型腔加工算法
❶ 黄常标主要论着与学术论文
黄常标的主要论着与学术论文包括以下几项:
分段注射/雕刻快速原型制造工艺的设备及其控制研究
- 发表于《现代制造工程》杂志2007年第10期。
- 核心内容:探讨了快速原型制造工艺的设备及其控制方法,为提高制造效率和质量提供了理论支持。
平面型腔平行双向刀具轨迹的优化生成
- 发表于《制造业自动化》杂志2005年第27卷第6期。
- 核心内容:提出了平面型腔平行双向刀具轨迹的优化生成方法,通过改进刀具路径,有效提高了加工精度和效率。
对STL模型的交互选择功能的实现
- 发表于《计算机工程与应用》杂志2004年第40卷第17期。
- 核心内容:关注于计算机辅助设计领域中STL模型的交互选择功能实现,为设计师提供了更加便捷的操作界面和更加直观的模型选择体验。
逆向分层自动添加支持的算法与实现
- 发表于《机械设计与制造》杂志2003年第6期。
- 核心内容:提出了逆向分层自动添加支持的算法,解决了3D打印过程中模型支撑的自动生成问题,提高了打印质量和效率。
❷ 加工中心上面编程,上面有#100-#1007代表什么意思,求解答,谢谢
工作原理
通过在加工中心的工件的夹具,数字控制系统可以控制机器自动选择不同的制造工艺,并且工具的变化,并自动改变主轴速度,进给率和刀具相对于工件的运动轨迹,并其他辅助功能,完成多进程多张人脸工件的加工。并且有多种换刀或刀具选择功能,从而大大提高了生产效率。
机械加工中心,集中和自动换刀过程中,减少了工件夹紧,测量和机床调整时间,机切割时间,达到约80%的机器(只有15至20%的普通机床)的起始时间;同时也减少了时间,缩短了生产周期之间的工件周转,搬运和贮存过程中,有一个显着的经济效果。加工中心是适用于形状复杂的零件,精度高,产品更新换代频繁,小批量的生产。
相比,立式加工中心,卧式加工中心,结构复杂,面积大,价格也较高,和卧式加工中心在加工零件夹紧和测量不方便观察不便,但处理BTA处理有利。
编辑本段
分类
通过机械加工过程中的分类
可分为两类镗孔和铣削和车削和铣削加工中心被列为加工业务。
1。镗铣床
2。车削和铣削
根据控制的轴数分类
根据控制轴数可分为:
1。三轴加工中心
2。五轴加工中心
3。 5轴加工中心。
按主轴的相对位置和表分类
(1)卧式加工中心,加工中心的主轴轴线平行于表的设置,主要适用于加工箱体类零件。
卧式加工中心一般有索引转台或数控转台,可以加工的工件的每一侧,也可用于多个坐标的关节运动,以加工复杂曲面。
(2)立式加工中心:是指表设置垂直主轴的加工中心,主要适用于加工板类复杂零件的盘型模具和小房屋类型。
立式加工中心一般没有一个转盘,顶面处理。
此外,躺在两个主轴和主轴的立法复合加工中心,可以调整到的垂直和水平的可调加工中心的水平轴或垂直轴,它们是五面加工,在工件上的。
(3)万能加工中心(也被称为多轴加工中心)通过加工主轴轴回转工作台轴的角度控制联动变化,完成复杂的空间曲面加工的加工中心。适用于复杂的空间曲面叶轮转子,模具,刀具,工件加工。
多进程的形式扩展到其他类型的数控机床,车削中心等集中处理,数控车床配置多个自动换刀装置,能控制三个以上的坐标,除车削??主轴可以摆摊或索引,铣床,钻孔,扩孔和攻丝由旋转的工具,适用于加工复杂的旋转的身体部位的过程。
通过可加工的工件类型
(1)镗铣加工中心
镗铣加工中心是首次开发,是目前使用最广泛的加工中心,所以人们通常所说的一般是指加工中心的镗铣加工中心。他们各自的进给轴实现无级变速器和多轴控制,主轴可实现无级变速,实现刀具自动夹紧和松开(装刀,卸刀),自动排屑和自动换刀装置。主要工艺能力镗铣床的基础上,也可用于钻,扩,铰孔,锪,攻丝加工。处理对象:加工面和水平角度的给定的角度(常数)的平面部分,如磁盘,??套,金属板件;显示连续变化的可变斜面零件加工面和水平面之间的角度;箱式部分复杂曲面(凸轮,整体叶轮,模具,球形等),形状不规则的异形件,大都需要一个点,线,面多工位混合处理)。
(2)车削中心
的转动中心的NC车床,杂志和机器人的配置的基础上,所以,可以选择所使用的工具的数量大大增加。车削中心主要是车削,也可以铣,钻,扩,铰孔,攻丝等加工。处理对象:复杂零件的圆锥体,复杂的曲线旋转的公交车。在车削中心的径向孔可钻,铣键槽,,铣削凸轮槽和螺旋槽锥螺纹,变螺距螺纹??加工。车削中心通常拥有两条先进的功能。
1)电动工具刀位的刀位刀架一些可以使用的旋转刀具(铣刀,钻头)工具旋转炮塔动力。
2)C轴的位置控制功能,可实现主轴的圆周方向的任意位置的控制。实现X-C,Z-C键。此外,一些车削中心,与Y轴的功能。
