当前位置:首页 » 安卓系统 » android源码内核

android源码内核

发布时间: 2023-03-27 13:22:38

‘壹’ Android socket源码解析(三)socket的connect源码解析

上一篇文章着重的聊了socket服务端的bind,listen,accpet的逻辑。本文来着重聊聊connect都做了什么?

如果遇到什么问题,可以来本文 https://www.jianshu.com/p/da6089fdcfe1 下讨论

当服务端一切都准备好了。客户端就会尝试的通过 connect 系统调用,尝试的和服务端建立远程连接。

首先校验当前socket中是否有正确的目标地址。然后获取IP地址和端口调用 connectToAddress 。

在这个方法中,能看到有一个 NetHooks 跟踪socket的调用,也能看到 BlockGuard 跟踪了socket的connect调用。因此可以hook这两个地方跟踪socket,不过很少用就是了。

核心方法是 socketConnect 方法,这个方法就是调用 IoBridge.connect 方法。同理也会调用到jni中。

能看到也是调用了 connect 系统调用。

文件:/ net / ipv4 / af_inet.c

在这个方法中做的事情如下:

注意 sk_prot 所指向的方法是, tcp_prot 中 connect 所指向的方法,也就是指 tcp_v4_connect .

文件:/ net / ipv4 / tcp_ipv4.c

本质上核心任务有三件:

想要能够理解下文内容,先要明白什么是路由表。

路由表分为两大类:

每个路由器都有一个路由表(RIB)和转发表 (fib表),路由表用于决策路由,转发表决策转发分组。下文会接触到这两种表。

这两个表有什么区别呢?

网上虽然给了如下的定义:

但实际上在linux 3.8.1中并没有明确的区分。整个路由相关的逻辑都是使用了fib转发表承担的。

先来看看几个和FIB转发表相关的核心结构体:

熟悉Linux命令朋友一定就能认出这里面大部分的字段都可以通过route命令查找到。

命令执行结果如下:

在这route命令结果的字段实际上都对应上了结构体中的字段含义:

知道路由表的的内容后。再来FIB转发表的内容。实际上从下面的源码其实可以得知,路由表的获取,实际上是先从fib转发表的路由字典树获取到后在同感加工获得路由表对象。

转发表的内容就更加简单

还记得在之前总结的ip地址的结构吗?

需要进行一次tcp的通信,意味着需要把ip报文准备好。因此需要决定源ip地址和目标IP地址。目标ip地址在之前通过netd查询到了,此时需要得到本地发送的源ip地址。

然而在实际情况下,往往是面对如下这么情况:公网一个对外的ip地址,而内网会被映射成多个不同内网的ip地址。而这个过程就是通过DDNS动态的在内存中进行更新。

因此 ip_route_connect 实际上就是选择一个缓存好的,通过DDNS设置好的内网ip地址并找到作为结果返回,将会在之后发送包的时候填入这些存在结果信息。而查询内网ip地址的过程,可以成为RTNetLink。

在Linux中有一个常用的命令 ifconfig 也可以实现类似增加一个内网ip地址的功能:

比如说为网卡eth0增加一个IPV6的地址。而这个过程实际上就是调用了devinet内核模块设定好的添加新ip地址方式,并在回调中把该ip地址刷新到内存中。

注意 devinet 和 RTNetLink 严格来说不是一个存在同一个模块。虽然都是使用 rtnl_register 注册方法到rtnl模块中:

文件:/ net / ipv4 / devinet.c

文件:/ net / ipv4 / route.c

实际上整个route模块,是跟着ipv4 内核模块一起初始化好的。能看到其中就根据不同的rtnl操作符号注册了对应不同的方法。

整个DDNS的工作流程大体如下:

当然,在tcp三次握手执行之前,需要得到当前的源地址,那么就需要通过rtnl进行查询内存中分配的ip。

文件:/ include / net / route.h

这个方法核心就是 __ip_route_output_key .当目的地址或者源地址有其一为空,则会调用 __ip_route_output_key 填充ip地址。目的地址为空说明可能是在回环链路中通信,如果源地址为空,那个说明可能往目的地址通信需要填充本地被DDNS分配好的内网地址。

