当前位置:首页 » 操作系统 » 实现调度算法

实现调度算法

发布时间: 2023-05-17 20:19:52

❶ Java调度算法 来个大神写程序 选择一个调度算法,实现处理器调度。

public class CLSS_ch2 {

public static void main(String[] args) {
int sum = 0;
for (int i = 1; i <= 100; i++) {
if (i % 10 == 3)
continue;
sum += i;
}
System.out.println(sum);
}
}
计算机图形技术组的成员在1993年开发出了 Lua。它被设计成为脚本语言,是一种不可获取的过程式编程语言,以简单而强大而闻名。

❷ 进程调度方案设计 实现一个基本动态优先级的调度算法

前两天做操作系统作业的时候学习了一下几种进程调度算法,在思考和讨论后,有了一些自己的想法,现在就写出来,跟大家讨论下。,或者说只有有限的CPU资源,当系统中有多个进程处于就绪状态,要竞争CPU资源时,操作系统就要负责完成如何分配资源的任务。在操作系统中,由调度程序来完成这一选择分配的工作,调度程序所使用的算法即是调度算法。调度算法需要考虑的指标主要有尽量保证CPU资源分配的公平性;按照一定策略强制执行算法调度;平衡整个计算机系统,尽量保持各个部分都处于忙碌状态。而根据系统各自不同的特点和要求,调度算法又有一些侧重点和目标不同,因此,算法按照系统差异主要分为三大类:批处理系统中的调度算法,代表调度算法有:先来迟轿斗先服务、最短作业优先、最短剩余时间优先。交互式系统中的调度算法,代表调度算法有:轮转调度、优先级调度、多级队列、最短进程优先、保证调度、彩票调度、公平分享调度。实时系统中的调度算法,代表调度算法有:速率单调调度、最早最终时限优先调度。下面就上述提到的调度算法中挑出几个进行重点分析:保证调度保证调度是指利用算法向用户做出明确的性能保证,然后尽力按照此保证实现CPU的资源分配。利用这种算法,就是定一个进程占用CPU的时间的标准,然后按照这个标准去比较实际占用CPU的时间,调度进程每次使离此标准最远的进程得到资源,不断满足离所保证的标准最远的进程,从而平衡资源分配满足这个标准的要求。保证调度算法的优点是:能很好的保证进程公平的CPU份额,当系统的特点是:进程的优先级没有太大悬殊,所制定的保证标准差异不大,各个进程对CPU的要求较为接近时,比如说系统要求n个进程中的每个进程都只占用1/n的CPU资源,利用保证调度可以很容易的实现稳定的CPU分配要求。但缺点是,这种情况太过理想,当系统的各个进程对CPU要求的紧急程度不同,所制定的保证较为复杂的时候,这个算法实现起来比较困难。彩票调度彩票调度这种算法的大意是指向进程提供各种系统资源如CPU资源的彩票,当系统需要做出调度决策时,随机抽出一张彩票,由此彩票的拥有者获得资源。在彩票调度系统中,如果有一个新的进程出现并得到一些彩票,那么在下一次的抽奖中,该进程会有同它持有彩票数量成正比例的机会赢得奖励。进程持有的彩票数量越多,则被抽中的可能性就越大。调度程序可以通过控制进程的彩票持有数量来进行调度。彩票调度有很多优点:首先,它很灵活,系统增加分给某个进程的彩票数量,就会大大增加它占用资源的可能性,可以说,彩票调度的反应是迅速的,而快速响应需求正是交互式系统的一个重要要求。其次,彩票调度算法中,进程可以交换彩票,这个特点可以更好的保证系统的平衡性,使其各个部分都尽可能的处于忙碌状态。而且利用彩票调度还可以解决许多别的算法很难解决的问题,例如可以根据特定的需要大致成比例的划分CPU的使用。速率单调调度速率单调调度算法是一种可适用于可抢占的周期性进程的经典静态实时调度算法。当实时系统中的进程满足:每个周期性进程必须在其周期内完成,且进程之间没有相互依赖的关系,每个进程在一次突发中需要相同的CPU时间量,非周期的进程都没有最终时限四个条件时,并且为了建模方便,我们假设进程抢占即刻发生没有系统码磨开销,可以考虑利用速率单调算法。速率单调调度算法是将进程的速率(按照进程周期所算出的每秒响应的次数)赋为优先级,则保证了优先级与进程速率成线性关系,这即是我们所说的速率单调。调度程序每次运行优先级最高的,只要优先级较高的程序需要运行,则立即抢占优先级低的进程,而优先级较低的进程必须等所有优先级高于它的进程结束后才能运行。速率单调调度算法可以保证系统中最关键的任务总是得到调度,但是缺点是其作为一种静态算法,灵活性不够好,当进程数变多,系统调度变得复杂时,可能不能较好的保证进程在周期内运行。最早最终时限优先调度最早最终时限优先调度算法是一个动态算法,不要求进程是周期性的,只要帆李一个进程需要CPU时间,它就宣布它的到来时间和最终时限。调度程序维持一个可运行的进程列表,按最终时限排序,每次调度一个最终时限最早的进程得到CPU 。当新进程就绪时,系统检查其最终时限是否在当前运行的进程结束之前,如果是,则抢占当前进程。由于是动态算法,最早最终优先调度的优点就是灵活,当进程数不超过负载时,资源分配更优,但也同样由于它的动态属性,进程的优先级都是在不断变化中的,所以也没有哪个进程是一定可以保证满足调度的,当进程数超过负载时,资源分配合理度会急速下降,所以不太稳定。

