相应的最段路径。

下面给出具体的Dijkstra算法框架(注:为了实现上的方便,用一个一维数组s[1..n]代替集合S,用来保存已求得最短路径的终点集合,即如果s[j]=0表示顶点Vj不在集合中,反之,s[j]=1表示顶点Vj已在集合中)。
Procere Dijkstra(GA,dist,path,i);
{表示求Vi到图G中其余顶点的最短路径,GA为图G的邻接矩阵,dist和path为变量型参数,
其中path的基类型为集合}
Begin
For j:=1 To n Do Begin {初始化}
If j<>i Then s[j]:=0 Else s[j]:=1;
dist[j]:=GA[i,j];
If dist[j]<maxint Then path[j]:=[i]+[j] Else path[j]:=[ ];
End;
For k:=1 To n-2 Do
Begin
w:=maxint;m:=i;
For j:=1 To n Do {求出第k个终点Vm}
If (s[j]=0) and (dist[j]<w) Then Begin m:=j;w:=dist[j]; End;
If m<>i Then s[m]:=1 else exit;
{若条件成立,则把Vm加入到S中,
否则退出循环,因为剩余的终点,其最短路径长度均为maxint,无需再计算下去}
For j:=1 To n Do {对s[j]=0的更优元素作必要修改}
If (s[j]=0) and (dist[m]+GA[m,j]<dist[j])
Then Begin Dist[j]:=dist[m]+GA[m,j];path[j]:=path[m]+[j];End;
End;
End;

(1)从一个顶点到其余各顶点的最短路径
对于一个含有n个顶点和e条边的图来说,从某个顶点vi到其余任一顶点vj的雹锋最短路径,可能是它们之间的边(vi,vj),也可能是经过k个中间点和k+1条边所形成的路径(1≤k ≤n-2)。
首先来分析Dijkstra的算法思想
设图G用邻接矩阵的方式存储在GA中,GA[I,j]=maxint表示vi,vj是不关联的,否则为权值(大于0的实数)。设集合S用来存储保存已求得最短路径的终点序号,初始时S=[vi]表示只有源点,以后每求出一个终点vj,就把它加入到集合中并作为新考虑的中间顶点。设数组dist[1..n]用来存储当前求得的最短路径,初始时vi,vj如果是关联的,则dist[j]等于权值,否则等于maxint,以后随着新考虑的中间顶点越来越多,dist[j]可能越来越小。再设一个与dist对应的数组path[1..n]用来存放当前最短路径的边,初始时vi到vj的边,如果不存在边则为空。
执行时,先从S以外的顶点(即待求出最短路径的终点)所对应的dist数组元素中,找出其值最小的元素(假设为dist[m]),该元素值就是从源点vi到终点vm的最短路径长度,对应的path[m]中的顶点或边的序列即为最短路径。接着把vm并入集合S中,然后以vm作为新考虑的中间顶点,对S以外的每个顶点vj,比较dist[m]+GA[i,j]与dist[j]的大小,若前者小,表明加入了新的中间顶点后可以得到更好的方案,即可求得更短的路径,则用它代替dist[j],同时把vj或边(vm,vj)并入到path[j]中。重复以上过程n-2次,即可在dist数组中得到从源点到其余个终点的最短路径长度,对应的path数组中保存着相应的最短路径。
为了实现上的方便,用一个一维数组s[1..n]代替集合s,用来保存已求得最短路径的终点集合,即如果s[j]=0表示顶点vj不在集合中,反之,s[j]表示顶点vj已在集合中)。

