当前位置:首页 » 操作系统 » 蚁群算法的应用

蚁群算法的应用

发布时间: 2023-05-14 16:20:06

A. 传统经典断层识别实战(二)——方差体和蚂蚁追踪(附软件)

地震方差体属性的基础是误差分析,主要通过相邻道地震信号的相似度属性描述地质构造资料。其在地震道特征描述以及储集层展布等方面已经取得了良好的应用效果。因此,地震方差体属性可以应用在构造解释中,由于对构造解释的精度要求越来越高,基于地震方差体属性能够表述出地质构造间不连续的断层与褶皱关系。

实际地层的裂缝会导致地震数据体中对应位置采样点与周围区域的采样点出现振幅特征异常,此时通过计算一定范围区域内的采样点之间的方差值来凸显出裂缝点以识别出裂缝。如图,窗口内有 n 道地震数据,以窗口中间的采样点为种子点。计算该点方差的具体步骤如下:1)取窗口内上下各一半的采样点,先求出窗口内 n 道地震数据中每一道所有采样点的平均振幅值;2)计算每个采样点与同一时刻 n 道数据中的振幅值和振幅平均值的方差的和;3)乘上加权系数并归一化获得该点的方差值。移动窗口,迭代步骤 1、2、3 得到整个工区数据体每一个采样点的方差值,得到方差体。

由图可以得到方差体属性计算公式:

常用的体属性有相干体、方差体、曲率体属性。各种体属性的利用,主要利用其沿地层的层位属性。每种软件的各种算法不一致,同一种属性结果也不尽相同。由下图可看出, 使用Geoframe软件的方差属性、VVA软件的方差属性和相干属性效果都较好,陷落柱异常反映清楚,无论是较大的,还是较小都有显示,在地层顺层切片上表现为圆形或半圆形圈闭。VVA软件的曲率属性效果较差,虽然陷落柱在其上都有显示,但干扰较大,没有其他几种属性反映得明显、直观。

蚂蚁体追踪技术基于蚁群算法实现对断裂的追踪和识别。该算法原理为模拟蚂蚁在食物与巢穴之间根据可吸引蚂蚁的信息素浓度寻求最蔽握悄短路径。在地震数据中,“蚂蚁”根据振幅及相位之间的差异,沿着可能的断层和裂缝移动完成对二者的刻画。

21世纪初,蚂蚁追踪技术开始广泛应用于断裂系统解释中,目前该技术成功的应用到石油地震资料精细解释中,并取得了不错的效果。蚂蚁追踪解释技术具有快速、直观、高精度、客观等优点。为了使小断层地震属性识别更明显,解释精度更高。采用了在构造导向滤波基础上,再对数据进行蚂蚁追踪计算,最后根据属性优选提取敏感属性。 即通过“蚂蚁”+属性融合(包括“蚂蚁”+方差属性、“蚂蚁”+相干属性、“蚂蚁”+朗伯反射属性、“蚂蚁”+倾角属性、“蚂蚁”+瞬时振幅属性以及“蚂蚁”+瞬时频率属性),然后优选其中的敏感属性用于精细构造解释。

与相干属性相比(如图),蚂蚁体属性的优点是凸显了断裂线状构造特征,去除了与断裂无关的信息,提高了断裂解释 精度。缺点是平面预测结果往往过于杂乱,无规律。原因之一是控制蚂蚁追踪结果的参数太多,调节困难。

蚂蚁体追踪技术是基于叠后地震数据运算的,虽然其精度比相干等属性高,但也只适用于对小断层和大尺度裂缝的预测。可预测裂缝发育的方向,但难以定量化表征裂缝发育密度。

接下来,我们使用真实的数据来演示方差体和蚂蚁追踪的操作方法。

先讲一下选用数据的情况。这次我们用的是1996年新西兰塔拉纳基盆地叠前数据。这个数据在很多专家的论文中都出现过。数据概貌是这样的:

数据皮岩的尺寸是:287*735*1252。

接下来,我们使用Petrel这款软件来进行处理。

1.新建工程和导入数据

选择New project,然后在Home Folder栏,选择 new seismic main folder。

在树形结构seismic右键点击-new seismic survey,这样就建好了工程。

右键点击Survery 1,选择Import (on selection),选择数据体Kerry3D.segy,在弹出的参数框中直接点击宏渣OK,就加载了数据。

通过新建一个3D的窗口,可以查看数据概貌。

2.方差体

(1)做Realized。

在地震信号右击选择Realized…。在对话框中点击Realize后关闭窗口,这样就对原始数据进行了简化,减少了一些细节的信号。

(2)方差体

点击Realized的数据体,在seismic Interpretation点击volume attributes(体属性)进行配置:

结果就是这样的:

如果觉得干扰较多,还可以对数据体先进行平滑处理,再做方差体。平滑处理是选择这样的参数:

最后处理的结果是这样的:

3.蚂蚁追踪

选择刚才处理后的方差体数据,在seismic Interpretation点击volume attributes(体属性)进行配置:

处理后的结果是这样的。相比方差体,断层识别分辨率进一步提高。

蚂蚁追踪也可以在不同的数据体结果上处理,大家可以自己多尝试。

蚂蚁追踪的参数配置方法比较多。

一是在参数配置中,可以选择主动或被动。一般识别大断层用被动,小断层用主动。还可以先做主动,然后再叠加被动。这样就可以去掉很多无效识别结果。

二是过滤不追踪的信号。其中的圈代表断层的方位,dip是倾角,azimuth是方位。涂黑的部分就是不追踪的断层,比如最里层代表水平的断层,一般就不会追踪。

大家可以根据工区的实际情况,选择不追踪的断层。

比如断层主要看南北方向的,就把东西方向的涂黑,一般不涂黑外层(因为南北向的倾角较大)。如下图:



以上就是今天的课程。这节课讲解了现在比较常用的两种断层自动识别的方法,包括了原理和实战案例操作。如果大家对软件比较感兴趣或遇到什么问题都可以联系我交流。再见。

扩展阅读:

怎样轻松入门地震勘探研究:先从地震数据处理开始

如何从0开启地震深度学习科研之路

B. 蚁群聚类算法是哪一种类型的聚类算法

蚁群聚类算法是数据挖掘聚类算法。蚁群算法在数据挖掘聚类中的应用所采用的生物原型为蚁群的蚁穴清理行为和蚁群觅食行为。在蚁群蚁穴清理行为中,蚁群会将蚁穴中分布分散的蚂蚁尸体堆握顷积成相对集中的几个大堆。在聚类分析中,将这些分散分布的蚂蚁尸体视为待分析的数据集合,而最终堆积而成的大堆则对应于最终的聚类结段隐陆果。在蚁群的觅食行为中,蚂蚁依据一定的概率选择觅食路径,使得蚂蚁所寻找的路径呈现多样化状态。在基于蚁群觅食行为的聚类分析中,将数据视为具有不同属性的蚂蚁,携逗而将聚类结果视为食物源,所不同的是,此时认为存在多个食物源。这样各个蚂蚁通过一定的概率实现移动,并聚集在不同的食物源而实现聚类。

C. 蚁群算法及其应用实例

       蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种对自然界蚂蚁的寻径方式进行模拟而得到的一种仿生算法,是一种用来在图中寻找优化路径的机率型算法。
       蚂蚁在运动过程中,可以在行走的路径上留下信息素,后来的蚂蚁可以感知到信息素的存在,信息素浓度越高的路径越容易被后来的蚂蚁选择,从而形成一种正反馈现象。
       它能够求出从原点出发,经过若干个给定的需求点,最终返回原点的最短路径。这也就是着名的旅行商问题(Traveling Saleman Problem,TSP)。

       若蚂蚁从A点出发到D点觅食,它可以随机从ABD或ACD中选择一条路。假设初始时为每条路分配一只蚂蚁,每个时间单位行走一步,则经过8个时间单位后,情形如下图所示:ABD路线的蚂蚁到达D点,ACD路线的蚂蚁到达C点。