❸ 进程调度算法

FCFS调度算法属于不可剥夺算法。从表面上看,它对所有作业都是公平的,但若一个长作业先到达系统,就会使后面许多短作业等待很长时间,因此它不能作为分时系统和实时系统的主要调度策略。但它常被结合在其他调度策略中使用。例如,在使用优先级作为调度策略的系统中,往往对多个具有相同优先级的进程按FCFS原则处理。

FCFS调度算法的特点是算法简单,但效率低; 对长作业比较有利,但对短作业不利(相对SJF和高响应比);

FCFS调度算法有利于CPU繁忙型作业,而不利于I/O繁忙型作业。

​ 短作业优先调度算法是一个非抢占策略,他的原则是下一次选择预计处理时间最短的进程,因此短进程将会越过长作业,跳至队列头。该算法即可用于作业调度,也可用于进程调度。 但是他对长作业不利,不能保证紧迫性作业(进程)被及时处理,作业的长短只是被估算出来的。

缺点:

该算法对长作业不利,SJF调度算法中长作业的周转时间会增加。更严重的是,如果有一长作业进入系统的后备队列,由于调度程序总是优先调度那些 (即使是后进来的)短作业,将导致长作业长期不被调度(“饥饿”现象,注意区分“死锁”。后者是系统环形等待,前者是调度策略问题)。

该算法完全未考虑作业的紧迫程度,因而不能保证紧迫性作业会被及时处理。

由于作业的长短只是根据用户所提供的估计执行时间而定的,而用户又可能会有意或无意地缩短其作业的估计运行时间,致使该算法不一定能真正做到短作业优先调度。

SJF调度算法的平均等待时间、平均周转时间最少。

高响应比优先调度算法既考虑作业的执行时间也考虑作业的等待时间,综合了先来先服务和最短作业优先两种算法的特点。

该算法中的响应比是指作业等待时间与运行比值,响应比公式定义如下:

响应比 =(等待时间+要求服务时间)/ 要求服务时间,即RR=(w+s)/s=1+w/s,因此 响应比一定是大于等于1的。

短作业与先后次序的兼顾,且不会使长作业长期得不到服务。

响应比计算系统开销,增加系统开销。

高响应比优先调度算法适合批处理系统,主要用于作业调度。

为了实现 RR 调度,我们将就绪队列视为进程的 FIFO 队列。新进程添加到就绪队列的尾部。CPU 调度程序从就绪队列中选择第一个进程,将定时器设置在一个时间片后中断,最后分派这个进程。

接下来,有两种情况可能发生。进程可能只需少于时间片的 CPU 执行。对于这种情况,进程本身会自动释放 CPU。调度程序接着处理就绪队列的下一个进程。否则,如果当前运行进程的 CPU 执行大于一个时间片,那么定时器会中断,进而中断操作系统。然后,进行上下文切换,再将进程加到就绪队列的尾部,接着 CPU 调度程序会选择就绪队列内的下一个进程。

采用 RR 策略的平均等待时间通常较长。

在 RR 调度算法中,没有进程被连续分配超过一个时间片的 CPU(除非它是唯一可运行的进程)。如果进程的 CPU 执行超过一个时间片,那么该进程会被抢占,并被放回到就绪队列。因此, RR调度算法是抢占的。

算法描述

1、进程在进入待调度的队列等待时,首先进入优先级最高的Q1等待。

2、首先调度优先级高的队列中的进程。若高优先级中队列中已没有调度的进程,则调度次优先级队列中的进程。例如:Q1,Q2,Q3三个队列,当且仅当在Q1中没有进程等待时才去调度Q2,同理,只有Q1,Q2都为空时才会去调度Q3。

3、对于同一个队列中的各个进程,按照FCFS分配时间片调度。比如Q1队列的时间片为N,那么Q1中的作业在经历了N个时间片后若还没有完成,则进入Q2队列等待,若Q2的时间片用完后作业还不能完成,一直进入下一级队列,直至完成。

4、在最后一个队列QN中的各个进程,按照时间片轮转分配时间片调度。

5、在低优先级的队列中的进程在运行时,又有新到达的作业,此时须立即把正在运行的进程放回当前队列的队尾,然后把处理机分给高优先级进程。换而言之,任何时刻,只有当第1~i-1队列全部为空时,才会去执行第i队列的进程(抢占式)。特别说明,当再度运行到当前队列的该进程时,仅分配上次还未完成的时间片,不再分配该队列对应的完整时间片。

❹ 编写代码实现作业的三种调度算法

#include<windows.h>
#include<iostream>
#include<stdio.h>
#include<string>
using namespace std;
const int maxnum=100;
int N; /*进程数*/
double start[maxnum],endtime[maxnum],arrive[maxnum],runtime[maxnum],zhou[maxnum];
double averagezhou; // 平均周转时间
double average_zhou; //平均带权周转时间
char name; //进程名
double dqzhou[maxnum]; //带权周转时间
typedef struct node
{
char name[10]; //进程名
int round; //进程时间轮转时间片
int cputime; //进程占用CPU时间
int needtime; //进程到完成还要的时间
char state; //进程的状态
struct node *next; //链指针
}PCB;
PCB *finish,*ready,*tail,*run; /*队列指针*/