在这个方法中核心还是调用了 flowi4_init_output 进行flowi4结构体的初始化。

文件:/ include / net / flow.h

能看到这个过程把数据中的源地址,目的地址,源地址端口和目的地址端口,协议类型等数据给记录下来,之后内网ip地址的查询与更新就会频繁的和这个结构体进行交互。

能看到实际上 flowi4 是一个用于承载数据的临时结构体,包含了本次路由操作需要的数据。

执行的事务如下:

想要弄清楚ip路由表的核心逻辑,必须明白路由表的几个核心的数据结构。当然网上搜索到的和本文很可能大为不同。本文是基于LInux 内核3.1.8.之后的设计几乎都沿用这一套。

而内核将路由表进行大规模的重新设计,很大一部分的原因是网络环境日益庞大且复杂。需要全新的方式进行优化管理系统中的路由表。

下面是fib_table 路由表所涉及的数据结构:

依次从最外层的结构体介绍:

能看到路由表的存储实际上通过字典树的数据结构压缩实现的。但是和常见的字典树有点区别,这种特殊的字典树称为LC-trie 快速路由查找算法

这一篇文章对于快速路由查找算法的理解写的很不错: https://blog.csdn.net/dog250/article/details/6596046

首先理解字典树:字典树简单的来说,就是把一串数据化为二进制格式,根据左0,右1的方式构成的。

如图下所示:

这个过程用图来展示,就是沿着字典树路径不断向下读,比如依次读取abd节点就能得到00这个数字。依次读取abeh就能得到010这个数字。

说到底这种方式只是存储数据的一种方式。而使用数的好处就能很轻易的找到公共前缀,在字典树中找到公共最大子树,也就找到了公共前缀。

而LC-trie 则是在这之上做了压缩优化处理,想要理解这个算法,必须要明白在 tnode 中存在两个十分核心的数据:

这负责什么事情呢?下面就简单说说整个lc-trie的算法就能明白了。

当然先来看看方法 __ip_dev_find 是如何查找

文件:/ net / ipv4 / fib_trie.c

整个方法就是通过 tkey_extract_bits 生成tnode中对应的叶子节点所在index,从而通过 tnode_get_child_rcu 拿到tnode节点中index所对应的数组中获取叶下一级别的tnode或者叶子结点。

其中查找index最为核心方法如上,这个过程,先通过key左移动pos个位,再向右边移动(32 - bits)算法找到对应index。

在这里能对路由压缩算法有一定的理解即可,本文重点不在这里。当从路由树中找到了结果就返回 fib_result 结构体。

查询的结果最为核心的就是 fib_table 路由表,存储了真正的路由转发信息

文件:/ net / ipv4 / route.c

这个方法做的事情很简单,本质上就是想要找到这个路由的下一跳是哪里?

在这里面有一个核心的结构体名为 fib_nh_exception 。这个是指fib表中去往目的地址情况下最理想的下一跳的地址。

而这个结构体在上一个方法通过 find_exception 获得.遍历从 fib_result 获取到 fib_nh 结构体中的 nh_exceptions 链表。从这链表中找到一模一样的目的地址并返回得到的。

文件:/ net / ipv4 / tcp_output.c

‘贰’ 如何在Android 内核源码树中添加app应用

1. 不带jni本地代码

首先,在Android内核源码中选择一个目录来存放HelloWorld应用的源码,比如放到/packages/apps目录下。和陪

(1) 在HelloWorld目录下新建Android.mk文件,示例如下:

LOCAL_PATH:= $(call my-dir)
include $(CLEAR_VARS)
LOCAL_MODULE_TAGS := eng
LOCAL_SRC_FILES := $(call all-subdir-java-files)
LOCAL_PACKAGE_NAME := HelloWorld
include $(BUILD_PACKAGE)

注:LOCAL_MODULE_TAGS的备选值有user,eng,tests,optional,这里使用的TAGS值为eng,因此,毁前仅当用户指定的编译纤棚清选项为eng时才会编译该工程。

‘叁’ android内核源代码有多大

每个版本的源代码不同,几百兆到几G不等。
Android是一种基于Linux的自由及开放源桥袜代码敏弊激的操作系统,主要使用于移动设备,如智能手机和平板电脑,由Google公司和开放手机联盟领导及开发。尚未有统一中文名称,中国大陆地区较多人使用“安卓”或“安致”。Android操作系统最初由Andy Rubin开发,主卜颂要支持手机。

‘肆’ 如何在 Android 源码环境下增大 Linux 内核的 kernel log 的缓存...

