当前位置:首页 » 操作系统 » Opengl旋转算法

Opengl旋转算法

发布时间: 2025-05-05 12:34:36

Ⅰ 如何做人体骨架模型

本文提供一种将骨架动作矢量映射到人体骨架模型的一种方法,通过输入各个骨骼的当前方向,反馈给骨架模型,这样就实现了动画的效果。实验开发工具是VC6.0在OpenGL平台上开发完成。

阅读对象:

假定读者已经熟悉OpenGL编程,就算不熟悉,只要了解基本的旋转,平移,堆栈操作就好。
假定读者已经了解基本的c++编程,其中需要了解递归的算法,递归的方法请参考一下数据结构吧。

制作过程:

第一步,3D模型准备

这一步骤的目的是提供分解的骨骼模型,它需要导出多个组成身体结构的文件,模型可以不用自己制作,只要到网上找找吧,应该很多,最好是是人体模型,如果用动物的模型也可以,不过需要自己定义映射骨架了,比如图中的骷髅模型是我从人体动画软件poser 5.0找到的。然后使用3d max 将身体的各个部位导出为3ds文件,这个步骤很简单,也不需要有什么3d max的基础。这里有一个小的技巧就是可以选中多个部分作为一个3ds模型导出,比如我需要将左右肩胛骨与脊椎骨肋骨作为同一个部分导出,这样可以将它命名为身体躯干(body)。这样我们就准备了各个3ds文件了,分别是:

身体躯干 BODY.3DS
头部 HEAD.3DS
左臂 LSHOULDER.3DS
右臂 RSHOULDER.3DS
左小臂 LELBOW.3DS
右小臂 RELBOW.3DS
左大腿 LTHIGH.3DS
右大腿 RTHIGH.3DS
左小腿 LFEET.3DS
右小腿 RFEET.3DS

这样这些组成部分就可以灵活的拼接出一个人体来了。

第二步,定义相关的核心数据结构

为了得到运动的各个身体部分数据信息,我们需要存储一些运动信息,主要有:
骨骼ID
骨骼关节的当前位置;r_x,r_y,r_z
骨骼之间的关系,例如手臂是躯干的延伸,而左小臂是左臂的延伸;PID,CID

我们可以通过下图来了解骨骼之间的结构关系

存放3ds文件位置;file_name_3ds
3ds模型的初始化方向;这个是比较抽象一点的概念,它是指从父节点指向子节点的方向,例如左小臂的初始位置是平放向下,那么对应的矢量就是 (-0.2,-1,0)

以下是数据结构部分:
class bone
{
public:
int y;
int x;
int r_z; //现实世界z坐标
int r_y;
int r_x;
int rotated_X; //旋转后的坐标
int rotated_Y;
int is_marked; //是否已经标记
int PID; //父节点
int CID; //子节点,目前针对轴关节和膝盖有效
float start_arc_x,end_arc_x; //相对父节点的x 左右方向转动角度限制
float start_arc_y,end_arc_y; //相对父节点的y 上下方向转动角度限制
float start_arc_z,end_arc_z; //相对父节点的z 前后方向转动角度限制
double LengthRatio;
char name[80]; //名称
char file_name_3ds[180]; //3ds文件名称
int ID;
bone(int ID,char *name,int PID);
virtual ~bone();
float bone_init_x,bone_init_y,bone_init_z; //初始化骨骼的矢量方向,3d max 模型
};

第三步,初始化骨架结构

在定义了bone的结构以后,我们定义一个skeleton类来在第一次初始化时加载这些结构,

obone = bone (2,"head",1); //定义一个bone
strcpy(obone.file_name_3ds,"head.3DS"); //设置它的3ds文件名
obone.bone_init_x = 0; //初始化骨骼的矢量方向
obone.bone_init_y = 1;
obone.bone_init_z = 0;
bonevec.push_back (obone); //放入vector结构,这里用到了STL编程技术中的vector

以下是实现的部分代码:
skelecton::skelecton()
{
float fy = 0.56f ;
float ftx = 0.19f;
float ffx = 0.08f;
bone obone = bone (1,"neck",0);
bonevec.push_back (obone);

obone = bone (2,"head",1);
strcpy(obone.file_name_3ds,"head.3DS");
obone.bone_init_x = 0;
obone.bone_init_y = 1;
obone.bone_init_z = 0;
bonevec.push_back (obone);

obone = bone (3,"rShoulder",1);
bonevec.push_back (obone);

obone = bone (4,"lShoulder",1);
bonevec.push_back (obone);

obone = bone (5,"rElbow",3);
strcpy(obone.file_name_3ds,"rShoulder.3DS");
obone.bone_init_x = fy;
obone.bone_init_y = -1;
obone.bone_init_z = 0;
obone.CID = 7;
bonevec.push_back (obone);

obone = bone (6,"lElbow",4);
strcpy(obone.file_name_3ds,"lShoulder.3DS");
obone.bone_init_x = -fy;
obone.bone_init_y = -1;
obone.bone_init_z = 0;
obone.CID = 8;
bonevec.push_back (obone);