void firstin() /*将就绪队列中的第一个进程投入运行*/
{
run=ready; /*就绪队列头指针赋值给运行头指针*/
run->state='R'; /*进程状态变为运行态*/
ready=ready->next; /*就绪对列头指针后移到下一进程*/
}
void print1(PCB *q) /*进程PCB输出*/
{
printf("进程名 已运行时间 还需要时间 时间片 状态\n");
printf(" %-10s%-15d%-10d%-10d %-c\n",q->name,q->cputime,q->needtime,q->round,q->state);
}
void print() /*输出函数*/
{
PCB *p;
if(run!=NULL) /*如果运行指针不空*/
print1(run); /*输出当前正在运行的PCB*/
p=ready; /*输出就绪队列PCB*/
while(p!=NULL)
{
print1(p);
p=p->next;
}
p=finish; /*输出完成队列的PCB*/
while(p!=NULL)
{
print1(p);
p=p->next;
}
}
void insert(PCB *p2) //轮转法插入函数
{
tail->next=p2; //将新的PCB插入在当前就绪队列的尾
tail=p2;
p2->next=NULL;
}
void create() /*创建进程PCB*/
{
PCB *p;
int i,time;
char na[10];
ready=NULL;
finish=NULL;
run=NULL;
printf("请输入进程名称和所需要CPU的时间:\n");
for(i=1;i<=N;i++)
{
p=(PCB *)malloc(sizeof(PCB));
scanf("%s",na);
scanf("%d",&time);
strcpy(p->name,na);
p->cputime=0;
p->needtime=time;
if(i==1)
p->state='R';
else
p->state='W';
p->round=1; /*时间片*/
if(ready!=NULL)
insert(p);
else
{
p->next=ready;
ready=p;
tail=p;
}
}
printf("------------------------------------------------------------------\n");
print(); /*输出进程PCB信息*/
run=ready; /*将就绪队列的第一个进程投入运行*/
ready=ready->next;
run->state='R';
}
void RR() //时间片轮转调度
{
while(run!=NULL)
{
run->cputime=run->cputime+1;
run->needtime=run->needtime-1;
if(run->needtime==0) /*运行完将其变为完成态,插入完成队列*/
{
run->next=finish;
finish=run;
run->state='F';
run=NULL;
if(ready!=NULL)
firstin(); /*就绪对列不空,将第一个进程投入运行*/
}
else
if(ready!=NULL) /*如就绪队列不空*/
{
run->state='W'; /*将进程插入到就绪队列中等待轮转*/
insert(run);
firstin(); /*将就绪对列的第一个进程投入运行*/
}
printf("------------------------------------------------------------------\n");
print(); /*输出进程信息*/
}
}

void FCFS(double *arrive,double *runtime,double n) //先来先服务调度算法
{
start[0]=arrive[0]; //开始执行时间=到达时间
endtime[0]=start[0]+runtime[0]; //完成时间=开始时间+服务时间
zhou[0]=endtime[0]-arrive[0]; //周转时间=完成时间-到达时间
dqzhou[0]=zhou[0]/runtime[0];
for(int i=0;i<n;i++)
{
if(endtime[i-1]>arrive[i]||endtime[i-1]==arrive[i])
endtime[i]=endtime[i-1]+runtime[i];
else
endtime[i]=arrive[i]+runtime[i];
zhou[i]=endtime[i]-arrive[i];
dqzhou[i]=zhou[i]/runtime[i];
averagezhou+=zhou[i];
average_zhou+=dqzhou[i];
}
averagezhou=averagezhou/n;
average_zhou=average_zhou/n;
cout<<"完成时间为:"<<endl;
for(int j=0;j<n;j++)
cout<<endtime[j]<<" "<<endl;
cout<<"周转时间为:"<<endl;
for(int k=0;k<n;k++)
cout<<zhou[k]<<" "<<endl;
cout<<"带权周转时间为:"<<endl;
for(int m=0;m<n;m++)
cout<<dqzhou[m]<<" "<<endl;
cout<<"平均周转时间为:"<<endl;
cout<<averagezhou<<" "<<endl;
cout<<"平均带权周转时间为:"<<endl;
cout<<average_zhou<<" "<<endl;
}