(3)五面加工中心
五面加工中心,除了一般的加工中心的功能,最重要的功能是可以立卧转换主轴头数控分度表或数控回转工作台的支持下,可以实现六面体零件(如箱体类零件),五面加工的夹具。型加工中心,不仅大大减少加工辅助时间,也减少零件的精确定位错误,由于多种设置。
(4)车铣复合加工设备
正如其名称所暗示的,铣削加工设备的转动的功能,并具有的铣削加工设备的功能。在这个意义上,上述的车削中心的加工设备的类型。但在这里说,在一般指的是一个又大又重的车铣设备,包括汽车和同样强大的铣削功能,一些大型的和复杂的零件(如大型船舶的整体推进器),可实现一次装夹多表面的加工,加工精度,所以由设备的准确度的相互位置精度的加工表面的模制表面的那部分(例如,螺旋桨叶片的表面上,定位孔,定位面的相互位置精度安装)来保证的。这些设备技术含量高,价格高的,因为明显的军事应用背景,因此,西方发达国家作为一个国家的战略物质,通常限制在中国和封锁。
编辑本段
优点
通过在加工中心的工件的夹具,数字控制系统可以控制机器自动选择不同的过程,和替换工具,自动改变主轴速度,进料速度和刀具相对于工件的运动轨迹和其他辅助加工中心的功能,完成了多进程工件的几个表面处理。并且有多种换刀或刀具选择功能,从而大大提高了生产效率。
机械加工中心,集中和自动换刀过程中,减少了工件夹紧,测量和机床调整时间,机切割时间,达到约80%的机器(只有15至20%的普通机床)的起始时间;同时也减少了时间,缩短了生产周期之间的工件周转,搬运和贮存过程中,有一个显着的经济效果。加工中心是适用于形状复杂的零件,精度高,产品更新换代频繁,小批量的生产。
编辑本段
加工中心和数控机床
数控车铣加工中心是一台电脑数值控制(CNC),伺服系统,液压系统的机身上,。
但不等于数控铣床,加工中心和数控铣床最大的区别在于加工中心的自动交换的工具,通过不同用途的工具被安装在杂志上,一次装夹中自动换刀加工中心改变加工机床主轴钻孔,镗孔,铰孔,攻丝,开槽等加工功能。
编辑本段
保持
加工中心定期检查的项目
1,主轴轴承测振仪的最大额定速度状态操作
2,设备水平的检测水平
3,X / Y / X轴垂直于每度检测方箱/方
4,X / Y / Z轴重复定位精度检测激光干涉仪(取决于设备上的品牌可以自动补偿)5,X / Y / Z轴的累积误差检测激光干涉仪(根据设备品牌自动补偿)卧式加工中心的主轴300mm的跳动检测
7度垂直主轴和加工表面检测
8,X / Y / Z轴滚珠丝杆轴承状态检测
9,X / Y / Z轴丝杠状态检测
定期保养项目处理中心
机械零件
1,检查润滑系统,压力表状态,清洗润滑系统过滤器,更换机油,清除油路,
2,检查系统中的空气,清洁空气过滤器,以消除高压气体泄漏。
3,检查液路系统,清洁过滤器,清洗油箱,更换或过滤油。在可能的情况下,更换密封件。
4,紧固各传动部件,更换的不良标准件。
5,油脂润滑部位,润滑
6,清洗,洗涤该表面的发送,
7,检查杂志,机器人状态分析的机器人磨损的状态,变化的客户提出建议。
8,修复了正确??的外部元件损坏的部件。
9,检查防护罩的状态。准确地反馈给客户。
电气部分
10,电气元件,控制柜的清洁,检查,紧固接线端子固定状态。
11,清洗,清洗数控系统控制模块电路板的清洗风扇,空气过滤器,清洁散热片,
12,清洁伺服电机的风扇叶片。
13,清洁操作面板的内部元件,一个电路板风扇。检查插头固定状态。
加工中心的安全规则
1。您必须遵守安全操作的加工中心。
2。前工作需要被捆绑起来的袖口不准穿一条围巾,手套,领带,围绕着围裙,女职工的辫子拉??的帽子,穿戴防护装备。
3。开机前检查刀具补偿,机床零点和工件零点正确的。
4。每个按钮的相对位置应在符合操作要求。认真准备,进入NC程序。
5。切割前在一切正常的情况下,要检查的防护装备,保险,信号,位置,机械传动部件,电气,液压,数字,系统的运行状态。
6。加工机调试前,经营状况,在一切正常的情况下,在切割前应检查润滑,机械,电气,液压,数字系统。
7。碰上的加工机,在按照规定的程序,操作人员是不允许的工件,刀具和传动部件的运动接触,禁止转动部分的交货或拿起横跨机器的工具和其他物品。
8。调整机床,工件夹紧和工具,并擦拭机器必须停止。
9。工具或其他物品不允许的电气操作柜及防护罩上。
10。不准用手清除铁,使用专门的工具进行清洗。
11。异常情况,报警信号后,应立即停止,有关人员来检查。
12。不允许在运转的机器,由于某种原因,你要离开餐桌的中间位置,刀杆退款离开他们的工作,你必须停止和关闭主机电源。
编辑本段
分析处理中心的实践和注意事项
甲上的操作在本说明书中的工件的加工中心
