当前位置:首页 » 操作系统 » 数据结构算法顺序

数据结构算法顺序

发布时间: 2025-05-05 18:27:30

① 关于数据结构排序算法的问题

选择排序

插入排序:每次比较后最多移掉一个逆序,因此与冒泡排序的效率相同。但它在速度上还是要高点,这是因为在冒泡排序下是进行值交换,而在插入排序下是值移动,所以直接插入排序将要优于冒泡排序。直接插入法也是一种对数据的有序性非常敏感的一种算法。在有序情况下只需要经过n-1次比较,在最坏情况下,将需要n(n-1)/2次比较。

选择排序:简单的选择排序,它的比较次数一定:n(n-1)/2。也因此无论在序列何种情况下,它都不会有优秀的表现(从上100K的正序和反序数
据可以发现它耗时相差不多,相差的只是数据移动时间),可见对数据的有序性不敏感。它虽然比较次数多,但它的数据交换量却很少。所以我们将发现它在一般情
况下将快于冒泡排序。

冒泡排序:在最优情况下只需要经过n-1次比较即可得出结果,(这个最优情况那就是序列己是正序,从100K的正序结果可以看出结果正是如此),但在最坏情况下,即倒序(或一个较小值在最后),下沉算法将需要n(n-1)/2次比较。所以一般情况下,特别是在逆序时,它很不理想。它是对数据有序性非常敏感的排序算法。
堆排序:由于它在直接选择排序的基础上利用了比较结果形成。效率提高很大。它完成排序的总比较次数为O(nlog2n)。它是对数据的有序性不敏感的一种算法。但堆排序将需要做两个步骤:-是建堆,二是排序(调整堆)。所以一般在小规模的序列中不合适,但对于较大的序列,将表现出优越的性能。

基数排序:在程序中采用的是以数值的十进制位分解,然后对空间采用一次性分配,因此它需要较多的辅助空间(10*n+10), (但我们可以进行其它分解,如以一个字节分解,空间采用链表将只需辅助空间n+256)。基数排序的时间是线性的(即O(n))。由此可见,基数排序非常吸引人,但它也不是就地排序,若节点数据量大时宜改为索引排序。但基数排序有个前提,要关键字能象整型、字符串这样能分解,若是浮点型那就不行了。

② 数据结构 java开发中常用的排序算法有哪些

排序算法有很多,所以在特定情景中使用哪一种算法很重要。为了选择合适的算法,可以按照建议的顺序考虑以下标准:
(1)执行时间
(2)存储空间
(3)编程工作
对于数据量较小的情形,(1)(2)差别不大,主要考虑(3);而对于数据量大的,(1)为首要。

主要排序法有:
一、冒泡(Bubble)排序——相邻交换
二、选择排序——每次最小/大排在相应的位置
三、插入排序——将下一个插入已排好的序列中
四、壳(Shell)排序——缩小增量
五、归并排序
六、快速排序
七、堆排序
八、拓扑排序

一、冒泡(Bubble)排序

----------------------------------Code 从小到大排序n个数------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比较交换相邻元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),适用于排序小列表。

二、选择排序
----------------------------------Code 从小到大排序n个数--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次扫描选择最小项
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小项交换,即将这一项移到列表中的正确位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),适用于排序小的列表。

三、插入排序
--------------------------------------------Code 从小到大排序n个数-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循环从第二个数组元素开始,因为arr[0]作为最初已排序部分
{
int temp=arr[i];//temp标记为未排序第一个元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*将temp与已排序元素从小到大比较,寻找temp应插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)与冒泡、选择相同,适用于排序小列表
若列表基本有序,则插入排序比冒泡、选择更有效率。

四、壳(Shell)排序——缩小增量排序
-------------------------------------Code 从小到大排序n个数-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量递减,以增量3,2,1为例
{
for(int L=0;L<(n-1)/incr;L++)//重复分成的每个子列表
{
for(int i=L+incr;i<n;i+=incr)//对每个子列表应用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
适用于排序小列表。
效率估计O(nlog2^n)~O(n^1.5),取决于增量值的最初大小。建议使用质数作为增量值,因为如果增量值是2的幂,则在下一个通道中会再次比较相同的元素。
壳(Shell)排序改进了插入排序,减少了比较的次数。是不稳定的排序,因为排序过程中元素可能会前后跳跃。