void SJF(double *arrive,double *runtime,double n) //短作业优先调度算法
{
int end[maxnum]; //用于标记进程是否已经执行,应经执行end[i]=1,否则为0;
for(int k=0;k<n;k++)
end[k]=0;
int temp,now=0,next=1,p=1; //now表示刚执行完的进程号,next表示下一个要执行的进程号
start[0]=arrive[0]; //开始执行时间=到达时间
endtime[0]=start[0]+runtime[0]; //完成时间=开始时间+服务时间
zhou[0]=endtime[0]-arrive[0]; //周转时间=完成时间-到达时间
dqzhou[0]=zhou[0]/runtime[0]; //带权周转时间=周转时间/服务时间
averagezhou=zhou[0];
average_zhou=dqzhou[0];
end[now]=1; //执行完的进程设置为1;
for(int i=1;i<n;i++)
{
int j;
for(j=1;j<n;)
{
if(arrive[j]<endtime[now]||arrive[j]==endtime[now])
j++;
else
break;
}
temp=j;
int min=p;
for(j=1;j<=temp;j++)
{
if(runtime[min]>runtime[j] && end[j]==0)
min=j;
}
next=min;
endtime[next]=endtime[now]+runtime[next];
zhou[next]=endtime[next]-arrive[next];
dqzhou[next]=zhou[next]/runtime[next];
averagezhou+=zhou[next];
average_zhou+=dqzhou[next];
end[next]=1;
now=next;
next=p;
while(end[p]!=0)
p++;
}
averagezhou=averagezhou/n;
average_zhou=average_zhou/n;
cout<<"完成时间为:"<<endl;
for(int j=0;j<n;j++)
cout<<endtime[j]<<" "<<endl;
cout<<"周转时间为:"<<endl;
for(k=0;k<n;k++)
cout<<zhou[k]<<" "<<endl;
cout<<"带权周转时间为:"<<endl;
for(int m=0;m<n;m++)
cout<<dqzhou[m]<<" "<<endl;
cout<<"平均周转时间为:"<<endl;
cout<<averagezhou<<" "<<endl;
cout<<"平均带权周转时间为:"<<endl;
cout<<average_zhou<<" "<<endl;
}

int EDF() //最早截止时间的调度算法
{
int arrive_A,arrive_B; //标记进程A,进程B的到达时间
int zhouqi_A,zhouqi_B,serve_A,serve_B; //进程的周期时间和服务时间
int i,j,a=0,b=0,ka=0,kb=0; //ka,kb为开关,i,j,a,b为进程下标
int num_a=0,num_b=0; //服务累计时间
printf("输入进程A的周期时间,服务时间: ");
scanf("%d%d",&zhouqi_A,&serve_A);
printf("输入进程B的周期时间,服务时间: ");
scanf("%d%d",&zhouqi_B,&serve_B);
for(int T=0;T<=100;T++)
{
if(num_a==serve_A) //进程A完成
{
num_a=serve_A+1;
printf("当T=%d时",T);
printf("进程A%d结束\n",a);
if(num_b<serve_B)
{
printf(" 调用进程B%d\n",b);
kb=1;
}
ka=0;
}
if(num_b==serve_B)
{
num_b=serve_B+1;
printf("当T=%d时",T);
printf("进程B%d结束\n",b);
if(num_a<serve_A)
{
printf(" 调用进程A%d\n",a);
ka=1;
}
kb=0;
}
if(T%zhouqi_A==0 && T%zhouqi_B==0)
{
arrive_A=arrive_B=T;
j=++a;
i=++b;
printf("当T=%d时,进程A%d和进程B%d同时产生,此时,",T,j,i);
if(zhouqi_A<=zhouqi_B)
{
printf("调用进程A%d,阻塞进程B%d\n",j,i);
ka=1;
kb=0;
}
else
{
printf("调用进程B%d,阻塞进程A%d\n",i,j);
ka=0;
kb=1;
}
num_a=num_b=0;
}
if(T%zhouqi_A==0&&T%zhouqi_B!=0)
{
arrive_A=T;
printf("当T=%d时",T);
printf("进程A%d产生 ",++a); //不可能与进程A竞争处理器
num_a=0;
if(num_b<serve_B) //进程B没有完成
if(arrive_B+zhouqi_B>arrive_A+zhouqi_A) //若进程B最早截止时间大于进程A的,则执行进程A
{
printf("进程A%d执行。\n",a);
ka=1;
kb=0;
}
else //若进程B最早截止时间小于等于进程A的
printf("进程B%d继续执行。\n",b);
else //进程B完成
{
printf("进程A%d执行。\n",a);
ka=1;
}
}
if(T%zhouqi_A!=0 && T%zhouqi_B==0)
{
arrive_B=T;
printf("当T=%d时",T);
printf("进程B%d产生,",++b); //不可能与进程B竞争处理器
num_b=0;
if(num_a<serve_A) //进程A没有完成
if(arrive_B+zhouqi_B>=arrive_A+zhouqi_A) //进程A的最早截止时间不小于B
printf("进程A%d继续执行。\n",a);
else
{
printf("进程B%d执行。\n",b);
kb=1;
ka=0;
}