//.............太长只给出部分的代码..........................
}

第四步,学习3ds公共的类CLoad3DS,可以用来载入显示模型

这个类是公用一个类,详细的类CLoad3DS的接口信息可以到一个open source项目里参考。http://scourge.sourceforge.net
http://scourge.sourceforge.net/api/3ds_8h-source.html
实际上在使用这个类时候,我做了一些修改,加了得到最大顶点的方法。这个在第五步会说明。

我们定义一个OpenGL的类来做模型控制类,负责载入模型,

CLoad3DS* m_3ds;

int OpenGL::Load3DS(int ID, char *filename)
{
if(m_3ds!=NULL) m_3ds->Init(filename,ID);
return 0;
}

然后在显示时候调用

int OpenGL::show3ds(int ID)
{
m_3ds->show3ds(ID,0,0,0,2);
return 0;
}

第五步,使用递归方法分层次载入模型

这里是重点的内容了,让我们思考一些问题,实现骨骼会随着输入的方向而改变方向,需要做那些事情呢?

首先针对一块骨骼来考虑:

第一,我们需要让骨骼绕着它的节点旋转到输入的方向上

第二,我们需要知道骨骼目前节点的位置,才能旋转。可是我们知道骨骼会跟着它的父骨骼转动的,例如左小臂会跟着左臂转动,当身体转动时左臂也会跟着身体转动的,这里看起来像是有一个父子连动的关系,所以当前节点的位置会与它的父骨骼有关,父骨骼转动的角度,子骨骼也必须转动,所以这里自然想到了递归模型了,至于如何存储这些转动过程呢,还好openGL提供了glPushMatrix();glPopMatrix();那么所有的子骨骼必须包含在父骨骼的glPushMatrix();glPopMatrix();好了,这个变成

//递归实现3d现实
int skelecton::Render_skeleton_3D(int ID)
{

glPushMatrix(); //开始记录堆栈
joint_point = pgl->get_joint_point(ID); //找到节点位置
glTranslatef(joint_point.x,joint_point.y,joint_point.z); //坐标移到节点位置
pgl->rotate_bone (vt1,vt2,vto); //旋转骨骼到指定的方向
glTranslatef(-joint_point.x,-joint_point.y,-joint_point.z);//坐标移回来
pgl->show3ds(ID); //显示模型

//遍历子节点
for (theIterator = bonevec.begin(); theIterator != bonevec.end(); theIterator++)
{
pbone = theIterator;
if((pbone->PID == ID) )
{
Render_skeleton_3D(pbone->ID); //递归调用
}
}

glPopMatrix(); //退出记录堆栈
}

剩下需要解决的问题就是如何找到节点位置。
寻找节点位置,我们看到上面代码 get_joint_point(ID)就是找到节点了,其实如果不追求高的准确度,我们可以假设每个模型的最高的点即为骨骼的节点,当然这个假设前提是人体模型是正面站立的,手臂自然垂下,这样可以近似认为每个模型的最高的点即为骨骼的节点,这样函数就很简单了,这个方法是修改了Cload3ds类的方法,如下:

Vector3f CLoad3DS::get_joint_point(int j0)
{
CVector3 LastPoint;
Vector3f vect;
LastPoint.y = -1000 ;
if(j0==2) LastPoint.y = 1000 ;//头部节点朝下

// 遍历模型中所有的对象
for(int l = 0; l < g_3DModel[j0].numOfObjects; l++)
{
if(g_3DModel[j0].pObject.size() <= 0) break;// 如果对象的大小小于0,则退出
t3DObject *pObject = &g_3DModel[j0].pObject[l];// 获得当前显示的对象

for(int j = 0; j < pObject->numOfFaces; j++) // 遍历所有的面
{
for(int tex = 0; tex < 3; tex++) // 遍历三角形的所有点
{
int index = pObject->pFaces[j].vertIndex[tex]; // 获得面对每个点的索引

if(j0==2)
{
if(pObject->pVerts[index].y < LastPoint.y )
LastPoint = pObject->pVerts[index];
}
else
{
if(pObject->pVerts[index].y > LastPoint.y )
LastPoint = pObject->pVerts[index];
}
}
}
}
vect.x = LastPoint.x ;
vect.y = LastPoint.y ;
vect.z = LastPoint.z ;
return vect;
}

比较特殊的是头部节点是通过脖子连接的,所以它是取最低的点。

现在解决最后的问题了,如何旋转了,具体来讲就是骨骼从原来自然的状态旋转到目前的方向,例如手臂从自然垂下变成抬起,垂下和抬起两个状态的矢量是不同的方向的,如何旋转呢? 这里就要用到了空间几何里的点积和叉积的概念了,简单来讲就是利用点积来求矢量夹角余弦,利用叉积来求两个矢量的法向量,如果你忘记了这些概念,可以回去参考一下高等数学书,这个连接也提供了一些资料,可以帮助理解http://www.gameres.com/Articles/Program/Visual/Other/shiliang.htm
然后呢,我们知道了两个矢量的夹角与它们的法向量,下面的事情就变得简单了,我们让骨骼原来的矢量以法向量为旋转轴,旋转一定角度,这个角度就是两个矢量的夹角,这样问题就解决了,所以这里的代码如下:

int OpenGL::rotate_bone(Vector3f vVector1, Vector3f vVector2, Vector3f vVectorOrgin)
{
Vector3f vt1 = Vector3f(vVector1.x,vVector1.y,vVector1.z);
Vector3f vt2 = Vector3f(vVector2.x,vVector2.y,vVector2.z);
Vector3f vt4 = vt2-vt1;

double arc12 = AngleBetweenVectors(vVectorOrgin,vt4);
double rarc12 = 180*arc12/pi;
float len= Distance(vt1,vt2);
Vector3f vt3 = Cross(vVectorOrgin,vt4);
glRotatef ((float)rarc12,vt3.x,vt3.y,vt3.z);

return 0;
}

Ⅱ OPENGL是什么

OpenGL三维图形标准是由AT&T公司UNIX软件实验室、IBM
、DEC、SUN、HP、Microsoft和SGI等多家公司在GL图形库标准的基础
上联合推出的开放式图形库,它使在微机上实现三维真实
感图形的生成与显示成为可能。由于OpenGL是开放的图形标
准,用户原先在UNIX下开发的OpenGL图形软件很容易移植到微
机上的WindowsNT/95上。笔者在VisualC++4.1(以下简称VC)集
成环境下,开发了基于OpenGL的三维真实感图形应用程序,现
介绍如下。

微机上的OpenGL开发环境

基于OpenGL标准开发的应用程序必须运行于32位Windows
平台下,如WindowsNT或Windows95环境;而且运行时还需有动态
链接库OpenGL32.DLL、Glu32.DLL,这两个文件在安装WindowsNT时已
自动装载到C:\WINNT\SYSTEM32目录下(这里假定用户将WindowsNT
安装在C盘上);而对于使用Windows95平台的用户,则需手工将
两个动态库复制到Windows95目录的SYSTEM子目录中。安装了
WindowsNT/95和VC4.1后,用户就具备了基于OpenGL开发三维图
形软件的基本条件。

OpenGL程序设计的基本步骤

1.OpenGL在WindowsNT下的运行机制

OpenGL工作在客户机/服务器模式下,当客户方(即基
于OpenGL标准开发的应用程序)向服务器(OpenGL核心机制)发出
命令时,由服务器负责解释这些命令。通常情况下,客户方
和服务器是运行在同一台微机上的。由于OpenGL的运行机制
是客户机/服务器模式,这使得用户能够十分方便地在网
络环境下使用OpenGL,OpenGL在WindowsNT上的这种实现方式通常
称为网络透明性。

OpenGL的图形库函数封装在动态链接库OpenGL32.DLL中,

客户机中的所有OpenGL函数调用,都被传送到服务器上,由
WinSrv.DLL实现功能,再将经过处理的指令发送到Win32设备驱
动接口(DDI),从而实现在计算机屏幕上产生图像。

若使用OpenGL图形加速卡,则上述机制中将添加两个
驱动器:OpenGL可装载客户模块(OpenGLICD)将安装在客户端;硬
件指定DDI将安装在服务器端,与WinDDI同一级别。

2.OpenGL的库函数

开发基于OpenGL的应用程序,必须先了解OpenGL的库函
数。OpenGL函数命令方式十分有规律,每个库函数均有前缀gl
、glu、aux,分别表示该函数属于OpenGL基本库、实用库或辅助
库。WindowsNT下的OpenGL包含了100多个核心函数,均以gl作为前
缀,同时还支持另外四类函数:

OpenGL实用库函数:43个,以glu作为前缀;
OpenGL辅助库函数:31个,以aux作为前缀;
Windows专用库函数(WGL):6个,以wgl作为前缀;
Win32API函数(WGL):5个,无前缀。

OpenGL的115个核心函数提供了最基本的功能,可以实

现三维建模、建立光照模型、反走样、纹理映射等;OpenGL实
用库函数在核心函数的上一层,这类函数提供了简单的调
用方法,其实质是调用核心函数,目的是减轻开发者的编程
工作量;OpenGL辅助库函数是一些特殊的函数,可以供初学者
熟悉OpenGL的编程机制,然而使用辅助库函数的应用程序只
能在Win32环境中使用,可移植性较差,所以开发者应尽量避
免使用辅助库函数;Windows专用库函数(WGL)主要针对WindowsNT
/95环境的OpenGL函数调用;Win32API函数用于处理像素存储格
式、双缓存等函数调用。

3.VC环境下基于OpenGL的编程步骤

下面介绍在VC环境中建立基于Opeetting菜单选项,在Link栏的Lib输入域中
添加openg132.lib、glu32.lib,若需使用OpenGL的辅助库函数,则还
需添加glaux.lib。

(3)选择View/ClassWizard菜单选项,打开MFC对话框,在
ClassName栏中选择CMyTestView类,进行以下操作:

选择WM_CREATE消息,鼠标单击EditCode,将OpenGL初始化代码
添加到OnCreate()函数中:

/*定义像素存储格式*/

PIXELFORMATDESCRIPTORpfd=
{
sizeof(PIXELFORMATDESCRIPTOR),
1,
PFD_DRAW_TO_WINDOW|PFD_SUPPORT_OPENGL,
PFD_TYPE_RGBA,
24,
0,0,0,0,0,0,
0,0,0,0,0,0,0
32,
0,0,
PFD_MAIN_PLANE,
0,
0,0,0,
}
CCLientdc(this);
intpixelFormat=ChoosePixelFormat(dc.m_hDC,&pfd);
BOOLsuccess=SetPixelFormat(dc.m_hDC,pixelFormat,&pfd);
m_hRC=wglCreateContext(dc.m_hDC);