需要修改 Linux 内核源码中的一个控制 log buffer size 的宏:CONFIG_LOG_BUF_SHIFT,buffer size 是 2 ^ shift,加大这个就可以。

一、配置

$ make menuconfig

General setup
(18)Kernel log buffer size (16 => 64KB,17 => 128KB)

二、源码

kernel/printk.c

#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)

static char __log_buf[__LOG_BUF_LEN];

可以看到,是已经在编译时定死的一块静态空间,不能动态调整了。对于内核日志,唯一乱瞎嫌可以调整的在:/proc/sys/kernel/printk*

三、限制

init/Kconfig

config LOG_BUF_SHIFT
int "Kernel log buffer size (16 => 64KB, 17 =>哗手 128KB)"神宴
range 12 21
default 17
help
Select kernel log buffer size as a power of 2.
Examples:
17 => 128 KB
16 => 64 KB
15 => 32 KB
14 => 16 KB
13 => 8 KB
12 => 4 KB

可以看到 shift 最大值限制到了 21,也就是:2 M

$ echo "(2^21)/1024/1024" | bc
2

如果再要加大,只能改源码了。

‘伍’ Android源码解析RPC系列(一)---Binder原理

看了几天的Binder,决定有必要写一篇博客,记录一下学习成果,Binder是Android中比较综合的一块知识了,目前的理解只限于JAVA层。首先Binder是干嘛用的?不用说,跨进程通信全靠它,操作系统的不同进程之间,数据不共享,对于每个进程来说,它都天真地以为自己独享了整个系统,完全不知道其他进程的存在,进程之间需要通信需要某种系统机制才能完成,在Android整个系统架构中,采用了大量的C/S架构的思想,所以Binder的作用就显得非常重要了,但是这种机制为什么是Binder呢?在Linux中的RPC方式有管道,消息队列,共享内存等,消息队列和管道采用存储-转发方式,即数据先从发送方缓存区拷贝到内核开辟的缓存区中,然后再从内核缓存区拷贝到接收方缓存区,这样就有两次拷贝过程。共享内存不需要拷贝,但控制复杂,难以使用。Binder是个折中的方案,只需要拷贝一次就行了。其次Binder的安全性比较好,好在哪里,在下还不是很清楚,基于安全性和传输的效率考虑,选择了Binder。Binder的英文意思是粘结剂,Binder对象是一个可以跨进程引用的对象,它的实体位于一个进程中,这个进程一般是Server端,该对象提供了一套方法用以实现对服务的请求,而它的引用却遍布于系统的各个进程(Client端)之中,这样Client通过Binder的引用访问Server,所以说,Binder就像胶水一样,把系统各个进程粘结在一起了,废话确实有点多。

为了从而保障了系统的安全和稳定,整个系统被划分成内核空间和用户空间
内核空间:独立于普通的应用程序,可以访问受保护的内存空间,有访问底层硬件设备的所有权限。
用户空间:相对与内核空间,上层运用程序所运行的空间就是用户空间,用户空间访问内核空间的唯一方式就是系统调用。一个4G的虚拟地址空间,其中3G是用户空间,剩余的1G是内核空间。如果一个用户空间想与另外一个用户空间进行通信,就需要内核模块支持,这个运行在内核空间的,负责各个用户进程通过Binder通信的内核模块叫做Binder驱动,虽然叫做Binder驱动,但是和硬件并没有什么关系,只是实现方式和设备驱动程序是一样的,提供了一些标准文件操作。