       那么,再过8个时间单位,很容易可以得到下列情形:ABD路线的蚂蚁回到A点,ACD路线的蚂蚁到达D点。

α 代表信息素量对是否选择当前路径的影响程度,反映了蚁群在路径搜索中随机性因素作用的强度。
α 越大,蚂蚁选择以前走过的路径的可能性越大,搜索的随机性就会减弱。
α 过小,会导致蚁群搜索过早陷入局部最优,取值范围通常为[1,4]。

β 反映了启发式信息在指导蚁群搜索中的相对重要程度,蚁群寻优过程中先验性、确定性因素作用的强度。
β 过大,虽然收敛速度加快,但是易陷入局部最优。
β 过小,蚁群易陷入纯粹的随机搜索,很难找到最优解。通常取[0,5]。

ρ 反映了信息素的蒸发程度,相反,1-ρ 表示信息素的保留水平
ρ 过大,信息素会发过快,容易导致最优路径被排除。
ρ 过小,各路径上信息素含量差别过小,以前搜索过的路径被在此选择的可能性过大,会影响算法的随机性和全局搜索能力。通常取[0.2,0.5]。

m过大,每条路径上信息素趋于平均,正反馈作用减弱,从而导致收敛速度减慢。
m过小,可能导致一些从未搜索过的路径信息素浓度减小为0,导致过早收敛,解的全局最优性降低

总信息量Q对算法性能的影响有赖于αβρ的选取,以及算法模型的选择。
Q对ant-cycle模型蚁群算法的性能没有明显影响,不必特别考虑,可任意选取。

D. 蚁群算法原理及其应用的图书目录

第1章 绪论
1.1 引言
1.2 蚂蚁的生物学特征
1.3 蚁群算法的思想起源
1.4 蚁群算法的研究进展
1.5 本书的体系结构
1.6 本章 小结
参考文献
第2章 基本蚁群算法原理及其复杂度分析
2.1 引言
2.2 基本蚁群算法的原理
2.3 基本蚁群算法的系统学特征
2.4 基本蚁群算法的数学模型
2.5 基本蚁群算法的具体实现
2.6 基本蚁群算法的复杂度分析
2.7 基本蚁群算法的性能评价指标
2.8 本章 小结
参考文献
第3章 蚁群算法的收敛性研究
3.1 引言
3.2 图搜索蚂蚁系统(GBAS)的收敛性研究
3.3 一类改进蚁群算法的收敛性证明
3.4 GBAS/tdev和GBAS/tdlb的确定性收敛证明
3.5 基本蚁群算法的A.S.收敛性研究
3.6 一类分布式蚂蚁路由算法的收敛性研究
3.7 基于分支路由和Wiener过程的蚁群算法收敛性证明
3.8 一种简单蚁群算法及其收敛性分析
3.9 遗传一蚁群算法的Markov收敛性分析
3.1 0一类广义蚁群算法(GACA)的收敛性分析
3.1 1本章 小结
参考文献
第4章 蚁群算法的实验分析及参数选择原则
4.1 引言
4.2 蚁群行为和参数对算法性能影响的实验分析
4.3 蚁群算法参数最优组合的“三步走”方法
4.4 本章 小结
参考文献
第5章 离散域蚁群算法的改进研究
5.1 引言
5.2 自适应蚁群算法
5.3 基于去交叉局部优化策略的蚁群算法
5.4 基于信息素扩散的蚁群算法
5.5 多态蚁群算法
5.6 基于模式学习的小窗口蚁群算法
5.7 基于混合行为的蚁群算法
5.8 带聚类处理的蚁群算法
5.9 基于云模型理论的蚁群算法
5.1 0具有感觉和知觉特征的蚁群算法
5.1 1具有随机扰动特性的蚁群算法
5.1 2基于信息熵的改进蚁群算法
5.1 3本章 小结
参考文献
第6章 连续域蚁群算法的改进研究
6.1 引言
6.2 基于网格划分策略的连续域蚁群算法
6.3 基于信息量分布函数的连续域蚁群算法
6.4 连续域优化问题的自适应蚁群算法
6.5 基于交叉变异操作的连续域蚁群算法
6.6 嵌入确定性搜索的连续域蚁群算法
6.7 基于密集非递阶的连续交互式蚁群算法(cIACA)
6.8 多目标优化问题的连续域蚁群算法
6.9 复杂多阶段连续决策问题的动态窗口蚁群算法
6.1 0本章 小结
参考文献
第7章 蚁群算法的典型应用
7.1 引言
7.2 车间作业调度问题
7.3 网络路由问题
7.4 车辆路径问题
7.5 机器人领域
7.6 电力系统
7.7 故障诊断
7.8 控制参数优化
7.9 系统辨识
7.1 0聚类分析
7.1 1数据挖掘
7.1 2图像处理
7.1 3航迹规划
7.1 4空战决策
7.1 5岩土工程
7.1 6化学工业
7.1 7生命科学
7.1 8布局优化
7.1 9本章 小结
参考文献
第8章 蚁群算法的硬件实现
8.1 引言
8.2 仿生硬件概述
8.3 基于FPGA的蚁群算法硬件实现
8.4 基于蚁群算法和遗传算法动态融合的软硬件划分
8.5 本章 小结
参考文献
第9章 蚁群算法同其他仿生优化算法的比较与融合
9.1 引言
9.2 其他几种仿生优化算法的基本原理
9.3 蚁群算法与其他仿生优化算法的异同比较
9.4 蚁群算法与遗传算法的融合
9.5 蚁群算法与人工神经网络的融合
9.6 蚁群算法与微粒群算法的融合
9.7 蚁群算法与人工免疫算法的融合
9.8 本章 小结
参考文献
第10章 展望
10.1 引言
10.2 蚁群算法的模型改进
10.3 蚁群算法的理论分析
10.4 蚁群算法的并行实现
10.5 蚁群算法的应用领域
10.6 蚁群算法的硬件实现
10.7 蚁群算法的智能融合
10.8 本章 小结
参考文献
附录A基本蚁群算法程序
A.1 c语言
A.2 Matlab语言版
A.3 VisualBasic语言版
附录B相关网站
附录C基本术语(中英文对照)及缩略语
附录D(词一首)鹧鸪天蚁群算法