1。副铁屑在X,Y方向上的工件应清洁工作表面必须是干净的,你应该检查导致的XY上死床轴移动的现象,是否太多,因为在床上浪费。工件四周应倒角去毛刺,避免不公平所造成的错位;
2。 Z符号之前的羊毛处理程序的压铸模具中,用K符号刀直径的刀具半径前铣床座箱计划,与J的符号时,刀具半径前电极计划,正常的刀具半径不带符号。粗加工看的节目单,直径刀具直径的象征;
3。检查工件基准工件是否与图纸基准是一致的,如果现在不同了,伴随着的程序员,检讨运动机的原理不得随意改变基准的处理。模制框架的平面,如顶面的刀必须XY校准。原则上,所有的基准应审查后,可以处理;
4。羊毛产品技术层次感,完成必须使用工艺板夹紧。科技局,超越了替补席上,特别是Y方向,要注意行程,当心工艺板顶死机床;
5。三分之二的叠加的锁定螺钉,分层后面比提前一般0.25-0.5之间适当,以避免工件松开由于振动,从而在工件移位严重报废;
6。夹紧靠山,认为有关的工作是否会松动,应该是非常肯定地避免切割刀,转移报废;
7。 XYZ归位,每个工件前。要养成一个好习惯,应尽量避免操作不当,超行程XYZ没有回到原点带来工件报废;
8。修复模式(上机)XY水平方向,然后找到一个很好的基准位的校准,应尽量避免忘记校表造成严重的错位造成报废。
其次,工件注
1。机器工作前,开机预热10分钟前下刀[1]
2。工件应检查程序是否下刀点工具程序的单个符号统一(ZJK)的大小,处理调节跟踪一个不错的主意。的工具是不能拿错了,在结束生命。如果有任何差异立即审查,连同编程操作的机器不能自由处理;
3。工件应认识的测试刀,特别是大型的工件(程序单必须指示的大小)的第一刀完成使用卡尺测试是否坐标中心,导致脱位报废;
4。大量插入或男性铜(100MM)处理(一般根据中心点),如有特殊原因是局部坐标系,必须要考虑是否垂直的工件加工范围,以避免处理,没有造成报废;
5。该工具可以处理,是不合理的,可向改变刀具路径工具的变化,是一个不错的主意。深型腔加工,特殊后整理应经常检查刀具的磨损,及时停止转动的刀片。声音的声音,钨钢加工光洁度是否兄弟的歧视;
6。连续羊毛的中间处理或淬火后敲的刀片(应该不超过2个),应关闭的处理,,立即审查程序的刀具路径根据实际情况的变化或修正;
7。加工中途应及时清理床铁屑,特别是托盘废铁,以避免死顶死的原因拖板脱节费是不够高的M55 Y方向和Z方向的交换空间的设计,应该是清理好;
8。 Z方向的刀参考位置应该是在同一个点,它是最好的刀准确地检测出是否使用铣削平面的地方,以避免加强上下刀;
9。刀具长度加工深度+安全长3-5毫米,实际操作模拟,尤其是带有延长杆要小心的工件(加工);
10。深型腔加工不可避免的长刀,刀不再简单的中途由于刀的头发挥刀及时关闭,估计紧张的刀的刀柄年,应不超过55毫米以下;
11。羊毛加工应警惕当地的硬质材料杂质或BTA不利,深腔加工抗半的长刀脂肪炸弹掉刀4R0防钢铁不足的工具断刀,16R4最脆弱的角刀?出危险的工具拧,禁止离开机器操作;
12。模具架的地方,在处理部分(一般为10MM)检测处理的准确性,及时调整刀具的磨损,机床,可适当补充价值。应坚持了最好的饲料,以避免重新处理;
13。第一次测试刀修复模式或辅助机器,没有确认的问题,然后再处理。
完成后的工件注
1。如果有任何疑问,可以请模具工人的实际情况,检查处理完成后,看然后说,无论是平坦的地方加工,二次加工是否基准位;
2。工件完成过程分层技术委员会应直立,以避免变形,影响精度。
四,刀具管理
白钢刀开粗半精加工和电极加工工具单独的工作,在叶鞘上成型(避免边缘颠簸),电极处理乌克兰的钢刀,与钢材加工乌克兰叶片各自的部门处理。
编辑本段
“加工中心”杂志
加工中心,自动换刀工具储存箱和换刀。杂志种类很多,常见的两种类型的光盘和链。库存放的链式刀库容量。
ATC机床主轴的杂志和交流的工具,常见的机器人之间,没有刀具主轴的杂志直接交流的机器人,说的无臂换刀。
该杂志分为两种,光盘盒,机器人杂志光盘盒加工中心
光盘盒应该被称为固定地址换刀杂志,每把刀具的位置有一个数字,从1到编程12,18,20,24,即刀号的地址。操作员的工具安装到一个特定的刀位,换刀时间的数量无关,总是在切割器的位置。
1。低制造成本。该杂志的身体和分度盘的主要组成部分,只要这两个零件的加工精度可以放心,移动部件在该杂志的索引是非常经典的“马氏机构”,反反复复,向上和向下移动的气缸的主要选择。大会调整更方便,维护简单。通用机床制造商可以自制。