在写AIDL的时候,一般情况下,我们有两个进程,一个作为Server端提供某种服务,然后另外一个进程作为Client端,连接Server端之后,就 可以使用Server里面定义的服务。这种思想是一种典型的C/S的思想。值得注意的是Android系统中的Binder自身也是C/S的架构,也有Server端与Client端。一个大的C/S架构中,也有一个小的C/S架构。

先笼统的说一下,在整个Binder框架中,由系列组件组成,分别是Client、Server、ServiceManager和Binder驱动程序,其中Client、Server和ServiceManager运行在用户空间,Binder驱动程序运行内核空间。运行在用户空间中的Client、Server和ServiceManager,是在三个不同进程中的,Server进程中中定义了服务提供给Client进程使用,并且Server中有一个Binder实体,但是Server中定义的服务并不能直接被Client使用,它需要向ServiceManager注册,然后Client要用服务的时候,直接向ServiceManager要,ServiceManager返回一个Binder的替身(引用)给Client,这样Client就可以调用Server中的服务了。

场景 :进程A要调用进程B里面的一个draw方法处理图片。

分析 :在这种场景下,进程A作为Client端,进程B做为Server端,但是A/B不在同一个进程中,怎么来调用B进程的draw方法呢,首先进程B作为Server端创建了Binder实体,为其取一个字符形式,可读易记的名字,并将这个Binder连同名字以数据包的形式通过Binder驱动发送给ServiceManager,也就是向ServiceManager注册的过程,告诉ServiceManager,我是进程B,拥有图像处理的功能,ServiceManager从数据包中取出名字和引用以一个注册表的形式保留了Server进程的注册信息。为什么是以数据包的形式呢,因为这是两个进程,直接传递对象是不行滴,只能是一些描述信息。现在Client端进程A联系ServiceManager,说现在我需要进程B中图像处理的功能,ServiceManager从注册表中查到了这个Binder实体,但是呢,它并不是直接把这个Binder实体直接给Client,而是给了一个Binder实体的代理,或者说是引用,Client通过Binder的引用访问Server。分析到现在,有个关键的问题需要说一下,ServiceManager是一个进程,Server是另一个进程,Server向ServiceManager注册Binder必然会涉及进程间通信。当前实现的是进程间通信却又要用到进程间通信,这就好象蛋可以孵出鸡前提却是要找只鸡来孵蛋,确实是这样的,ServiceManager中预先有了一个自己的Binder对象(实体),就是那只鸡,然后Server有个Binder对象的引用,就是那个蛋,Server需要通过这个Binder的引用来实现Binder的注册。鸡就一只,蛋有很多,ServiceManager进程的Binder对象(实体)仅有一个,其他进程所拥有的全部都是它的代理。同样一个Server端Binder实体也应该只有一个,对应所有Client端全部都是它的代理。

我们再次理解一下Binder是什么?在Binder通信模型的四个角色里面;他们的代表都是“Binder”,一个Binder对象就代表了所有,包括了Server,Client,ServiceManager,这样,对于Binder通信的使用者而言,不用关心实现的细节。对Server来说,Binder指的是Binder实体,或者说是本地对象,对于Client来说,Binder指的是Binder代理对象,也就是Binder的引用。对于Binder驱动而言,在Binder对象进行跨进程传递的时候,Binder驱动会自动完成这两种类型的转换。

简单的总结一下,通过上面一大段的分析,一个Server在使用的时候需要经历三个阶段

1、定义一个AIDL文件
Game.aidl

GameManager .aidl

2、定义远端服务Service
在远程服务中的onBind方法,实现AIDL接口的具体方法,并且返回Binder对象

3、本地创建连接对象

以上就是一个远端服务的一般套路,如果是在两个进程中,就可以进程通信了,现在我们分析一下,这个通信的流程。重点是GameManager这个编译生成的类。

从类的关系来看,首先接口GameManager 继承 IInterface ,IInterface是一个接口,在GameManager内部有一个内部类Stub,Stub继承了Binder,(Binder实现了IBinder),并且实现了GameManager接口,在Stub中还有一个内部类Proxy,Proxy也实现了GameManager接口,一个整体的结构是这样的