选择WM_DESTORY消息,在OnDestory()中添加以下代码:

wglDeleteContext(m_hRC);

在MyTestView.cpp中,将以下代码添加到PreCreateWindows()函数中:

cs.style|=WS_CLIPCHILDREN|WS_CLIPSIBLINGS;
OpenGL只对WS_CLIPCHILDREN|WS_CLIPSIBLINGS类型窗口有效;

在MyTestView.cpp中,将以下代码添加到OnDraw()函数中:

wglMakeCurrent(pDC->m_hDC,m_hRC);
DrawScene();//用户自定义函数,用于绘制三维场景;
wglMakeCurrent(pDC->m_hDC,NULL);

在MyTestView.cpp中,添加成员函数DrawScene():

voidCMyTestView::DrawScene()
{/*绘制三维场景*/}
(4)在MyTestView.h中包含以下头文件并添加类成员说明:
#include
#include

#include
在CTestView类中的protected:段中添加成员变量声明:
HGLRCm_hRC;
同时添加成员函数声明:
DrawScene();

这样,一个基于OpenGL标准的程序框架已经构造好,用
户只需在DrawScene()函数中添加程序代码即可。

建立三维实体模型

三维实体建模是整个图形学的基础,要生成高逼真
度的图像,首先要生成高质量的三维实体模型。

OpenGL中提供了十几个生成三维实体模型的辅助库函
数,这些函数均以aux作为函数名的前缀。简单的模型,如球
体、立方体、圆柱等可以使用这些辅助函数来实现,如
auxWireSphere(GLdoubleradius)(绘制一半径为radius的网状球体)。
但是这些函数难以满足建立复杂三维实体的需要,所以用
户可以通过其它建模工具(如3DS等)来辅助建立三维实体模
数据库。笔者在三维实体的建模过程中采用3DS提供的2D
Shape、3DLofter和3DEditor进行模型的编辑,最后通过将模型数

据以DXF文件格式输出存储供应用程序使用。

真实感图形的绘制

1.定义光照模型和材质

(1)光源。OpenGL提供了一系列建立光照模型的库函
数,使用户可以十分方便地在三维场景中建立所需的光照
模型。OpenGL中的光照模型由环境光(AmbientLight)、漫射光
(DiffuseLight)、镜面反射光(SpecularLight)等组成,同时还可设
置光线衰减因子来模拟真实的光源效果。

例如,定义一个黄色光源如下:

GlfloatLight_position[]={1.0,1.0,1.0,0.0,};
GlfloatLight_diffuse[]={1.0,1.0,0.0,1.0,};
glLightfv(GL_LIGHT0,GL_POSTTION,light_position);//定义光源位置
glLightfv(GL_LIGHT0,GL_DIFFUSE,light_diffuse);//定义光源漫射光
光源必须经过启动后才会影响三维场景中的实体,可以通过以下指令使光源有效:<
glEnable(LIGHTING);//启动光照模型;
glEnable(GL_LIGHT0);//使光源GL_LIGHT0有效;
OpenGL中一共可以定义GL_LIGHT0~GL_LIGHT7八个光源。

(2)材质。OpenGL中的材质是指构成三维实体的材料在
光照模型中对于红、绿、蓝三原色的反射率。与光源的定义
类似,材质的定义分为环境、漫射、镜面反射成分,另外还
有镜面高光指数、辐射成分等。通过对三维实体的材质定义
可以大大提高应用程序所绘制的三维场景的逼真程度。例
如:

/*设置材质的反射成分*/

GLfloatmat_ambient[]={0.8,0.8,0.8,1.0};
GLfloatmat_diffuse[]={0.8,0.0,0.8,1.0};/*紫色*/
GLfloatmat_specular[]={1.0,0.0,1.0,1.0};/*镜面高光亮紫色*/
GLfloatmat_shiness[]={100.0};/*高光指数*/
glMaterialfv(GL_FRONT,GL_AMBIENT,mat_ambient);/*定义环境光反射率*/
glMaterialfv(GL_FRONT,GL_DIFFUSE,mat_diffuse);/*定义漫射光反射率*/
glMaterialfv(GL_FRONT,GL_SPECULAR,mat_specular);/*定义镜面光反射率*/
glMaterialfv(GL_FRONT,GL_SHINESS,mat_shiness);/*定义高光指数*/

(3)材质RGB值与光源RGB值的关系。OpenGL中材质的颜色
与光照模型中光源的颜色含义略有不同。对于光源,R、G、B
值表示三原色在光源中所占有的比率;而对于材质定义,R、

G、B的值表示具有这种材质属性的物体对于三原色的反射
比率,场景中物体所呈现的颜色与光照模型、材质定义都相
关。例如,若定义的光源颜色是(Lr,Lg,Lb)=(1.0,1.0,1.0)(白光),
物体的材质颜色定义为(Mr,Mg,Mb)=(0.0,0.0,0.8),则最终到达人
眼的物体颜色应当是(Lr*Mr,Lg*Mg,Lb*Mb)=(0.0,0.0,0.8)(蓝色)。