2。杂志每台机器开机后必须“回零”,这本杂志在旋转,只要挡板附近(距离约0.3毫米)非接触式开关,数控系统默认的第一刀。而在此计数基准,“马氏机构翻了好几倍,这是数刀。只要机器不关机,当前刀具号的记忆。刀具更换,一般根据轮换原则的最近距离,刀号的编号,如果数字杂志18日,逆时针要更改当前的刀位8号,6刀,在最近的距离换刀原则,该杂志是逆时针转。要改变第十届刀“杂志顺时针方向。
机器关机工具内存被清除。
3。国内固定地址换刀杂志换刀时间机器一般要超过8秒(从切割到另一个切削)。
4。第40柄限制在光盘盒总数的工具,而不是太多,一般不超过24,#50是不超过20个大型龙门机的光盘插入链结构,工具的数量多达60 。
二,机器人杂志
机器人杂志工具的变化是随机的地址换刀。未在每个口袋里,其最大的优点是快速,可靠的工具的变化。
1。高生产成本。该杂志有一个口袋链结合机械手换刀动作凸轮机构控制,部分更复杂的处理。大会调试比较复杂,一般由专业厂家生产的,机器制造商不一般家常。
2。刀数的原则。选择刀一个固定的地址,它也具有一定的参考工具:1刀。但是,我们只能被理解为第一口袋里的刀,而不是程序:T1。该系统具有刀具表中。它有两列。列的叶鞘目前的程序号列对应的的叶鞘号的刀号。如果我们做了一个三刀具加工程序的位置,工具开始的第一刀T1号刀,第二刀刀设置T3,T2,3,我们知道主轴T1处理,T2刀是准备,第二个口袋里的零钱到一个换刀后,T1,同样,处理T3,T2装在口袋里的第三次。一个循环的工具安装的工具袋。数控系统的记忆是永久的口袋号和刀具关机后再开机杂志没有“回零”即可恢复到关机前的状态。 “回零”,即必须在刀具表中相应的工具套住号号。
3。机器人杂志换刀时间一般为4秒(从切割到另一个切削)。
4。该工具一般高于光盘盒的数量更多,传统18,20,30,40,60
5。该杂志的凸轮箱应定期更换用于润滑的齿轮油,冷却效果。
编辑本段
加工中心操作要点
作为一个熟练的操作人员,必须了解的机加工零件,工艺路线,机器的特性,以操纵机器来完成处理任务的要求。因此,完成几个操作要点,以供参考:
。为了简化的原点的定位和安全,夹具定位表面相的加工中心的处理,应该有尺寸的精确坐标。
。工件坐标系和机床坐标系中选择了部分的安装方向和规划,以确保一致性和方向安装方向。
。拆短的时间内,改变以适应新的工件夹具。压缩由于辅助加工中心时间很短,支撑夹具装卸不能占用太多的时间。
。该夹具应该有尽可能和尽可能少的元件更高的刚度。
。的空间位置,所述夹紧元件的低安装夹具夹具,以尽可能地开放,不工作的步骤刀具路径干扰。
。量的范围内的主轴的行进,使工件的加工完成的。
。互动式表处理中心,由于表机芯的作用,对照顾的关心和旋转,夹具设计必须防止空间干涉测量夹具和机床。
。尝试在一次装夹中完成所有的处理内容。摧毁时,你必须更换夹紧点的定位精度不能代替夹紧点,这是需要特别注意的说明,必要时,在这个过程中的文件。
。表夹具的底表面接触的底表面的平坦性,必须保证夹具内0.01-0.02毫米,表面粗糙度不超过Ra3.2um。
编辑本段
SAJ S350矢量变频器的应用特点的加工中心
S350系列是新一代高性能矢量变频器具有以下特点:
■采用了最新的高速电机控制专用芯片DSP,确保矢量控制快速响应
■硬件电路模块化设计,确保电路稳定,高效运行
■欧洲汽车设计理念相结合的设计,线条流畅,造型美观,
■结构独立风道设计,风扇自由拆卸,散热性好
■无PG矢量控制,有PG矢量控制,转矩控制,V / F控制,可以选择
■强大的输入输出多功能可编程端子,速度控制脉冲输入,两路模拟量输出
■独特的“挖土机”自适应控制功能会自动在运行过程中,电机的最大转矩限制,有效抑制过流频繁跳闸
■宽广的输入电压,输出电压调节器(AVR),瞬时停电不停机,以适应更多
■内置先进的PID算法,响应速度快,适应性强,调试简单; 16速度控制,便于PLC逻辑控制的时间,速度,方向控制各种灵活的方式,以满足各种复杂要求的条件多功能
■内置国际标准的MODBUS RTU ASCII通讯协议,用户可以控制主机,如PC / PLC集中控制的逆变器485联网
❸ 现在国外数控编程主要是哪种
1数控编程及其发展
数控编程是目前CAD/CAPP/CAM系统中最能明显发挥效益的环节之一,其在实现设计加工自动化、提高加工精度和加工质量、缩短产品研制周期等方面发挥着重要作用。在诸如航空工业、汽车工业等领域有着大量的应用。由于生产实际的强烈需求,国内外都对数控编程技术进行了广泛的研究,并取得了丰硕成果。下面就对数控编程及其发展作一些介绍。
1.1数控编程的基本概念
数控编程是从零件图纸到获得数控加工程序的全过程。它的主要任务是计算加工走刀中的刀位点(cutterlocationpoint简称CL点)。刀位点一般取为刀具轴线与刀具表面的交点,多轴加工中还要给出刀轴矢量。