E. 蚁群算法中转移概率是怎么用的.不同的蚂蚁为什么会选择不同的路径

因为不同路径的信息素和启发信息不同,所以向每条路径转移的概率也不同;
具体实现可以运用轮盘赌选择,转移概率越大的路径就会有更多的蚂蚁选择.。
Prime 算法和 Kruskal 算法都是用来求加权连通简单图中权和最小的支撑树(即最小树)的,Prime算法的时间复杂度为O(n^2) (n 为顶点数),Kruskal 算法的时间复杂度为 O(eln(e)) (e为边数),这两种算法都是多项式时间算法,也就是说,最小树问题已经有了有效算法去求解,属于P问题。
Dijkstra 算法求解的是加权连通简单图中一个顶点到其它每个顶点的具有最小权和的有向路,最简单版本的时间复杂度是O(n^2),也是多项式时间算法。
而蚁群算法是一种近似算法,它不是用来解决已存在精确有效算法的问题的,而是用来解决至今没有找到精确的有效算法的问题的,比如旅行商问题(TSP)。
旅行商问题也可以说是求“最短路径”,但它是求一个完全图的最小哈密顿圈,这个问题至今未找到多项式时间算法,属于NPC问题,也就是说,当问题规模稍大一点,现有的精确算法的运算量就会急剧增加。
文中的某些观点引自知乎大神余幸恩,感谢帮忙!~

F. 智能优化算法是几阶算法

是八阶算法,主要包括:
(1)遗传算法: 模仿自然告运界生物进化机制
(2)差分进化算春陪法: 通过群体个体间的合作与竞争来优化搜索
(3)免疫算法: 模拟生物免疫系统学习和认知功袜森梁能
(4)蚁群算法:模拟蚂蚁集体寻径行为
(5)粒子群算法:模拟鸟群和鱼群群体行为
(6)模拟退火算法:源于固体物质退火过程
(7)禁忌搜索算法:模拟人类智力记忆过程
(8)神经网络算法:模拟动物神经网络行为特征