2.读取三维模型数据

为了绘制三维实体,我们首先必须将预先生成的三
维实体模型从三维实体模型库中读出。下图描述了读取三
维实体模型的流程。

3.三维实体绘制

由于3DS的DXF文件中对于三维实体的描述是采用三角
形面片逼近的方法,而在OpenGL函数库中,提供了绘制三角形
面片的方法,所以为三维实体的绘制提供了方便。以下提供
了绘制三角形面片的方法:

glBegin(TRANGLES);//定义三角形绘制开始
glVertexf((GLfloat)x1,(GLfloat)y1,(GLfloat)z1);//第一个顶点
glVertexf((GLfloat)x2,(GLfloat)y2,(GLfloat)z2);//第二个顶点

glVertexf((GLfloat)x3,(GLfloat)y3,(GLfloat)z3);//第三个顶点
glEnd();//绘制结束

为了提高三维实时动画的显示速度,我们利用了
OpenGL库中的显示列表(DisplayList)的功能,将三维场景中的实
体分别定义为单独的显示列表,预先生成三维实体。在图形
显示时,只需调用所需的显示列表即可显示相应的三维实
体,而不需要重新计算实体在场景中的坐标,避免了大量的
浮点运算。在调用显示列表前所作的旋转、平移、光照、材
质的设定都将影响显示列表中的三维实体的显示效果。具
体实现算法如下:

for(ObjectNo=0;ObjectNo<实体个数;ObjectNo++)
{
glNewList(ObjectNo,GL_COMPILE);//创建第ObjectNo个实体的显示列表
for(Fac

OpenGL是近几年发展起来的一个性能卓越的三维图形标准,它是在SGI等多家
世界闻名的计算机公司的倡导下,以SGI的GL三维图形库为基础制定的一个通
用共享的开放式三维图形标准。目前,包括Microsoft、SGI、IBM、DEC、SUN、
HP等大公司都采用了OpenGL做为三维图形标准,许多软件厂商也纷纷以OpenGL
为基础开发出自己的产品,其中比较着名的产品包括动画制作软件Soft Image
和3D Studio MAX、仿真软件Open Inventor、VR软件World Tool Kit、CAM软
件ProEngineer、GIS软ARC/INFO等等。值得一提的是,随着Microsoft公司在
Windows NT和最新的Windows 95中提供了OpenGL标准及OpenGL三维图形加速卡
(如北京黎明电子技术公司的AGC-3D系列三维图形加速卡)的推出,OpenGL将
在微机中有广泛地应用,同时也为广大用户提供了在微机上使用以前只能在高
性能图形工作站上运行的各种软件的机会。

OpenGL实际上是一个开放的三维图形软件包,它独立于窗口系统和操作系统,
以它为基础开发的应用程序可以十分方便地在各种平台间移植;OpenGL可以
与Visual C++紧密接口,便于实现机械手的有关计算和图形算法,可保证算
法的正确性和可靠性;OpenGL使用简便,效率高。它具有七大功能:

1) 建模 OpenGL图形库除了提供基本的点、线、多边形的绘制函数外,还提
供了复杂的三维物体(球、锥、多面体、茶壶等)以及复杂曲线和曲面
(如Bezier、Nurbs等曲线或曲面)绘制函数。
2) 变换 OpenGL图形库的变换包括基本变换和投影变换。基本变换有平移、
旋转、变比镜像四种变换,投影变换有平行投影(又称正射投影)和透
视投影两种变换。其变换方法与机器人运动学中的坐标变换方法完全一
致,有利于减少算法的运行时间,提高三维图形的显示速度。
3) 颜色模式设置 OpenGL颜色模式有两种,即RGBA模式和颜色索引(Color Index)。
4) 光照和材质设置 OpenGL光有辐射光(Emitted Light)、环境光
(Ambient Light)、漫反射光(Diffuse Light)和镜面光(Specular Light)。
材质是用光反射率来表示。场景(Scene)中物体最终反映到人眼的颜色是光
的红绿蓝分量与材质红绿蓝分量的反射率相乘后形成的颜色。
5) 纹理映射(Texture Mapping) 利用OpenGL纹理映射功能可以十分逼真
地表达物体表面细节。
6) 位图显示和图象增强 图象功能除了基本的拷贝和像素读写外,还提供
融合(Blending)、反走样(Antialiasing)和雾(fog)的特殊图象效果处理。
以上三条可是被仿真物更具真实感,增强图形显示的效果。
7) 双缓存(Double Buffering)动画 双缓存即前台缓存和后台缓存,简而言
之,后台缓存计算场景、生成画面,前台缓存显示后台缓存已画好的画面。
此外,利用OpenGL还能实现深度暗示(Depth Cue)、运动模糊(Motion Blur)等
特殊效果。从而实现了消隐算法。