1.2数控编程技术的发展概况
为了解决数控加工中的程序编制问题,50年代,MIT设计了一种专门用于机械零件数控加工程序编制的语言,称为APT(AutomaticallyProgrammedTool)。其后,APT几经发展,形成了诸如APTII、APTIII(立体切削用)、APT(算法改进,增加多坐标曲面加工编程功能)、APTAC(Advancedcontouring)(增加切削数据库管理系统)和APT/SS(SculpturedSurface)(增加雕塑曲面加工编程功能)等先进版。
采用APT语言编制数控程序具有程序简炼,走刀控制灵活等优点,使数控加工编程从面向机床指令的“汇编语言”级,上升到面向几何元素.APT仍有许多不便之处:采用语言定义零件几何形状,难以描述复杂的几何形状,缺乏几何直观性;缺少对零件形状、刀具运动轨迹的直观图形显示和刀具轨迹的验证手段;难以和CAD数据库和CAPP系统有效连接;不容易作到高度的自动化,集成化。
针对APT语言的缺点,1978年,法国达索飞机公司开始开发集三维设计、分析、NC加工一体化的系统,称为为CATIA。随后很快出现了象EUCLID,UGII,INTERGRAPH,Pro/Engineering,MasterCAM及NPU/GNCP等系统,这些系统都有效的解决了几何造型、零件几何形状的显示,交互设计、修改及刀具轨迹生成,走刀过程的仿真显示、验证等问题,推动了CAD和CAM向一体化方向发展。到了80年代,在CAD/CAM一体化概念的基础上,逐步形成了计算机集成制造系统(CIMS)及并行工程(CE)的概念。目前,为了适应CIMS及CE发展的需要,数控编程系统正向集成化和智能化夫发展。
在集成化方面,以开发符合STEP()标准的参数化特征造型系统为主,目前已进行了大量卓有成效的工作,是国内外开发的热点;在智能化方面,工作刚刚开始,还有待我们去努力。
2 NC刀具轨迹生成方法研究发展现状
数控编程的核心工作是生成刀具轨迹,然后将其离散成刀位点,经后置处理产生数控加工程序。下面就刀具轨迹产生方法作一些介绍。
2.1基于点、线、面和体的NC刀轨生成方法
CAD技术从二维绘图起步,经历了三维线框、曲面和实体造型发展阶段,一直到现在的参数化特征造型。在二维绘图与三维线框阶段,数控加工主要以点、线为驱动对象,如孔加工,轮廓加工,平面区域加工等。这种加工要求操作人员的水平较高,交互复杂。在曲面和实体造型发展阶段,出现了基于实体的加工。实体加工的加工对象是一个实体(一般为CSG和BREP混合表示的),它由一些基本体素经集合运算(并、交、差运算)而得。实体加工不仅可用于零件的粗加工和半精加工,大面积切削掉余量,提高加工效率,而且可用于基于特征的数控编程系统的研究与开发,是特征加工的基础。
实体加工一般有实体轮廓加工和实体区域加工两种。实体加工的实现方法为层切法(SLICE),即用一组水平面去切被加工实体,然后对得到的交线产生等距线作为走刀轨迹。本文从系统需要角度出发,在ACIS几何造型平台上实现了这种基于点、线、面和实体的数控加工。
2.2基于特征的NC刀轨生成方法
参数化特征造型已有了一定的发展时期,但基于特征的刀具轨迹生成方法的研究才刚刚开始。特征加工使数控编程人员不在对那些低层次的几何信息(如:点、线、面、实体)进行操作,而转变为直接对符合工程技术人员习惯的特征进行数控编程,大大提高了编程效率。
W.R.Mail和A.J.Mcleod在他们的研究中给出了一个基于特征的NC代码生成子系统,这个系统的工作原理是:零件的每个加工过程都可以看成对组成该零件的形状特征组进行加工的总和。那么对整个形状特征或形状特征组分别加工后即完成了零件的加工。而每一形状特征或形状特征组的NC代码可自动生成。目前开发的系统只适用于2.5D零件的加工。
LeeandChang开发了一种用虚拟边界的方法自动产生凸自由曲面特征刀具轨迹的系统。这个系统的工作原理是:在凸自由曲面内嵌入一个最小的长方块,这样凸自由曲面特征就被转换成一个凹特征。最小的长方块与最终产品模型的合并就构成了被称为虚拟模型的一种间接产品模型。刀具轨迹的生成方法分成三步完成:(1)、切削多面体特征;(2)、切削自由曲面特征;(3)、切削相交特征。
JongYunJung研究了基于特征的非切削刀具轨迹生成问题。文章把基于特征的加工轨迹分成轮廓加工和内区域加工两类,并定义了这两类加工的切削方向,通过减少切削刀具轨迹达到整体优化刀具轨迹的目的。文章主要针对几种基本特征(孔、内凹、台阶、槽),讨论了这些基本特征的典型走刀路径、刀具选择和加工顺序等,并通过IP(InterProgramming)技术避免重复走刀,以优化非切削刀具轨迹。另外,JongYunJong还在他1991年的博士论文中研究了制造特征提取和基于特征的刀具及刀具路径。