G. 群智能算法及其应用的介绍

群智能算法作为一种新兴的演化计算技术,已成为越来越多研究者的关注焦点,它与人工生命,特别是进化策略以及遗传算法有着极为特殊的联系。群智能理论研究领域主要有两种算法:蚁群算法和粒子群优化算法。蚁群算法是对蚂蚁群落食物采集过程的模拟,已成功应用于许多离散优化问题。粒子群优化算法也是起源于对简单社会系统的模拟,最初是模拟鸟群觅食的过程,但后来发现它是一种很好的优化工具。

H. 蚁群优化算法的使用-编码的问题!

“蚁群算法”学习包下载

下载地址: http://board.verycd.com/t196436.html (请使用 eMule 下载)

近一百多篇文章,打包压缩后有 24.99MB ,基本上是从维普数据库中下载来的,仅供学习和研究之用,请务用于商业活动或其他非法活动中,各文章版权归原作者所有。

如果您觉得本人这样做侵犯了您的版权,请在本帖后回复,本人会马上删除相应的文章。

以下是文件列表,全是 PDF 格式的:

基于蚁群优化算法递归神经网络的短期负荷预测
蚁群算法的小改进
基于蚁群算法的无人机任务规划
多态蚁群算法
MCM基板互连测试的单探针路径优化研究
改进的增强型蚁群算法
基于云模型理论的蚁群算法改进研究
基于禁忌搜索与蚁群最优结合算法的配电网规划
自适应蚁群算法在序列比对中的应用
基于蚁群算法的QoS多播路由优化算法
多目标优化问题的蚁群算法研究
多线程蚁群算法及其在最短路问题上的应用研究
改进的蚁群算法在2D HP模型中的应用
制造系统通用作业计划与蚁群算法优化
基于混合行为蚁群算法的研究
火力优化分配问题的小生境遗传蚂蚁算法
基于蚁群算法的对等网模拟器的设计与实现
基于粗粒度模型的蚁群优化并行算法
动态跃迁转移蚁群算法
基于人工免疫算法和蚁群算法求解旅行商问题
基于信息素异步更新的蚁群算法
用于连续函数优化的蚁群算法
求解复杂多阶段决策问题的动态窗口蚁群优化算法
蚁群算法在铸造生产配料优化中的应用
多阶段输电网络最优规划的并行蚁群算法
求解旅行商问题的混合粒子群优化算法
微粒群优化算法研究现状及其进展
随机摄动蚁群算法的收敛性及其数值特性分析
广义蚁群与粒子群结合算法在电力系统经济负荷分配中的应用
改进的蚁群算法及其在TSP中的应用研究
蚁群算法的全局收敛性研究及改进
房地产开发项目投资组合优化的改进蚁群算法
一种改进的蚁群算法用于灰色约束非线性规划问题求解
一种自适应蚁群算法及其仿真研究
一种动态自适应蚁群算法
蚂蚁群落优化算法在蛋白质折叠二维亲-疏水格点模型中的应用
用改进蚁群算法求解函数优化问题
连续优化问题的蚁群算法研究进展
蚁群算法概述
Ant colony system algorithm for the optimization of beer fermentation control
蚁群算法在K—TSP问题中的应用
Parallel ant colony algorithm and its application in the capacitated lot sizing problem for an agile supply chain
基于遗传蚁群算法的机器人全局路径规划研究
改进的蚁群算法在矿山物流配送路径优化中的研究
基于蚁群算法的配电网络综合优化方法
基于蚁群算法的分类规则挖掘算法
蚁群算法在连续性空间优化问题中的应用
蚁群算法在矿井通风系统优化设计中的应用
基于蚁群算法的液压土锚钻机动力头优化设计
改进蚁群算法设计拉式膜片弹簧
计算机科学技术
基本蚁群算法及其改进
TSP改进算法及在PCB数控加工刀具轨迹中的应用
可靠性优化的蚁群算法
对一类带聚类特征TSP问题的蚁群算法求解
蚁群算法理论及应用研究的进展
基于二进制编码的蚁群优化算法及其收敛性分析