else //进程A完成
{
printf("进程B%d执行。\n",b);
kb=1;
}
}
if(ka)
num_a++;
if(kb)
num_b++;
}
return 1;
}

int main()
{
system("color 0b"); //设置颜色
cout<<"最早截止时间的调度算法如下: "<<endl<<endl;
EDF();
int n;
cout<<endl;
cout<<"请输入进程的数目: ";
cin>>n;
cout<<"请按进程到达时间从小到大依次输入n个进程的到达时间: "<<endl;
for(int i=0;i<n;i++)
cin>>arrive[i];
cout<<"请按上面进程的顺序依次输入n个进程的服务时间: "<<endl;
for(int j=0;j<n;j++)
cin>>runtime[j];
cout<<"先来先服务调度算法如下: "<<endl;
FCFS(arrive,runtime,n);
cout<<endl<<endl;
cout<<"短作业优先调度算法如下: "<<endl;
SJF(arrive,runtime,n);
cout<<endl<<endl;
printf("轮转调度算法如下:\n\n");
printf("输入创建进程的数目:\n");
scanf("%d",&N);
create();
RR();
return 0;
}

❺ 进程调度算法

为了实现进程调度,在进程调度机制中,应具有如下三个基本部分:

“抢占”不是一种任意性行世码为,必须遵守一定的原则。主要原则有:

基于时间片的轮转(round robin,RR)调度算法。该算法采取了非常公平的处理机分配方式,卜册即让就绪队列上的每一个矜持每次仅运行一个时间片。如果就绪队列上有n个进程,则每个进程每次大约都可获得1/n的处理机时间。

为了满足系统中所有进程的紧迫性是不同的,在进程调度算法中引入优先级,而形成优先级调度算法。

该算法将系统中的进程就绪队列从一个拆分为若干个,将不同类型或性质的进程固定分配在不同的就绪队列,不同的就绪队列采用不同的调度算法,一个就绪队列中搜弊哪的进程可以设置不同的优先级,不同的就绪队列本身也可以设置不同的优先级。

❻ 怎么用C语言实现多级反馈队列调度算法

调度算法的实施过程如下所述:(1)应设置多个就绪队列,并为各个队列赋予不同的优先级。(2)当一个新进程进入内存后,首先将它放入第一队列的末尾,按FCFS的原则排队等待调度。当轮到该进程执行时,如他能在该时间片内完成,便可准备撤离系统;如果它在一个时间片结束时尚未完成,调度程序便将该进程转入第二队列的末尾,再同样地按FCFS原则等待调度执行;如果它在第二队列中运行一个时间片后仍未完成,再依次将它放入第三队列……,如此下去,当一个长作业进程从第一队列依次降到第N队列后,在第N队列中便采取时间片轮转的方式运行

❼ 题目:编程实现四种调度算法(高分求助!!!!!!!!!!!)

你是师大的?

❽ 用C++编程实现两个调度算法(如SJF、时间片轮转法、优先权调度、、、)谢谢!