Ⅲ 用编程语言实现一个正方形360°旋转 下面是我写的一个画正方形的代码! 我想要的是算法。要求完整代码。

WINDOWS图像编程

--------------------------------------------------------------------------------

图形设备接口(GDI,Graphics Device Interface)的主要目标之一是支持在输出设备(如视频显示器、打印机和绘图仪)上的与设备无关的图形。 GDI通过将应用程序与不同输出设备特性相隔离,使Windows应用程序能够毫无问题地在Windows支持的任何图形输出设备上运行。
Windows中的图形基本上是由从GDI.EXE模块中输出的函数处理的(尽管一些绘制函数实际上具有USER.EXE的入口点),GDI.EXE模块调用在不同驱动程序文件中的例程,其中有一个.DRV驱动程序文件用于控制显示屏幕,并且可能有一个或多个其他的.DRV驱动程序文件用来控制打印机或绘图仪。
Windows GDI使用两种坐标系统。使用虚拟坐标系统可以使程序不依赖于具体的硬件,使用设备坐标系统可以使程序和硬件紧密相联。
GDI含有在Windows应用程序内部执行、且与设备无关的图形操作函数,这些函数可产生各种各样的线、正文和位图,它们可以输出到许多不同的输出设备上。GDI允许一个应用程序产生笔、刷子、字体和位图,以供特定的输出操作使用。下面列出GDI中几组比较常用的函数:
·设备上下文函数
·椭圆和多边形函数
·绘图工具函数
·位图函数
·绘图属性函数
·正文函救
·映射函数。
·坐标函数
·元文件(metafile)函数
·区域函数
·裁剪(clipping)函数·
窗口应用程序输出图形的操作步骤如下:
①取得指定窗口的当前显示设备上下丈,显示设备上下文实际上是一个数据结构,它包括该窗口的参数及各种图形、文字属性的现行设定值,它们对以后的图形、文字输 出命令起控制作用。
②选择用户坐标系及映射方式。
③设定用户坐标系中的观察窗口和设备坐标系中的显示视区。
④输出图形、文字和图象。
⑤释放所使用的显示设备上下文。

当想要在图形输出设备(例如屏幕或打印机)上绘制图形时,必须首先获得设备上下文的句柄。先给出这个句柄,Windows才允许程序使用设备,在GDI函数中将句柄作为一个参数传入,向Windows标明需要使用的设备。
设备上下文中包含许多属性,当GDI在不同的设备上工作时都要用到这些属性。使用这些属性可使GDI只关心起始和终止坐标的大小,而不必关心有关对象的其他属性,如颜色、背景等等,因为这些都是设备上下文的一部分。当需要修改这些属性时,只需调用一个修改设备上下文中属性的参数,以后的程序中都使用修改后的设备上下文属性。设备上下文是连接Windows应用程序、设备驱动程序以及输出设备的纽带。
获取设备上下文句柄有多种方法。最一般的方法是当处理一条消息时获得了设备上下文、并在退出窗口之前释放它。一般的处理方法如下:
在处理WM_PAINT消息时
case WM_PAINT:
hdc=BeginPaint(hwnd,&ps)
EndPaint (hwnd,&ps);
其数据结构为:
HDC hWnd;
PAINTSTRUCT ps;
而在windows.h中定义了PAINTSTRUCT的数据结构。
type struct tagPAINTSTRUCT {
HDC hdC;
BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL flncUpdate;
BYTE rgbReserved[16];
}PAINTSTRUCT;
其中,hdc用于标识显式上下文,fErase指出背景是否重画,rcPaint是涂色矩形,其余的域均为保留。这里的hdc是BeginPaint返回的设备上下文句柄,有了从DeginPaint获取的设备上下文句柄,就可以也只能在ps指出的rcPaint的矩形内绘图,EndPaint调用使这一区域有效。
第二种方法如下所示,使用这种方法获取和释放设备上下文可以在整个用户区内画图,图形在整个用户区域内都有效:
hdC=GetDc (hwnd );
…画图操作…
ReleaseDC (hwnd , hdc );
使用下面第三种方法获取和释放设备上下文,可以在整个窗口内画图,图形在整个窗口内有效:
hdC=GetWindowDc(hwnd);
…画图操作…
ReleaseDc(hwnd,hdc);
使用下面第四种方法获取和释放设备上下文,可以在整个显示器区域内画图,图形在整个显示器区域内部有效:
hdc=CreateDC (lpszDriver ,lpszDevice ,lpszOutput , lpData);
…画图操作…
ReleaseDC(hdc);
其中lpszDriver指向设备驱动程序的DOS文件名(不带扩展名),lpszDevice指向专用设备名(例如Epson Fx-80),lpszOutput指向物理输出介质(文件或输出端口)的DOS文件名或设备名,lpData指向含有设备驱动程序的设备专用的初始化数据的DEVMODE数据结构。例如:
hdc=CreateDC("DISPLAY",NULL,NULL,NULL);
使用屏幕画图,而:
hdc= CreateDC ("IBMGRX","IBM Graphics","LPT1",NULL );
在打印机上输出图形,这里的lpData置为默认值,可以在WIN.INI中找到初始化值。
如果不需要获取设备上下文,即不需要在设备上下文中操作,只需了解有关设备上下文的信息,可以用如下语句:
hdcInfo = CreateDC (lpszDriver, lpszDevice,lpszOutput, lpData );
……
DeteteDC (hdcInfo);
另外,还可以使用设备上下文来对位图的内存进行控制,如下所示:
hdcMem = CreateCompatibleDC (hdc)
OeleteDc(hdcMem );
一个元文件是以二进制形式编码的GDI调用集合,可通过获取一个元文件设备上下文来建立一个文件:
hdcMeta=CreateMetaFile(lpszFilename);
……
hmf=CloseMetaFile(hdCMeta);
在元文件设备上下文有效期间,使用hdcMeta所进行的任何GDI调用都成为元文件的一部分,当调用CloseMetaFile时,设备上下文句柄变化无效,函数返回元文件(hmf)的句柄。
一个设备上下文通常涉及物理设备,如视频显示器、打印机等,所以需要获取有关该设备的信息,如显示器大小和彩色能力等。可以通过调用GetDeviceCaps函数来获取这样的信息:
nValue=GetDeviceCaps (hdc,nIndex);
这里的hdc标识设备上下文,nIndex确定返回值,它可以是window.h中所定义的28个标识符中的一个,例如nIndex=DRIVEVERSION,则该函数返回的是版本号。