蚁群算法的理论及其应用
基于蚁群行为仿真的影像纹理分类
启发式蚁群算法及其在高填石路堤稳定性分析中的应用
蚁群算法的研究现状
一种快速全局优化的改进蚁群算法及仿真
聚类问题的蚁群算法
蚁群最优化——模型、算法及应用综述
基于信息熵的改进蚁群算法及其应用
机载公共设备综合管理系统任务分配算法研究
基于改进蚁群算法的飞机低空突防航路规划
利用信息量留存的蚁群遗传算法
An Improved Heuristic Ant-Clustering Algorithm
改进型蚁群算法在内燃机径向滑动轴承优化设计中的应用
基于蚁群算法的PID参数优化
基于蚁群算法的复杂系统多故障状态的决策
蚁群算法在数据挖掘中的应用研究
基于蚁群算法的基因联接学习遗传算法
基于细粒度模型的并行蚁群优化算法
Binary-Coding-Based Ant Colony Optimization and Its Convergence
运载火箭控制系统漏电故障诊断研究
混沌扰动启发式蚁群算法及其在边坡非圆弧临界滑动面搜索中的应用
蚁群算法原理的仿真研究
Hopfield neural network based on ant system
蚁群算法及其实现方法研究
分层实体制造激光头切割路径的建模与优化
配送网络规划蚁群算法
基于蚁群算法的城域交通控制实时滚动优化
基于蚁群算法的复合形法及其在边坡稳定分析中的应用
Ant Colony Algorithm for Solving QoS Routing Problem
多产品间歇过程调度问题的建模与优化
基于蚁群算法的两地之间的最佳路径选择
蚁群算法求解问题时易产生的误区及对策
用双向收敛蚁群算法解作业车间调度问题
物流配送路径安排问题的混合蚁群算法
求解TSP问题的模式学习并行蚁群算法
基于蚁群算法的三维空间机器人路径规划
蚁群优化算法及其应用
蚁群算法不确定性分析
一种求解TSP问题的相遇蚁群算法
基于蚁群优化算法的彩色图像颜色聚类的研究
钣金件数控激光切割割嘴路径的优化
基于蚁群算法的图像分割方法
一种基于蚁群算法的聚类组合方法
圆排列问题的蚁群模拟退火算法
智能混合优化策略及其在流水作业调度中的应用
蚁群算法在QoS网络路由中的应用
一种改进的自适应路由算法
基于蚁群算法的煤炭运输优化方法
基于蚁群智能和支持向量机的人脸性别分类方法
蚁群算法在啤酒发酵控制优化中的应用
一种基于时延信息的多QoS快速自适应路由算法
蚁群算法中参数α、β、ρ设置的研究——以TSP问题为例
基于人工蚁群优化的矢量量化码书设计算法
具有自适应杂交特征的蚁群算法
蚁群算法在原料矿粉混匀优化中的应用
基于多Agent的蚁群算法在车间动态调度中的应用研究
用蚁群优化算法求解中国旅行商问题
蚁群算法在婴儿营养米粉配方中的应用
蚁群算法在机械优化设计中的应用
蚁群优化算法的研究现状及研究展望
蚁群优化算法及其应用研究进展
蚁群算法的理论与应用
简单蚁群算法的仿真分析
一种改进的蚁群算法求解最短路径问题
基于模式求解旅行商问题的蚁群算法
一种求解TSP的混合型蚁群算法
基于MATLAB的改进型基本蚁群算法
动态蚁群算法求解TSP问题
用蚁群算法求解类TSP问题的研究
蚁群算法求解连续空间优化问题的一种方法
用混合型蚂蚁群算法求解TSP问题
求解复杂TSP问题的随机扰动蚁群算法
基于蚁群算法的中国旅行商问题满意解
蚁群算法的研究现状和应用及蚂蚁智能体的硬件实现
蚁群算法概述
蚁群算法的研究现状及其展望
基于蚁群算法的配电网网架优化规划方法
用于一般函数优化的蚁群算法
协同模型与遗传算法的集成
基于蚁群最优的输电网络扩展规划
自适应蚁群算法
凸整数规划问题的混合蚁群算法
一种新的进化算法—蛟群算法
基于协同工作方式的一种蚁群布线系统