五、归并排序
----------------------------------------------Code 从小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每个子列表中剩下一个元素时停止
else int mid=(low+high)/2;/*将列表划分成相等的两个子列表,若有奇数个元素,则在左边子列表大于右侧子列表*/
MergeSort(low,mid);//子列表进一步划分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一个数组,用于存放归并的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*两个子列表进行排序归并,直到两个子列表中的一个结束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二个子列表中仍然有元素,则追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一个子列表中仍然有元素,则追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//将排序的数组B的 所有元素复制到原始数组arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),归并的最佳、平均和最糟用例效率之间没有差异。
适用于排序大列表,基于分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的算法思想:选定一个枢纽元素,对待排序序列进行分割,分割之后的序列一个部分小于枢纽元素,一个部分大于枢纽元素,再对这两个分割好的子序列进行上述的过程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//采用子序列的第一个元素作为枢纽元素
while (low < high)
{
//从后往前栽后半部分中寻找第一个小于枢纽元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//将这个比枢纽元素小的元素交换到前半部分
swap(arr[low], arr[high]);
//从前往后在前半部分中寻找第一个大于枢纽元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//将这个枢纽元素大的元素交换到后半部分
}
return low ;//返回枢纽元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),适用于排序大列表。
此算法的总时间取决于枢纽值的位置;选择第一个元素作为枢纽,可能导致O(n²)的最糟用例效率。若数基本有序,效率反而最差。选项中间值作为枢纽,效率是O(nlogn)。
基于分治法。

七、堆排序
最大堆:后者任一非终端节点的关键字均大于或等于它的左、右孩子的关键字,此时位于堆顶的节点的关键字是整个序列中最大的。
思想:
(1)令i=l,并令temp= kl ;
(2)计算i的左孩子j=2i+1;
(3)若j<=n-1,则转(4),否则转(6);
(4)比较kj和kj+1,若kj+1>kj,则令j=j+1,否则j不变;
(5)比较temp和kj,若kj>temp,则令ki等于kj,并令i=j,j=2i+1,并转(3),否则转(6)
(6)令ki等于temp,结束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //对R[1..n]进行堆排序,不妨用R[0]做暂存单元 int I; BuildHeap(R); //将R[1-n]建成初始堆for(i=n;i>1;i--) //对当前无序区R[1..i]进行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //将堆顶和堆中最后一个记录交换 Heapify(R,1,i-1); //将R[1..i-1]重新调整为堆,仅有R[1]可能违反堆性质 } } ---------------------------------------Code--------------------------------------

堆排序的时间,主要由建立初始堆和反复重建堆这两部分的时间开销构成,它们均是通过调用Heapify实现的。

堆排序的最坏时间复杂度为O(nlgn)。堆排序的平均性能较接近于最坏性能。 由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。 堆排序是就地排序,辅助空间为O(1), 它是不稳定的排序方法。

堆排序与直接插入排序的区别:
直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。

八、拓扑排序
例 :学生选修课排课先后顺序
拓扑排序:把有向图中各顶点按照它们相互之间的优先关系排列成一个线性序列的过程。
方法:
在有向图中选一个没有前驱的顶点且输出
从图中删除该顶点和所有以它为尾的弧
重复上述两步,直至全部顶点均已输出(拓扑排序成功),或者当图中不存在无前驱的顶点(图中有回路)为止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*输出拓扑排序函数。若G无回路,则输出G的顶点的一个拓扑序列并返回OK,否则返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//对各顶点求入度indegree[0....num]
InitStack(thestack);//初始化栈
for(i=0;i<G.num;i++)
Console.WriteLine("结点"+G.vertices[i].data+"的入度为"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓扑排序输出顺序为:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("发生错误,程序结束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("该图有环,出现错误,无法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
算法的时间复杂度O(n+e)。

③ 数据结构有哪些基本算法

一、排序算法 1、有简单排序(包括冒泡排序、插入排序、选择排序) 2、快速排序,很常见的 3、堆排序, 4、归并排序,最稳定的,即没有太差的情况 二、搜索算法 最基础的有二分搜索算法,最常见的搜索算法,前提是序列已经有序 还有深度优先和广度有限搜索;及使用剪枝,A*,hash表等方法对其进行优化。 三、当然,对于基本数据结构,栈,队列,树。都有一些基本的操作 例如,栈的pop,push,队列的取队头,如队;以及这些数据结构的具体实现,使用连续的存储空间(数组),还是使用链表,两种具体存储方法下操作方式的具体实现也不一样。 还有树的操作,如先序遍历,中序遍历,后续遍历。 当然,这些只是一些基本的针对数据结构的算法。 而基本算法的思想应该有:1、回溯2、递归3、贪心4、动态规划5、分治有些数据结构教材没有涉及基础算法,lz可以另外找一些基础算法书看一下。有兴趣的可以上oj做题,呵呵。算法真的要学起来那是挺费劲。