现在的问题是,Stub是什么?Proxy又是什么?在上面说了在Binder通信模型的四个角色里面;他们的代表都是“Binder”,一个Binder对象就代表了所有,包括了Server,Clinet,ServiceManager,为了两个进程的通信,系统给予的内核支持是Binder,在抽象一点的说,Binder是系统开辟的一块内存空间,两个进程往这块空间里面读写数据就行了,Stub从Binder中读数据,Proxy向Binder中写数据,达到进程间通信的目的。首先我们分析Stub。

Stub 类继承了Binder ,说明了Stub有了跨进程传输的能力,实现了GameManager接口,说明它有了根据游戏ID查询一个游戏的能力。我们在bind一个Service之后,在onServiceConnecttion的回调里面,就是通过asInterface方法拿到一个远程的service的。

asInterface调用queryLocalInterface。

mDescriptor,mOwner其实是Binder的成员变量,Stub继承了Binder,在构造函数的时候,对着两个变量赋的值。

如果客户端和服务端是在一个进程中,那么其实queryLocalInterface获取的就是Stub对象,如果不在一个进程queryLocalInterface查询的对象肯定为null,因为不同进程有不同虚拟机,肯定查不到mOwner对象的,所以这时候其实是返回的Proxy对象了。拿到Stub对象后,通常在onServiceConnected中,就把这个对象转换成我们多定义AIDL接口。

比如我们这里会转换成GameManager,有了GameManager对象,就可以调用后querryGameById方法了。如果是一个进程,那直接调用的是自己的querryGameById方法,如果不是一个进程,那调用了就是代理的querryGameById方法了。

看到其中关键的一行是

mRemote就是一个IBinder对象,相对于Stub,Proxy 是组合关系(HAS-A),内部有一个IBinder对象mRemote,Stub是继承关系(IS-A),直接实现了IBinder接口。

transact是个native方法,最终还会回掉JAVA层的onTransact方法。

onTransact根据调用号(每个AIDL函数都有一个编号,在跨进程的时候,不会传递函数,而是传递编号指明调用哪个函数)调用相关函数;在这个例子里面,调用了Binder本地对象的querryGameById方法;这个方法将结果返回给驱动,驱动唤醒挂起的Client进程里面的线程并将结果返回。于是一次跨进程调用就完成了。

***Please accept mybest wishes for your happiness and success ! ***

‘陆’ 按android官网下载的android源码里面有linux内核kernel吗

从源代码树下载下来的最新Android源代码,是不包括内核代码的,也就是Android源代码工程默认不包含Linux Kernel代码,而是使用预先编译好的内核,也就是prebuilt/android-arm/kernel/kernel-qemu文件。

‘柒’ Android 重学系列 ion驱动源码浅析

上一篇文章,在解析初始化GraphicBuffer中,遇到一个ion驱动,对图元进行管理。首先看看ion是怎么使用的:

我们按照这个流程分析ion的源码。

如果对ion使用感兴趣,可以去这篇文章下面看 https://blog.csdn.net/hexiaolong2009/article/details/102596744

本文基于Android的Linux内核版本3.1.8

遇到什么问题欢迎来本文讨论 https://www.jianshu.com/p/5fe57566691f

什么是ion?如果是音视频,Camera的工程师会对这个驱动比较熟悉。最早的GPU和其他驱动协作申请一块内存进行绘制是使用比较粗暴的共享内存。在Android系统中使用的是匿名内存。最早由三星实现了一个Display和Camera共享内存的问题,曾经在Linux社区掀起过一段时间。之后各路大牛不断的改进之下,就成为了dma_buf驱动。并在 Linux-3.3 主线版本合入主线。现在已经广泛的运用到各大多媒体开发中。

首先介绍dma_buf的2个角色,importer和exporter。importer是dma_buf驱动中的图元消费者,exporter是dma_buf驱动中的图元生产者。