#include<stdio.h>
#include<time.h>
#include<stdlib.h>

/*********************以下是全局数据结构和变量***********************/
/*PCB 结构*/
struct PCB{
int pname;
int pri;
int runtime;
int waittime;
struct PCB *next;
}pcb[7];

/* 运行指针*/
struct PCB *running;

/*高优先级就绪队列头指针*/
struct PCB *Hready;

/*低优先级队列头指针*/
struct PCB *Lready;

/*等待队列头指针*/
struct PCB *wait;

int sig=0;

/**************************以下是函数说明****************************/
/*利用循环实现延迟*/
void delay();

/*模拟进程3-9*/
void proc(struct PCB *running);

/*将node插入到head所指示的队列的尾部*/
void InsertIntoQueueTail(struct PCB ** head,struct PCB *node);

/*进程调度函数*/
int proc_switch();

/*进程等待函数*/
void proc_wait();

/*进程唤醒函数*/
int proc_wakeup();

/************************以下是函数定义及注释************************/
/*主函数*/
main()
{
int i;
/*初始化,创建进程3-9,置低优先级,等待时间为0,
依次插入低优先级队列*/
for(i = 0;i < 7;i++){
pcb[i].pname = i+3;
pcb[i].pri = 0;
pcb[i].waittime = 0;
InsertIntoQueueTail(&Lready,&pcb[i]);
}
/*等待队列和高优先级队列为空*/
wait = NULL;
Hready=NULL;

printf("\nThe process_switch begin:\n");
/*模拟进程调度开始*/
for(;;)
{
switch(sig){
case 0:/*无进程等待调度,打印信息并返回*/
if(!proc_switch())
{
printf("No Process to run,press any key to return:\n");
getchar();
}
break;
case 1:proc_wait();
break;
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:proc(running);
break;
default:printf("\nerror!");
exit(-1);
}
}
}

/*功能:延迟一个时间片*/
/*入口参数:无*/
/*出口参数:无*/
void delay()
{
int i,j;
for(i=0;i<20000;i++)
for(j=0;j<10000;j++)
{
}
}

/*功能:进程3-9*/
/*入口参数:运行指针*/
/*出口参数:无*/
void proc(struct PCB * running)
{
int i;
srand( (unsigned)time( NULL ) );
/*显示当前运行的进程的id*/
printf("\nNow Process %d is running\n",running->pname);
/*当前进程执行running->runtime个时间片*/
for(i=running->runtime;i>0;i--){
/*显示剩余的时间片*/
printf("%d time slice(s) left\n",i);
/*延迟*/
delay();
proc_wakeup();
/*产生一个1到1000的随机数,若该随机数小余100,当前进程等待,*/
if((rand()%1000+1)<100){
printf("Process %d begins to wait.\n",running->pname);
sig=1;
return;
}
}
/*显示时间片耗尽,进程转为低优先级就绪状态*/
printf("Time slices for process %d exhausted.\n",running->pname);
InsertIntoQueueTail(&Hready,running);
sig=0;
return;

}
/*功能:将一个节点插入队列尾部*/
/*入口参数:队列头指针地址head,待插入结点node*/
/*出口参数:无*/
void InsertIntoQueueTail(struct PCB **head,struct PCB *node)
{
struct PCB *p;
node->next=NULL;
/*被插入队列为空*/
if(*head==NULL){
*head=node;
return;
}
/*被插入队列不为空*/
else{
p=*head;
/*找到队列的最后一个结点*/
while(p->next!=NULL) p=p->next;
p->next=node;
}
}

/*功能:进程调度*/
/*入口参数:无*/
/*出口参数:若调度成功,返回1,否则返回0*/

int proc_switch()
{
/*若高优先级就绪队列和低优先级就绪队列均为空,则循环执行进程唤醒*/
while(Hready == NULL && Lready == NULL)
if(!proc_wakeup()) return 0;