真正影响在用户区域上绘制过程的设备上下文属性是“映射方式”,与映射方式属性密切相关的还有如下四个设备上下义属性:窗口原点、视窗原点、窗口范围和视窗范围。
Windows定义了八种映射方式,即:

这里的TWIP指的是1/1440英寸,in.代表英寸。
可以调用函数setMapMode(hdc,MapMode)来设置这八种映射方式中的一种。hdc用来标识设备上下文,nMapMode可以取MM_TEXT、MM_LOMETRIC、MM_HIMETRIC等八个值中的一个。在设置了映射方式之后,到下一次设置映射方式之前,Windows一直使用这种映射方式。如果想要获取当前的映射方式,可用:
nMapMode= GetMapMode (hdc)
在设置了映射方式之后,就规定了逻辑单位的大小和增量的方式,在GDI画图函数中,可以不必考虑这些内容而直接使用逻辑数字,如:
SetMapMode(hdc ,MM_TEXT);
TextOut(hdc,8 ,16,szBuffer ,nLength)
即正文从用户区域左起第八个象素,顶边起第16个象素的位置开始写操作。不管映射方式如何,Windows函数中所有坐标规定为-32768 到 32767之间的带符号短整救。
注意映射方式只是一个设备上下文属性,因此映射方式唯一起作用的是将映射方式作为设备上下文句柄属性,而将该句柄当作参数的GDI函数,因此象GetSystemMetrics这样的非GDI函数,将继续以设备单位(象素值)返回尺寸值。

用GDI的SetPixel函数可以绘制一特定颜色的象素:
rgbActualColor =SetPixel (hdc,x,y,rgbColor);
这里hdc标识设备上下文,x ,y表示点坐标,rgbColor为一无符号的长整数,其结构为:
COLORREF rgbColor;
其中低位字节为红基色的相对亮度值,第二个字节包含绿基色的相对亮度值,第三个字节包含蓝基色的相对亮度值,高位字节必须为零。可以使用RGB函数来获取rgbColor。
rgbColor =RGB(byRed ,byGreen,byBlue);
这里的byRed、byGreen、byBlue取值范围为0~255,分别代表红色、绿色、蓝色的亮度。给出正确的参数之后,SetPixel返回的是调色板中最靠近所需彩色的颜色。还可以使用如下方法来取得一个特定象素的颜色:
rgbCotor= GetPixel(hdc,x,y);