这里借用大佬的图片:

ion是基于dma_buf设计完成的。经过阅读源码,其实不少思路和Android的匿名内存有点相似。阅读本文之前就算不知道dma_buf的设计思想也没关系,我不会仔细到每一行,我会注重其在gralloc服务中的申请流程,看看ion是如何管理共享内存,为什么要抛弃ashmem。

我们先来看看ion的file_operation:

只有一个open和ioctl函数。但是没有mmap映射。因此mmap映射的时候一定其他对象在工作。

我们关注显卡英伟达的初始化模块。
文件:/ drivers / staging / android / ion / tegra / tegra_ion.c

mole_platform_driver实际上就是我之前经常提到过的mole_init的一个宏,多了一个register注册到对应名字的平台中的步骤。在这里面注册了一个probe方法指针,probe指向的tegra_ion_probe是加载内核模块注册的时候调用。

先来看看对应的结构体:

再来看看对应ion内的堆结构体:

完成的事情如下几个步骤:

我们不关注debug模式。其实整个就是我们分析了很多次的方法。把这个对象注册miscdevice中。等到insmod就会把整个整个内核模块从dev_t的map中关联出来。

我们来看看这个驱动结构体:

文件:/ drivers / staging / android / ion / ion_heap.c

这里有四个不同堆会申请出来,我们主要来看看默认的ION_HEAP_TYPE_SYSTEM对应的heap流程。

其实真正象征ion的内存堆是下面这个结构体

不管原来的那个heap,会新建3个ion_system_heap,分别order为8,4,0,大于4为大内存。意思就是这个heap中持有一个ion_page_pool 页资源池子,里面只有对应order的2的次幂,内存块。其实就和伙伴系统有点相似。

还会设置flag为ION_HEAP_FLAG_DEFER_FREE,这个标志位后面会用到。

文件:/ drivers / staging / android / ion / ion_page_pool.c

在pool中分为2个链表一个是high_items,另一个是low_items。他们之间的区分在此时就是以2为底4的次幂为分界线。

文件:/ drivers / staging / android / ion / ion.c

因为打开了标志位ION_HEAP_FLAG_DEFER_FREE和heap存在shrink方法。因此会初始化两个回收函数。

文件:/ drivers / staging / android / ion / ion_heap.c

此时会创建一个内核线程,调用ion_heap_deferred_free内核不断的循环处理。不过由于这个线程设置的是SCHED_IDLE,这是最低等级的时间片轮转抢占。和Handler那个adle一样的处理规则,就是闲时处理。

在这个循环中,不断的循环销毁处理heap的free_list里面已经没有用的ion_buffer缓冲对象。

文件:/ drivers / staging / android / ion / ion_system_heap.c

注册了heap的销毁内存的方法。当系统需要销毁页的时候,就会调用通过register_shrinker注册进来的函数。

文件:/ drivers / staging / android / ion / ion_page_pool.c

整个流程很简单,其实就是遍历循环需要销毁的页面数量,接着如果是8的次幂就是移除high_items中的page缓存。4和0则销毁low_items中的page缓存。至于为什么是2的次幂其实很简单,为了销毁和申请简单。__free_pages能够整页的销毁。

文件:/ drivers / staging / android / ion / ion.c

主要就是初始化ion_client各个参数,最后把ion_client插入到ion_device的clients。来看看ion_client结构体:

核心还是调用ion_alloc申请一个ion缓冲区的句柄。最后把数据拷贝会用户空间。

这个实际上就是找到最小能承载的大小,去申请内存。如果8kb申请内存,就会拆分积分在0-4kb,4kb-16kb,16kb-128kb区间找。刚好dma也是在128kb之内才能申请。超过这个数字就禁止申请。8kb就会拆成2个4kb保存在第一个pool中。

最后所有的申请的page都添加到pages集合中。

文件:/ drivers / staging / android / ion / ion_page_pool.c

能看到此时会从 ion_page_pool冲取出对应大小区域的空闲页返回上层,如果最早的时候没有则会调用ion_page_pool_alloc_pages申请一个新的page。由于引用最终来自ion_page_pool中,因此之后申请之后还是在ion_page_pool中。