④ 数据结构的排序算法中,哪些排序是稳定的,哪些排序是不稳定的

一、稳定排序算法

1、冒泡排序

2、鸡尾酒排序

3、插入排序

4、桶排序

5、计数排序

6、合并排序

7、基数排序

8、二叉排序树排序

二、不稳定排序算法

1、选择排序

2、希尔排序

3、组合排序

4、堆排序

5、平滑排序

6、快速排序

排序(Sorting) 是计算机程序设计中的一种重要操作,它的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。

一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。

做这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

(4)数据结构算法顺序扩展阅读:

排序算法的分类:

1、通过时间复杂度分类

计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。

一般而言,好的性能是 O(nlogn),且坏的性能是 O(n^2)。对于一个排序理想的性能是 O(n)。

而仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要 O(nlogn)。

2、通过空间复杂度分类

存储器使用量(空间复杂度)(以及其他电脑资源的使用)

3、通过稳定性分类

稳定的排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。

⑤ c++ 线性代数 离散数学 数据结构与算法的学习顺序

线性代数,离散数学是数学理论,你可以先学。然后你先学C语言(C会了,学C++就很简单了),在学数据结构,C和数据结构可以同步学习,最后学算法。我没有看过网上课程,就不推荐了。

⑥ 数据结构排序算法

数据结构中的排序算法主要包括以下几类

1. 稳定排序算法冒泡排序:通过不断交换相邻元素的位置,逐步将数据排序。 鸡尾酒排序:也称双向冒泡排序,是冒泡排序的改进版。 插入排序:通过将元素逐个插入已排序的部分,形成有序序列。 桶排序:通过将元素分配到不同的桶中,然后对每个桶内的元素排序,最后合并。 计数排序:适用于元素范围较小的整数,通过统计每个元素出现的次数来排序。

2. 分治策略排序算法合并排序:采用分治策略,将大问题分解为小问题解决,然后合并结果。 二叉排序树排序:利用二叉树特性,实现元素的有序排列。

3. 特定分布规则排序算法鸽巢排序:通过特定的分布规则,对数据进行分段和组合排序。 基数排序:通过逐位比较和分配,实现数据的排序。

4. 不稳定排序算法选择排序:通过不断选择最小元素,进行简单移动。 希尔排序:是插入排序的一种改进版,通过比较和移动距离较远的元素来加快排序速度。 堆排序:利用堆数据结构,实现快速排序。 平滑排序:高效的随机化排序算法。 快速排序:高效的随机化排序算法,通过选择一个基准元素,将数组分为两部分,递归排序。 内省排序:结合了快速排序和堆排序的优点,根据不同情况动态选择排序策略。

5. 不那么实用的排序方法纸牌排序盲目搜索排序愚蠢排序珠排序:虽然原理独特,但实际应用中效率较低,且复杂度较高。 煎饼排序:视觉上有趣的排序方法,但实用性不强。

这些排序算法各有优缺点,适用于不同的数据分布和场景需求。在实际应用中,需要根据具体情况选择合适的排序算法。

热点内容
五菱荣光v多功能存储 发布:2025-05-05 21:58:27 浏览:284
如何用自己电脑建服务器外网可以 发布:2025-05-05 21:56:04 浏览:528
如何解开别人手机密码 发布:2025-05-05 21:39:09 浏览:192
关于汉服课程的视频脚本 发布:2025-05-05 21:33:30 浏览:732
proe文件加密 发布:2025-05-05 21:23:11 浏览:662
评价服务器属于什么资产 发布:2025-05-05 21:23:07 浏览:793
去吧皮卡丘悬赏脚本 发布:2025-05-05 21:12:16 浏览:873
nfa算法 发布:2025-05-05 21:11:40 浏览:99
柯基编程 发布:2025-05-05 21:02:20 浏览:246
农商银行云证书密码多少 发布:2025-05-05 21:00:49 浏览:389