Procere dijkstra (GA,dist path,I)
begin
for j:= 1 to n do begin
if j<>I then s[j]:=0;{j不在集合中} else s[j]:=1;{j在集合中};
dist[j]:=GA[I,J];
IF dist [j]<maxint {maxint为假设的一个足够大的数}
Then path [j]:=[I]+[j]
Else path[j]:=[ ];
End;
For k:= 1 to n-1 do begin w:=maxint;m:=I;
For j:= 1 to n do{求出第k个终点Vm}
if (s[j]=0)and(dist[j]<w) then begin m:=j;w:=dist[j];end;
If m<>I then s[m]:=1 else exit;{若条件成立,则把Vm加入到s中,否则退出循环,因为
剩余的终点,其最短路径长度均为maxint,无需再计算下去}
for j:=1 to n do {对s[j]=0的更优元素作必要修改}
if (s[j]=0)and (dist[m]+GA[m,j]<dist[j])
then begin
dist[j]:=dist[m]+GA[m,j];
path[j]:=path[m]+[j];
End;
End;
End;

用集合的思想:

for k:=1 to n-1 do
begin
wm:=max;j:=0;
for i:=1 to n do
if not(i in s)and(dist[i]<wm) then begin j:=i;wm:=dist[i];end;
s:=s+[j];
for i:=1 to n do
if not(i in s)and(dist[j]+cost[j,i]<dist[i]) then
begin dist[i]:=dist[j]+cost[j,i];path[i]:=path[j]+char(48+i);end;
end;

Ⅳ 随机化算法的举例

下面,我们就随机化问题,举一个例子:
一个长度在4..10的字符串中,需要判定是否可以在字符串中删去若干字符,使得改变后字符串符合以下条件之一:
(1)AAAA;(2)AABB;(3)ABAB;(4)ABBA。
例如:长度为6字符串“POPKDK”,若删除其中的“O”,“D”两个字母,则原串变为:“PPKK”,符合条件(2)AABB。
分析:
这道题很容易想到一种算法:运用排列组合:枚举每4个字母,然后逐一判断。算法是可行的,但是如果需要题目中加上一句话:需要判断n个字符串,且n<=100000,那么这样的耗时是不能让人忍受①的,因为在枚举的过程中,是非常浪费时间的。
(①:这里是指信息学中要求算法的普遍运算时间为:1000ms)
所以这道题有可能可以借助于随机化算法,下面我们来算一下在10个字符中取4个字符一共有多少种取法:C(4,10)=210。那么很容易得知,随机化算法如果随机300次,能得到的结果基本上就正确了(概率为1-(209/210)^300,约为0.76),而随机时的时间消耗是O(1),只需要判断没有随机重复即可,判重的时间复杂度也为O(1),并且最多随机300次,这样就可以有效地得到答案,最大运算次数为:O(300n),这是在计算机的承受范围内(1000ms)的。
从这里就能看出,随机化算法是一个很好的概率算法,但是它并不能保证正确,而且它单独使用的情况很少,大部分是与其他的算法:例如贪心、搜索等配合起来运用。 排序问题。快速排序是排序方法中较为便捷的方法之一,但是由于它极不稳定,最好的时候时间复杂度为O(n㏒n),这里的㏒是指以2为底的对数运算。最坏的时候能达到与普通排序方法一样的O(n^2)。
而制约快速排序的有两个:一是数据,越无序的数据,快排的速度越快;二是中间点的枚举。
因为两个制约条件都与随机有着不可分开的关系。
所以,在快速排序中加入随机化算法无疑是十分重要的。
运用在:
(1)数据读入时,随机排放数据位置。
(2)中间点的枚举进行多次随机化后决定。
这样就基本上将快速排序的时间复杂度维持在最好状态。

Ⅳ 数据加密算法可以分为几大类型,个举一例说明

分为三类:
1、对称加密;
2、不对称加密;
3、不可逆加密。
对称加密是指加密密钥和解密密钥相同;
不对称加密算法使用不同的加密密钥和解密密钥;
不可逆加密算法的特征是加密过程不需要密钥,并且经过加密的数据无法被解密,只有同样输入的输入数据经过同样的不可逆算法才能得到同样的加密数据。