这里的处理就是为了避免DMA直接内存造成的缓存差异(一般的申请,默认会带一个DMA标志位)。换句话说,是否打开cache其实就是,关闭了则使用pool的cache,打开了则不使用pool缓存,只依赖DMA的缓存。

我们可以看另一个dma的heap,它是怎么做到dma内存的一致性.
文件: drivers / staging / android / ion / ion_cma_heap.c

能看到它为了能办到dma缓存的一致性,使用了dma_alloc_coherent创建了一个所有强制同步的地址,也就是没有DMA缓存的地址。

这里出现了几个新的结构体,sg_table和scatterlist

文件:/ lib / scatterlist.c

这里面实际上做的事情就是一件:初始化sg_table.
sg_table中有一个核心的对象scatterlist链表。如果pages申请的对象数量<PAGE_SIZE/sizeof(scatterlist),每一项sg_table只有一个scatterlist。但是超出这个数字就会增加一个scatterlist。

用公式来说:

换句话说,每一次生成scatterlist的链表就会直接尽可能占满一页,让内存更好管理。

返回了sg_table。

初始化ion_handle,并且记录对应的ion_client是当前打开文件的进程,并且设置ion_buffer到handle中。使得句柄能够和buffer关联起来。

每当ion_buffer需要销毁,

‘捌’ 编译Android源码和内核源码的区别

Android源码编译之后生成的是ramdisk.img、system.img和userdata.img。而内核源码编译完成之后生成的是ZImage。在一般情况下Android源码是不带有内核源码的,但是带有一个镜像,这样在编译完Android源码之后就可以模拟器启动了,如果要更换系统的内核,此时将高版本的内核源码进行编译生成ZImage然后替换Android系统的的镜像。这样使用模拟器启动之后就可以查看内核是否已经被刷新。
请注意,android源码和kernel源码是分开下载的

编译android源码
进入source目录下,执行make 即可。
编译完成后,可以在源码目录的out/target/proct/generic/目录下看到编译好的ramdisk.img、system.img和userdata.img了。

编译内核源码
新建Kernel/goldfish,在这个目录下进行编译

‘玖’ 安卓内核源码大小

android是一个大型的软件系统,其内核源码包含了很多不同唯顷的组件,具体的大小取决喊山拆于安装的版本。一般来说,Android 内核源码的总郑枣大小约为10GB到20GB,如果需要下载所有的源代码更新,可能会达到50GB以上。

‘拾’ android源码中已经包括了内核为什么还要goldfish

我也苦恼了几天,不过刚弄到。步骤是这样的:先进入git下面的common目录,输入命令:git branch -a会列出所有的分支:* android-2.6.36 remotes/origin/HEAD -> origin/android-2.6.36 remotes/origin/android-2.6.35 remotes/origin/android-2.6.36 remotes/origin/archive/android-2.6.25 remotes/origin/archive/android-2.6.27 remotes/origin/archive/android-2.6.29 remotes/origin/archive/android-2.6.32 remotes/origin/archive/android-gldfish-2.6.29 remotes/origin/archive/android-goldfish-2.6.27如上。然后再执行git checkout origin/archive/android-goldfish-2.6.27 -b goldfish命令,一会就可以了。这样就有golfish的部分代码了。 查看原帖>>

热点内容
java交易系统 发布:2024-04-27 15:11:46 浏览:719
pythontkinter大小 发布:2024-04-27 14:51:22 浏览:114
pc端好用的c语言编译器 发布:2024-04-27 14:50:22 浏览:502
爬虫脚本如何运行在服务器 发布:2024-04-27 14:50:22 浏览:1
dropzone上传 发布:2024-04-27 14:39:31 浏览:880
ins安卓版快拍为什么没有特效 发布:2024-04-27 14:33:41 浏览:592
cs服务器ip在哪里 发布:2024-04-27 14:25:58 浏览:37
华为安卓怎么上脸书 发布:2024-04-27 14:24:20 浏览:841
我的世界手机版服务器冷知识 发布:2024-04-27 14:11:10 浏览:790
文件横向加密 发布:2024-04-27 14:06:38 浏览:497