特征加工的基础是实体加工,当然也可认为是更高级的实体加工。但特征加工不同于实体加工,实体加工有它自身的局限性。特征加工与实体加工主要有以下几点不同:
从概念上讲,特征是组成零件的功能要素,符合工程技术人员的操作习惯,为工程技术人员所熟知;实体是低层的几何对象,是经过一系列布尔运算而得到的一个几何体,不带有任何功能语义信息;实体加工往往是对整个零件(实体)的一次性加工。但实际上一个零件不太可能仅用一把刀一次加工完,往往要经过粗加工、半精加工、精加工等一系列工步,零件不同的部位一般要用不同的刀具进行加工;有时一个零件既要用到车削,也要用到铣削。因此实体加工主要用于零件的粗加工及半精加工。而特征加工则从本质上解决了上述问题;特征加工具有更多的智能。对于特定的特征可规定某几种固定的加工方法,特别是那些已在STEP标准规定的特征更是如此。如果我们对所有的标准特征都制定了特定的加工方法,那么对那些由标准特征够成的零件的加工其方便性就可想而知了。倘若CAPP系统能提供相应的工艺特征,那么NCP系统就可以大大减少交互输入,具有更多的智能。而这些实体加工是无法实现的;
特征加工有利于实现从CAD、CAPP、NCP及CNC系统的全面集成,实现信息的双向流动,为CIMS乃至并行工程(CE)奠定良好的基础;而实体加工对这些是无能为力的。
2.3现役几个主要CAD/CAM系统中的NC刀轨生成方法分析
现役CAM的构成及主要功能
目前比较成熟的CAM系统主要以两种形式实现CAD/CAM系统集成:一体化的CAD/CAM系统(如:UGII、Euclid、Pro/ENGINEER等)和相对独立的CAM系统(如:Mastercam、Surfcam等)。前者以内部统一的数据格式直接从CAD系统获取产品几何模型,而后者主要通过中性文件从其它CAD系统获取产品几何模型。然而,无论是哪种形式的CAM系统,都由五个模块组成,即交互工艺参数输入模块、刀具轨迹生成模块、刀具轨迹编辑模块、三维加工动态仿真模块和后置处理模块。下面仅就一些着名的CAD/CAM系统的NC加工方法进行讨论。
UGII加工方法分析
一般认为UGII是业界中最好,最具代表性的数控软件。其最具特点的是其功能强大的刀具轨迹生成方法。包括车削、铣削、线切割等完善的加工方法。其中铣削主要有以下功能:
、PointtoPoint:完成各种孔加工;
、PanarMill:平面铣削。包括单向行切,双向行切,环切以及轮廓加工等;
、FixedContour:固定多轴投影加工。用投影方法控制刀具在单张曲面上或多张曲面上的移动,控制刀具移动的可以是已生成的刀具轨迹,一系列点或一组曲线;
、VariableContour:可变轴投影加工;
、Parameterline:等参数线加工。可对单张曲面或多张曲面连续加工;
、ZigZagSurface:裁剪面加工;
、RoughtoDepth:粗加工。将毛坯粗加工到指定深度;
、CavityMill:多级深度型腔加工。特别适用于凸模和凹模的粗加工;
、SequentialSurface:曲面交加工。按照零件面、导动面和检查面的思路对刀具的移动提供最大程度的控制。
EDSUnigraphics还包括大量的其它方面的功能,这里就不一一列举了。
STRATA加工方法分析
STRATA是一个数控编程系统开发环境,它是建立在ACIS几何建模平台上的。
它为用户提供两种编程开发环境,即NC命令语言接口和NC操作C++类库。它可支持三轴铣削,车削和线切割NC加工,并可支持线框、曲面和实体几何建模。其NC刀具轨迹生成方法是基于实体模型。STRATA基于实体的NC刀具轨迹生成类库提供的加工方法包括:
ProfileToolpath:轮廓加工;
AreaClearToolpath:平面区域加工;
SolidProfileToolpath:实体轮廓加工;
SolidAreaClearToolpath:实体平面区域加工;
SolidFaceToolPath:实体表面加工;
SolidSliceToolPath:实体截平面加工;
LanguagebasedToolpath:基于语言的刀具轨迹生成。
其它的CAD/CAM软件,如Euclid,Cimitron,CV,CATIA等的NC功能各有千秋,但其基本内容大同小异,没有本质区别。
2.4现役CAM系统刀轨生成方法的主要问题