I. 蚁群算法的概念,最好能举例说明一些蚁群算法适用于哪些问题!

概念:蚁群算法(ant colony optimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值
其原理:为什么小小的蚂蚁能够找到食物?他们具有智能么?设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼的编程,因为程序的错误也许会让你前功尽弃.这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序
应用范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内
引申:跟着蚂蚁的踪迹,你找到了什么?通过上面的原理叙述和实际操作,我们不难发现蚂蚁之所以具有智能行为,完全归功于它的简单行为规则,而这些规则综合起来具有下面两个方面的特点:1、多样性 2、正反馈 多样性保证了蚂蚁在觅食的时候不置走进死胡同而无限循环,正反馈机制则保证了相对优良的信息能够被保存下来.我们可以把多样性看成是一种创造能力,而正反馈是一种学习强化能力.正反馈的力量也可以比喻成权威的意见,而多样性是打破权威体现的创造性,正是这两点小心翼翼的巧妙结合才使得智能行为涌现出来了.引申来讲,大自然的进化,社会的进步、人类的创新实际上都离不开这两样东西,多样性保证了系统的创新能力,正反馈保证了优良特性能够得到强化,两者要恰到好处的结合.如果多样性过剩,也就是系统过于活跃,这相当于蚂蚁会过多的随机运动,它就会陷入混沌状态;而相反,多样性不够,正反馈机制过强,那么系统就好比一潭死水.这在蚁群中来讲就表现为,蚂蚁的行为过于僵硬,当环境变化了,蚂蚁群仍然不能适当的调整.既然复杂性、智能行为是根据底层规则涌现的,既然底层规则具有多样性和正反馈特点,那么也许你会问这些规则是哪里来的?多样性和正反馈又是哪里来的?我本人的意见:规则来源于大自然的进化.而大自然的进化根据刚才讲的也体现为多样性和正反馈的巧妙结合.而这样的巧妙结合又是为什么呢?为什么在你眼前呈现的世界是如此栩栩如生呢?答案在于环境造就了这一切,之所以你看到栩栩如生的世界,是因为那些不能够适应环境的多样性与正反馈的结合都已经死掉了,被环境淘汰了!蚁群算法的实现 下面的程序开始运行之后,蚂蚁们开始从窝里出动了,寻找食物;他们会顺着屏幕爬满整个画面,直到找到食物再返回窝.其中,‘F’点表示食物,‘H’表示窝,白色块表示障碍物,‘+’就是蚂蚁了.

J. 蚁群算法实际应用中参数是怎么选择的

参数一般都是凭经验设置的。
运气好的话,初始值选的好,就迭代的好,一般没有啥最优的公式。

热点内容
lcs脚本官网 发布:2025-05-15 11:56:15 浏览:86
三国志战略版打9级矿什么配置 发布:2025-05-15 11:41:29 浏览:952
安卓加速器怎么关 发布:2025-05-15 11:38:16 浏览:464
密码锁坏了如何打开 发布:2025-05-15 11:30:19 浏览:837
怎样增加共享文件夹连接数量 发布:2025-05-15 11:24:50 浏览:961
安卓如何关闭单应用音量 发布:2025-05-15 11:22:31 浏览:351
抖音电脑后台服务器中断 发布:2025-05-15 11:11:59 浏览:307
sql2008服务器 发布:2025-05-15 11:03:27 浏览:306
我的世界pe服务器创造 发布:2025-05-15 10:51:17 浏览:608
移动端打吃鸡要什么配置 发布:2025-05-15 10:48:16 浏览:756