画线函数主要有三种, LineTo、Polyline 和 Arc。还有五个设备上下文属性会影响这些函数画出的线的外观:笔的当前位置(仅对LineTo有影响)、笔、背景方式(对非实心笔有影响)、背景颜色(对 OPAQUE背景方式)以及绘制方式。
在这些设备上下文的属性中,笔的当前位置影响画线的起点,笔影响线的粗细等形状,背景方式影响非实心笔画出的线的模板图形,背景颜色影响线模板背景色,绘制方式影响实心线、虚线等线属性。
以下是典型的画线操作步骤:
MoveTo(hdc,xStart,yStart);
LineTo(hdc ,xEnd ,yEnd);
上面两句画出一条从(xStart,yStart)到(xEnd,yEnd)的直线。
可以使用语句:
dwPoint = GetCurrentPosition (hdc);
获得笔的当前位置。这里,dwPoint返回值是一个无符号长整数(或双倍长字),其中低位字含有X坐标,高位字含有Y坐标。
可以使用MAKEPOINT函数将dwPoint转换为POINT结构;
point = MAKEPOINT (dwPoint);
point的类型为POINT:
typedef struct togPOINT {kk1}
int x;
int y;
}POINT;
Polyline用于绘制折线,例:
Polyline(hdc,&pt,5)
将数组pt中的5个点之间用线段相连。
Arc用于画椭圆的周边:
Arc (hdc,xLeft,yTop,xRight,yBottom,xStart,yStart,XEnd,yEnd );
画出的椭圆以左上角为(xLeft,yTop),右下角为(xRight,yBottom)的矩形为界,圆弧开始于椭圆和(xStart,yStart)与椭圆中心的连线的交点处,沿着椭圆周边的过时针方向绘制,并终止于椭圆和(xEnd,yEnd)与椭圆中小的连线的交点处。
当调用LineTo、Polyline和Arc时,Windows使用当前在设备上下文中选择的笔来画线,笔决定了线的颜色、密度和型式,而线型可以是实线、点线或短划(虚)线,缺省设备上下文中的笔叫做BLACK_PEN,不管映射方式如何选支笔以一个象素的宽度画黑色的实线, BLACK_PEN是Windows提供的三支“备用笔”之一,其他两支是WHITE_PEN和NULL_PEN,NULL_PEN是一支什么都不画的空笔,当然用户也可以自己建立定制的笔。
可以通过一个句柄来引用所需的笔:
HPEN hPen;
hPen =GetStockObject(WHITE_PEN);
SelectObjeCt (hdc ,hPen) ;
SelectObject (hdc , hBrush ) ;
将逻辑刷送入设备上下文中。如果使用结束,可以用:
DeletObject (hBrush ) ;
删除一把已建立的刷子,如果在程序中需要获取有关于刷子的信息,则可以调用:
3.像素格式结构
每个OpenGL显示设备都支持一种指定的像素格式。一般用一个名为PIXELFORMATDESCRIPTOR的结构来表示某个特殊的像素格式,这个结构包含26个属性信息。Win32定义PIXELFORMATDESCRIPTOR如下所示:
typedef struct tagPIXELFORMATDESCRIPTOR
{ kk1}
// pfd
WORD nSize;
WORD nVersion;
DWORD dwFlags;
BYTE iPixelType;
BYTE cColorBits;
BYTE cRedBits;
BYTE cRedShift;
BYTE cGreenBits;
BYTE cGreenShift;
BYTE cBlueBits;
BYTE cBlueShift;
BYTE cAlphaBits;
BYTE cAlphaShift;
BYTE cAccumBits;
BYTE cAccumRedBits;
BYTE cAccumGreenBits;
BYTE cAccumBlueBits;
BYTE cAccumAlphaBits;
BYTE cDepthBits;
BYTE cStencilBits;
BYTE cAuxBuffers;
BYTE iLayerType;
BYTE bReserved;
DWORD dwLayerMask;
DWORD dwVisibleMask;
DWORD dwDamageMask;
} PIXELFORMATDESCRIPTOR;

4.初始化PIXELFORMATDESCRIPTOR结构
PIXELFORMATDESCRIPTOR中每个变量值的具体含义和设置可以参考有关资料,下面举出一个PIXELFORMATDESCRIPTOR初始化例子来简要说明相关变量的意义。定义PIXELFORMATDESCRIPTOR结构的pfd如下:
PIXELFORMATDESCRIPTOR pfd = { kk1}
sizeof(PIXELFORMATDESCRIPTOR), . //size of this pfd 1
PFD_DRAW_TO_WINDOW| // support window
PFD_SUPPORT_OPENGL| // support OpenGL
PFD_DOUBLEBUFFER, // double buffered
PFD_TYPE_RGBA, // RGBA type
24, // 24-bit color depth
0,0,0,0,0,0, // color bits ignored
0, // no alpha buffer
0, // shift bit ignored
0, // no accumulation buff
0,0,0,0, // accum bits ignored
32, // 32-bit z-buffer
0, // no stencil buffer
0, // no auxiliary buffer
PFD_MAIN_PLANE, // main layer
0, // reserved
0,0,0 // layer masks ignored
};
在这个结构里,前两个变量的含义十分明显。第三个变量dwFlags的值是
PFD_DRAW_TO_WINDOW |PFD_SUPPORT_OPENGL ,
表明应用程序使用OpenGL函数来绘制窗口
第四个:
PFD_DOUBLEBUFFER,
表明当前采用RGBA颜色模式,第五个采用24位真彩色,既1.67千万种颜色,如果是256色系统则自动实现颜色抖动;因为没有使用alpha缓存和累计缓存,所以从变量cAlphaBits到cAccumAlphaBits都设置为0;深度缓存设置为32位,这个缓存能解决三维场景的消隐问题;变量cAuxBuffers设置为0,在Windows 95下不支持辅助缓存;Windows 95下针对OpenGL变量ilayerType只能设置为PFD_MAIN_PLANE,但在其它平台也许支持PFD_MAIN_PLANE或PFD_MAIN_UNDERLAYPLANE;接下来bReserved变量只能设为0,而最后三个变量Windows 95都不支持,故全设置为0

热点内容
oppor9怎么分享wifi密码 发布:2025-05-05 17:39:58 浏览:282
无服务数据库 发布:2025-05-05 17:39:19 浏览:382
两个电脑联网dns服务器参数 发布:2025-05-05 17:26:45 浏览:241
微信通过申诉找回密码和账号编辑短信是什么 发布:2025-05-05 17:24:55 浏览:971
压缩机的符号 发布:2025-05-05 17:12:22 浏览:950
文件夹锁定 发布:2025-05-05 17:02:46 浏览:530
窗帘源码 发布:2025-05-05 17:02:03 浏览:516
linux与运算 发布:2025-05-05 16:52:35 浏览:394
安卓下游戏去哪个app 发布:2025-05-05 16:45:37 浏览:598
地平线笔记本需要什么配置 发布:2025-05-05 16:42:28 浏览:624