按照传统的CAD/CAM系统和CNC系统的工作方式,CAM系统以直接或间接(通过中性文件)的方式从CAD系统获取产品的几何数据模型。CAM系统以三维几何模型中的点、线、面、或实体为驱动对象,生成加工刀具轨迹,并以刀具定位文件的形式经后置处理,以NC代码的形式提供给CNC机床,在整个CAD/CAM及CNC系统的运行过程中存在以下几方面的问题:
CAM系统只能从CAD系统获取产品的低层几何信息,无法自动捕捉产品的几何形状信息和产品高层的功能和语义信息。因此,整个CAM过程必须在经验丰富的制造工程师的参与下,通过图形交互来完成。如:制造工程师必须选择加工对象(点、线、面或实体)、约束条件(装夹、干涉和碰撞等)、刀具、加工参数(切削方向、切深、进给量、进给速度等)。整个系统的自动化程度较低。
在CAM系统生成的刀具轨迹中,同样也只包含低层的几何信息(直线和圆弧的几何定位信息),以及少量的过程控制信息(如进给率、主轴转速、换刀等)。因此,下游的CNC系统既无法获取更高层的设计要求(如公差、表面光洁度等),也无法得到与生成刀具轨迹有关的加工工艺参数。
CAM系统各个模块之间的产品数据不统一,各模块相对独立。例如刀具定位文件只记录刀具轨迹而不记录相应的加工工艺参数,三维动态仿真只记录刀具轨迹的干涉与碰撞,而不记录与其发生干涉和碰撞的加工对象及相关的加工工艺参数。
CAM系统是一个独立的系统。CAD系统与CAM系统之间没有统一的产品数据模型,即使是在一体化的集成CAD/CAM系统中,信息的共享也只是单向的和单一的。CAM系统不能充分理解和利用CAD系统有关产品的全部信息,尤其是与加工有关的特征信息,同样CAD系统也无法获取CAM系统产生的加工数据信息。这就给并行工程的实施带来了困难 。
3数控仿真技术
3.1计算机仿真的概念及应用
从工程的角度来看,仿真就是通过对系统模型的实验去研究一个已有的或设计中的系统。分析复杂的动态对象,仿真是一种有效的方法,可以减少风险,缩短设计和制造的周期,并节约投资。计算机仿真就是借助计算机,利用系统模型对实际系统进行实验研究的过程。它随着计算机技术的发展而迅速地发展,在仿真中占有越来越重要的地位。计算机仿真的过程可通过图1所示的要素间的三个基本活动来描述:
建模活动是通过对实际系统的观测或检测,在忽略次要因素及不可检测变量的基础上,用物理或数学的方法进行描述,从而获得实际系统的简化近似模型。这里的模型同实际系统的功能与参数之间应具有相似性和对应性。
仿真模型是对系统的数学模型(简化模型)进行一定的算法处理,使其成为合适的形式(如将数值积分变为迭代运算模型)之后,成为能被计算机接受的“可计算模型”。仿真模型对实际系统来讲是一个二次简化的模型。
仿真实验是指将系统的仿真模型在计算机上运行的过程。仿真是通过实验来研究实际系统的一种技术,通过仿真技术可以弄清系统内在结构变量和环境条件的影响。
计算机仿真技术的发展趋势主要表现在两个方面:应用领域的扩大和仿真计算机的智能化。计算机仿真技术不仅在传统的工程技术领域(航空、航天、化工等方面)继续发展,而且扩大到社会经济、生物等许多非工程领域,此外,并行处理、人工智能、知识库和专家系统等技术的发展正影响着仿真计算机的发展。
数控加工仿真利用计算机来模拟实际的加工过程,是验证数控加工程序的可靠性和预测切削过程的有力工具,以减少工件的试切,提高生产效率。
3.2数控仿真技术的研究现状
数控机床加工零件是靠数控指令程序控制完成的。为确保数控程序的正确性,防止加工过程中干涉和碰撞的发生,在实际生产中,常采用试切的方法进行检验。但这种方法费工费料,代价昂贵,使生产成本上升,增加了产品加工时间和生产周期。后来又采用轨迹显示法,即以划针或笔代替刀具,以着色板或纸代替工件来仿真刀具运动轨迹的二维图形(也可以显示二维半的加工轨迹),有相当大的局限性。对于工件的三维和多维加工,也有用易切削的材料代替工件(如,石蜡、木料、改性树脂和塑料等)来检验加工的切削轨迹。但是,试切要占用数控机床和加工现场。为此,人们一直在研究能逐步代替试切的计算机仿真方法,并在试切环境的模型化、仿真计算和图形显示等方面取得了重要的进展,目前正向提高模型的精确度、仿真计算实时化和改善图形显示的真实感等方向发展。
从试切环境的模型特点来看,目前NC切削过程仿真分几何仿真和力学仿真两个方面。几何仿真不考虑切削参数、切削力及其它物理因素的影响,只仿真刀具工件几何体的运动,以验证NC程序的正确性。它可以减少或消除因程序错误而导致的机床损伤、夹具破坏或刀具折断、零件报废等问题;同时可以减少从产品设计到制造的时间,降低生产成本。切削过程的力学仿真属于物理仿真范畴,它通过仿真切削过程的动态力学特性来预测刀具破损、刀具振动、控制切削参数,从而达到优化切削过程的目的。