/*若高优先级就绪队列非空,则执行其第一个进程,分配2个时间片*/
if(Hready != NULL){
running = Hready;
Hready = Hready -> next;
running->runtime = 2;
}
/*若高优先级就绪队列为空,则执行低优先级就绪队列的第一个进程,
分配5个时间片*/
else{
running = Lready;
Lready=Lready -> next;
running -> runtime = 5;
}
/*别调度进程的id赋给sig*/
sig = running -> pname;
return 1;
}

/*功能:进程等待。将当前运行进程置高优先级,等待时间为20,
插入等待队列尾部*/
/*入口参数:无*/
/*出口参数:无*/
void proc_wait()
{
struct PCB *p;
running->pri=1;
running->waittime=20;
InsertIntoQueueTail(&wait,running);
sig=0;
return;
}

/*功能:进程唤醒*/
/*入口参数:无*/
/*出口参数:若等待队列为空,则返回0,否则返回1*/
int proc_wakeup()
{
struct PCB *p,*last,*MoveToReady;
p = wait;
/*等待队列为空,返回0*/
if(p == NULL) return 0;

/*延迟*/
delay();
/*等待队列中每个进程的等待时间减1*/
while(p != NULL){
p -> waittime -= 1;
p=p->next;
}
p=wait;
/*从等待队列中摘除等待时间为0的进程,插入到高优先级就绪队列的尾部*/
while(p!=NULL){
if(p -> waittime == 0){
MoveToReady = p;
if (p == wait)
wait = p->next;
else
last -> next = p->next;
p = p -> next;
InsertIntoQueueTail(&Hready,MoveToReady);
}
else{

p = p -> next;
}
}
sig =0;
return 1;
}

❾ 五种进程调度算法的总结;

1、时间片轮转调度 算法 (RR):给每个进程固定的执行时间,根据进程到达的先后顺序让进程在单位时间片内执行,执行完成后便调度下一个进程执行,时间片轮转调度不考虑进程等待时间和执行时间,属于抢占式调度。优点是兼顾长短作业;缺点是平均等待时间较长,上下文切换较费时。适用于分时系统。
2、先来先服务调度算法(FCFS):根据进程到达的先后顺序执行进程,不考虑等待时间和执行时间,会产生饥饿现象。属于非抢占式调度,优点是公平,实现简单;缺点是不利于短作业。
3、优先级调度算法(HPF):在进程等待队列中选择优先级最高的来执行。
4、多级反馈队列调度算法:将时间片轮转与优先级调度相结合,把进程按优先级分成不同的队列,先按优先级调度,优先级相同的,按时间片轮转。优点是兼顾长短作业,有较好的响应时间,可行性强,适用于各种作业环境。
5、高响应比优先调度算法:根据“响应比=(进程执行时间+进程等待时间)/ 进程执行时间”这个公式得到的响应比来进行调度。高响应比优先算法在等待时间相同的情况下,作业执行的时间越短,响应比越高,满足段任务优先,同时响应比会随着等待时间增加而变大,优先级会提高,能够避免饥饿现象。优点是兼顾长短作业,缺点是计算响应比开销大,适用于批处理系统。

热点内容
php宏定义 发布:2025-05-15 02:32:54 浏览:269
咸鱼支付密码哪里改 发布:2025-05-15 02:32:53 浏览:519
存储机箱 发布:2025-05-15 02:31:31 浏览:836
编程很累吗 发布:2025-05-15 02:29:25 浏览:552
疫情期间访问国外网络 发布:2025-05-15 02:24:24 浏览:247
我的世界网易版游戏服务器 发布:2025-05-15 02:23:46 浏览:221
全球编程网站 发布:2025-05-15 02:22:55 浏览:334
编程猫知乎 发布:2025-05-15 02:18:00 浏览:631
服务器转接搭建 发布:2025-05-15 02:12:50 浏览:518
编译好的内核如何升级另一台主机 发布:2025-05-15 02:00:06 浏览:760