Ⅵ 谁能举一个Pascal中Dijkstra算法求单源最短路径问题的例子并作一些说明

解释一下吧
举一个简单的例子
设图
G(V,E)
(V是顶点集合,E是边集合)
顶点1
---2---
顶点2
---3---
顶点3
(无向图,关于无向图这一点,不理解也不影响)
这个时候
邻接矩阵
0
2

2
0
3

3
0
(∞
表示无连接;0表示该边连接了两个相同的顶点,是不存在的)
此时,由图可以知道,实际上从1到3并不是无连接,可以通过顶点2,连接顶点3,之间的距离为5(2+3)。那么就可以在1-3之间直接创造一条边,权值为5。dijkstra算法以及其他SPFA,floyd求最短路径的算族梁衡法都是用
以上所举的思想为中心思兆做想的。这种操作
称作:松弛操作。
if
V[i]+E[i,j]<V[j]
then

V[j]:=V[i]+E[i,j];
(其中V[i]表示目前源点到点i的最短距离,E是邻接矩阵)
对所有的顶点都进渣仔行一次对其他顶点的关于源点的松弛操作,就可以创造出源点到其他各个点最短边,并把源点到点i最短距离存储在V数组中
Const

maxn=??;
Var

i,j,n:longint;

E:Array[1..maxn,1..maxn]of
longint;

V:Array[1..maxn]of
longint;
Begin

Fillchar(E,sizeof(e),0);

Fillchar(V,sizeof(V),0);

Read(n);

For
i:=1
to
n
do

For
j:=1
to
n
do

Read(E[i,j]);

V[1]:=0;

For
i:=1
to
n
do

For
j:=2
to
n
do

if
E[i,j]>0
then

if
(V[i]+E[i,j]<V[j])or(V[j]=0)
then

V[j]:=v[i]+E[i,j];
End.
(其中顶点1为源点)

Ⅶ 二进制的算法 多举个例子。

二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。

二进制计算的优点:数字装置简单可靠,所用元件少;只有两个数码0和1,因此它的每一位数都可用任何具有两个不同稳定状态的元件来表示;基本运算规则简单,运算操作方便。

缺点:用二进制表示一个数时乎念,位数多。因此实际使用中多采咐键用送入数字系统前用十进制,送入机器后再转换成二进制数,让数字系统进行运算,运算结束后再将二进制转换为十进制供人们阅读。

二进制与十进制的算法格式相同,只不过十进制是逢十进一,而二进岁简困制是逢二进一。比如:

1、0+0=0,0+1=1,1+0=1,1+1=10;

2、0-0=0,1-0=1,1-1=0,10-1=1 ;

3、0×0=0,0×1=0,1×0=0,1×1=1;

4、0÷1=0,1÷1=1。

Ⅷ 数据挖掘十大经典算法(1)——朴素贝叶斯(Naive Bayes)

在此推出一个算法系列的科普文章。我们大家在平时埋头工程类工作之余,也可以抽身对一些常见算法进行了解,这不仅可以帮助我们拓宽思路,从另一个维度加深对计算机技术领域的理解,做到触类旁通,同时也可以让我们搞清楚一些既熟悉又陌生的领域——比如数据挖掘、大数据、机器学习——的基本原理,揭开它们的神秘面纱,了解到其实很多看似高深的领域,其实背后依据的基础和原理也并不复杂。而且,掌握各类算法的特点、优劣和适用场景,是真正从事数据挖掘工作的重中之重。只有熟悉算法,才可能对纷繁复杂的现实问题合理建模,达到最佳预期效果。

本系列文章的目的是力求用最干练而生动的讲述方式,为大家讲解由国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 于2006年12月评选出的数据挖掘领域的十大经典算法。它们包括:

本文作为本系列的第一篇,在介绍具体算法之前,先简单为大家铺垫几个数据挖掘领域的常见概念:

在数据挖掘领域,按照算法本身的行为模式和使用目的,主要可以分为分类(classification),聚类(clustering)和回归(regression)几种,其中:

打几个不恰当的比方

另外,还有一个经常有人问起的问题,就是 数据挖掘 机器学习 这两个概念的区别,这里一句话阐明我自己的认识:机器学习是基础,数据挖掘是应用。机器学习研制出各种各样的算法,数据挖掘根据应用场景把这些算法合理运用起来,目的是达到最好的挖掘效果。

当然,以上的简单总结一定不够准确和严谨,更多的是为了方便大家理解打的比方。如果大家有更精当的理解,欢迎补充和交流。

好了,铺垫了这么多,现在终于进入正题!
作为本系列入门的第一篇,先为大家介绍一个容易理解又很有趣的算法—— 朴素贝叶斯

先站好队,朴素贝叶斯是一个典型的 有监督的分类算法

光从名字也可以想到,要想了解朴素贝叶斯,先要从 贝叶斯定理 说起。
贝叶斯定理是我们高中时代学过的一条概率学基础定理,它描述了条件概率的计算方式。不要怕已经把这些知识还给了体育老师,相信你一看公式就能想起来。

P(A|B)表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基本求解公式为:

其中,P(AB)表示A和B同时发生的概率,P(B)标识B事件本身的概率。

贝叶斯定理之所以有用,是因为我们在生活中经常遇到这种情况:我们可以很容易直接得出P(A|B),P(B|A)则很难直接得出,但我们更关心P(B|A)。

而贝叶斯定理就为我们打通从P(A|B)获得P(B|A)的道路。
下面不加证明地直接给出贝叶斯定理:

有了贝叶斯定理这个基础,下面来看看朴素贝叶斯算法的基本思路。

你看,其思想就是这么的朴素。那么,属于每个分类的概率该怎么计算呢?下面我们先祭出形式化语言!

那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:

因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

如果你也跟我一样,对形式化语言有严重生理反应,不要怕,直接跳过前面这一坨,我们通过一个鲜活的例子,用人类的语言再解释一遍这个过程。

某个医院早上收了六个门诊病人,如下表。

现在又来了第七个病人,是一个打喷嚏的建筑工人。请问他最有可能患有何种疾病?

本质上,这就是一个典型的分类问题, 症状 职业 是特征属性, 疾病种类 是目标类别

根据 贝叶斯定理

可得

假定"打喷嚏"和"建筑工人"这两个特征是独立的,因此,上面的等式就变成了

这是可以计算的。

因此,这个打喷嚏的建筑工人,有66%的概率是得了感冒。同理,可以计算这个病人患上过敏或脑震荡的概率。比较这几个概率,就可以知道他最可能得什么病。

接下来,我们再举一个朴素贝叶斯算法在实际中经常被使用的场景的例子—— 文本分类器 ,通常会用来识别垃圾邮件。
首先,我们可以把一封邮件的内容抽象为由若干关键词组成的集合,这样是否包含每种关键词就成了一封邮件的特征值,而目标类别就是 属于垃圾邮件 不属于垃圾邮件

假设每个关键词在一封邮件里出现与否的概率相互之间是独立的,那么只要我们有若干已经标记为垃圾邮件和非垃圾邮件的样本作为训练集,那么就可以得出,在全部垃圾邮件(记为Trash)出现某个关键词Wi的概率,即 P(Wi|Trash)

而我们最重要回答的问题是,给定一封邮件内容M,它属于垃圾邮件的概率是多大,即 P(Trash|M)

根据贝叶斯定理,有

我们先来看分子:
P(M|Trash) 可以理解为在垃圾邮件这个范畴中遇见邮件M的概率,而一封邮件M是由若干单词Wi独立汇聚组成的,只要我们所掌握的单词样本足够多,因此就可以得到

这些值我们之前已经可以得到了。

再来看分子里的另一部分 P(Trash) ,这个值也就是垃圾邮件的总体概率,这个值显然很容易得到,用训练集中垃圾邮件数除以总数即可。

而对于分母来说,我们虽然也可以去计算它,但实际上已经没有必要了,因为我们要比较的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一样的,因此只需要比较分子大小即可。

这样一来,我们就可以通过简单的计算,比较邮件M属于垃圾还是非垃圾二者谁的概率更大了。

朴素贝叶斯的英文叫做 Naive Bayes ,直译过来其实是 天真的贝叶斯 ,那么他到底天真在哪了呢?