几何仿真技术的发展是随着几何建模技术的发展而发展的,包括定性图形显示和定量干涉验证两方面。目前常用的方法有直接实体造型法,基于图像空间的方法和离散矢量求交法。
3.3直接实体造型法
这种方法是指工件体与刀具运动所形成的包络体进行实体布尔差运算,工件体的三维模型随着切削过程被不断更新。
Sungurtekin和Velcker开发了一个铣床的模拟系统。该系统采用CSG法来记录毛坯的三维模型,利用一些基本图元如长方体、圆柱体、圆锥体等,和集合运算,特别是并运算,将毛坯和一系列刀具扫描过的区域记录下来,然后应用集合差运算从毛坯中顺序除去扫描过的区域。所谓被扫过的区域是指切削刀具沿某一轨迹运动时所走过的区域。在扫描了每段NC代码后显示变化了的毛坯形状。
Kawashima等的接合树法将毛坯和切削区域用接合树(graftree)表示,即除了空和满两种结点,边界结点也作为八叉树(octtree)的叶结点。边界结点包含半空间,结点物体利用在这些半空间上的CSG操作来表示。接合树细分的层次由边界结点允许的半空间个数决定。逐步的切削仿真利用毛坯和切削区域的差运算来实现。毛坯的显示采用了深度缓冲区算法,将毛坯划分为多边形实现毛坯的可视化。
用基于实体造型的方法实现连续更新的毛坯的实时可视化,耗时太长,于是一些基于观察的方法被提出来。
3.4基于图像空间的方法
这种方法用图像空间的消隐算法来实现实体布尔运算。VanHook采用图象空间离散法实现了加工过程的动态图形仿真。他使用类似图形消隐的zbuffer思想,沿视线方向将毛坯和刀具离散,在每个屏幕象素上毛坯和刀具表示为沿z轴的一个长方体,称为Dexel结构。刀具切削毛坯的过程简化为沿视线方向上的一维布尔运算,见图3,切削过程就变成两者Dexel结构的比较:
CASE1:只有毛坯,显示毛坯,break;
CASE2:毛坯完全在刀具之后,显示刀具,break;
CASE3:刀具切削毛坯前部,更新毛坯的dexel结构,显示刀具,break;
CASE4:刀具切削毛坯内部,删除毛坯的dexel结构,显示刀具,break;
CASE5:刀具切削毛坯内部,创建新的毛坯dexel结构,显示毛坯,break;
CASE6:刀具切削毛坯后部,更新毛坯的dexel结构,显示毛坯,break;
CASE7:刀具完全在毛坯之后,显示毛坯,break;
CASE8:只有刀具,显示刀具,break。
这种方法将实体布尔运算和图形显示过程合为一体,使仿真图形显示有很好的实时性。
Hsu和Yang提出了一种有效的三轴铣削的实时仿真方法。他们使用zmap作为基本数据结构,记录一个二维网格的每个方块处的毛坯高度,即z向值。这种数据结构只适用于刀轴z向的三轴铣削仿真。对每个铣削操作通过改变刀具运动每一点的深度值,很容易更新zmap值,并更新工件的图形显示。
3.5离散矢量求交法
由于现有的实体造型技术未涉及公差和曲面的偏置表示,而像素空间布尔运算并不精确,使仿真验证有很大的局限性。为此Chappel提出了一种基于曲面技术的“点矢量”(pointvector)法。这种方法将曲面按一定精度离散,用这些离散点来表示该曲面。以每个离散点的法矢为该点的矢量方向,延长与工件的外表面相交。通过仿真刀具的切削过程,计算各个离散点沿法矢到刀具的距离s。
设sg和sm分别为曲面加工的内、外偏差,如果sg< S < SM说明加工处在误差范围内,S < SG则过切,S>sm则漏切。该方法分为被切削曲面的离散(discretization)、检测点的定位(location)和离散点矢量与工件实体的求交(intersection)三个过程。采用图像映射的方法显示加工误差图形;零件表面的加工误差可以精确地描写出来。
总体来说,基于实体造型的方法中几何模型的表达与实际加工过程相一致,使得仿真的最终结果与设计产品间的精确比较成为可能;但实体造型的技术要求高,计算量大,在目前的计算机实用环境下较难应用于实时检测和动态模拟。基于图像空间的方法速度快得多,能够实现实时仿真,但由于原始数据都已转化为像素值,不易进行精确的检测。离散矢量求交法基于零件的表面处理,能精确描述零件面的加工误差,主要用于曲面加工的误差检测。
❹ CIMATRON是什么意思
Cimatron是着名软件公司以色列Cimatron公司旗下产品,Cimatron在中国的子公司是思美创(北京)科技有限公司。多年来,在世界范围内,从小的模具制造工厂到大公司的制造部门,Cimatron的CAD/CAM解决方案已成功为企业装备中不可或缺的工具。