这主要是因为朴素贝叶斯的基本假设是所有特征值之间都是相互独立的,这才使得概率直接相乘这种简单计算方式得以实现。然而在现实生活中,各个特征值之间往往存在一些关联,比如上面的例子,一篇文章中不同单词之间一定是有关联的,比如有些词总是容易同时出现。

因此,在经典朴素贝叶斯的基础上,还有更为灵活的建模方式—— 贝叶斯网络(Bayesian Belief Networks, BBN) ,可以单独指定特征值之间的是否独立。这里就不展开了,有兴趣的同学们可以做进一步了解。

最后我们来对这个经典算法做个点评:

优点:

缺点:

好了,对于 朴素贝叶斯 的介绍就到这里,不知道各位看完之后是否会对数据挖掘这个领域产生了一点兴趣了呢?

Ⅸ 怎么通俗易懂地解释EM算法并且举个例子

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。

最大期望算法经过两个步骤交替进行计算:

第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;

第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。

M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

总体来说,EM的算法流程如下:

  1. 初始化分布参数

  2. 2.重复直到收敛:

  3. E步骤:估计未知参数的期望值,给出当前的参数估计。

  4. M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。

Ⅹ 二进制的计算方法是怎样的请举个例子谢谢,

二进制的运算算术运算二进制的加法:0+0=0,0+1=1 ,1+0=1, 1+1=10(向高位进位);即7=111,10=10103=11。

二进制的减法:0-0=0,0-1=1(向高位借位) 1-0=1,1-1=0 (模二加运算或异或运算) ;

二进制的乘法:0 * 0 = 00 * 1 = 0,1 * 0 = 0,1 * 1 = 1 二进制的除法:0÷0 = 0,0÷1 = 0,1÷0 = 0 (无意义),1÷1 = 1 ;

逻辑运算二进制的或运算:遇1得1 二进制的与运算:遇0得0 二进制的非运算:各位取反。

(10)举一个算法扩展阅读:

二进制的转换:

二进制转换为其他进制:

1、二进制转换成十进制:基数乘以权,然后相加,简化运算时可以把数位数是0的项不写出来,(因为0乘以其他不为0的数都是0)。小数部分也一样,但精确度较少。

2、二进制转换为八进制:采用“三位一并法”(是以小数点为中心向左右两边以每三位分组,不足的补上0)这样就可以轻松的进行转换。例:将二进制数(11100101.11101011)2转换成八进制数。 (11100101.11101011)2=(345.353)8

3、二进制转换为十六进制:采用的是“四位一并法”,整数部分从低位开始,每四位二进制数为一组,最后不足四位的,则在高位加0补足四位为止,也可以不补0。

小数部分从高位开始,每四位二进制数为一组,最后不足四位的,必须在低位加0补足四位,然后用对应的十六进制数来代替,再按顺序写出对应的十六进制数。

热点内容
边的存储方法 发布:2025-05-16 17:33:16 浏览:925
海量服务器怎么拆 发布:2025-05-16 17:31:07 浏览:209
运行与编译的区别 发布:2025-05-16 17:25:02 浏览:823
c语言for中continue 发布:2025-05-16 17:20:14 浏览:647
ftp储存 发布:2025-05-16 17:04:08 浏览:504
家悦3010怎么看电脑配置 发布:2025-05-16 17:02:38 浏览:885
sqlin传参 发布:2025-05-16 17:02:37 浏览:889
python计算md5 发布:2025-05-16 17:02:32 浏览:427
看算法头疼 发布:2025-05-16 16:56:41 浏览:798
给定文件编译成dll文件 发布:2025-05-16 16:45:05 浏览:730