当前位置:首页 » 存储配置 » 磁子存储

磁子存储

发布时间: 2022-11-15 03:24:36

❶ 什么是磁电子随机储存器

在当今电子和信息高新技术迅速发展的时代,各种磁电子管和电子计算机(电脑)的发展和应用是十分重要的。虽然有的磁电子管技术还处于探索研究和未来设想阶段,但从电控电子管晶体管到磁控电子管晶体管,从某种意义上说也是开辟了一个新的思路和新的领域。

从电子计算机发展的历程来看,也有相类似的情况。从20世纪40年代电子计算机出现和应用以来,电子计算机的研发工作已经有了很快很大的进步,先后经历了电子管计算机、晶体管计算机、集成电路计算机、大规模集成电路计算机及超大规模集成电路计算机等几代的发展,各方面都有了很多变化。例如,在数据和信息的存储方面,磁鼓、磁带和磁盘等磁记录设备一直是外存储装置。当然其磁记录介质和磁头材料、磁记录方式(如纵向记录和垂直记录)等都经历了多次的改进。内存储装置(也称随机存储器)也经历了多次改进,例如从磁芯存储器、磁膜存储器到半导体集成电路存储器,再到半导体大规模集成电路、半导体超大规模集成电路存储器,到今天的磁电子随机存储器的研发等。

什么是磁电子随机存储器?它具有什么特点呢?

磁电子随机存储器是目前尚处于初步探索研究的一类利用巨磁电阻效应的随机存储器。电阻式随机存储器是一个全新的概念,目前国际上的相关研究处于起步阶段,中国的研究工作也在逐步展开。目前提出的有多层膜型巨磁电阻随机存储器和磁隧穿型巨磁电阻随机存储器。数字信息的“1”或“0”是用巨磁电阻的高或低来表示的,而巨磁电阻的高低则由这巨磁电阻输出电压的高低来测量。

首先我们来认识多层膜型巨磁电阻存储器的一个存储单元。它由一个多层膜巨磁电阻单元及输入数字信息的写入线(层)和输出数字信息的读出线(层)构成。数字信息“1”或“0”是由存储单元的高电阻态或低电阻态来表现的,也就是由钉扎铁磁层与自由铁磁层中原子磁矩是互相反平行或平行状态所决定,而读出线(层)所读出的脉冲电压的高或低就表示“1”或“0”的数字信息。当然这不过是多层膜型巨磁电阻随机存储器一个存储单元的情况,由大量存储单元构成的随机存储器就更为复杂。

其次来认识磁隧穿型巨磁电阻的随机存储器的一个存储单元。它是由一个磁隧穿型巨磁电阻单元及输入数字信息的电流写入线和输出数字信息的读出线构成的。同多层膜型巨磁电阻存储单元的工作情况相似,数字信息“1”或“0”也是由存储单元的高电阻态或低电阻态来表示的,也是由绝缘层两边的铁磁层中原子磁矩是互相反平行或平行状态所决定,读出线(层)的输出电压的高或低就表示“1”或“0”的数字信息。它同多层膜型巨磁电阻存储单元的主要差别是两铁磁层之间的弱磁层是绝缘层,因而每个单元具有较高的电阻、较高的输出电压、较低的输出电流和较短的存取信息时间即较快的存取速度,存储信息密度则同多层膜型巨磁电阻随机存储器相似,但弱磁绝缘层的厚度极薄,存在均匀性和工作可靠性问题。这些优缺点是需要在未来的研究和应用中加以特别注意的。

初步实验结果表明,这种由巨磁电阻材料研制的磁电子随机存储器的结构较简单,成本较低廉,存储密度较高,存取数据时间较短,在工作电源去掉后仍能保持其所存储的数字信息(称为非易失性),抗强电磁辐射、抗粒子辐照和抗宇宙射线的能力都较强,因而具有许多优点。但是要使磁电子随机存储器从研究进入实际应用,也还有不少的问题需要解决,这也正是未来磁电子学面临的一个重大问题。

从以上的介绍可以看出,磁电子学虽仅是磁学中一个新诞生的部分,研究时间尚短,但是它所蕴含的内容却很丰富,已取得的应用也很多很重要,而研究和应用的前景更是十分广阔的。

❷ 磁盘存储器中磁道,柱面,扇区有什么作用

①磁道:每个盘片的每一面都要划分成若干条形如同心圆的磁道,这些磁道就是磁头读写数据的路径。磁盘的最外层是第0道,最内层是第n道。
②柱面:一个硬盘由几个盘片组成,每个盘片又有两个盘面,每个盘面都有相同数目的磁道。所有盘面上相同半径的磁道组合在一起,叫做一个柱面。
③扇区:为了存取数据的方便,每个磁道又分为许多称之为扇区的小区段。每个磁道(不管是里圈还是外圈)上的扇区数是一样的,每个磁道记录的数据也是一样多。所以内圈磁道上的记录密度要大于外圈磁道上的记录密度。

❸ 磁表面存储器和半导体存储器的保存时间短吗

半导体存储器价格高,体积大,保存时间向rom保存时间也很长,ram 就不行需要随时通电,一掉电则数据全无。 磁表面存储器常用的就是硬盘,你说它的存储时间是长还是短呢? 只不过这两种在价格上不占优势,但速度却是光盘速度的几百倍。

❹ 磁表面存储器读写原理的记录介质与磁头

磁表面存储器是目前使用最广泛的外存储器。所谓磁表面存储,是用某些磁性材料薄薄地涂在金属铝或塑料表面作载磁体来存储信息。根据记录载体的外形,磁表面存储器有磁鼓、磁带、磁盘、磁卡等。而在计算机系统中广泛使用的是磁盘和磁带;特别是磁盘,几乎是稍具规模系统的基本配置。 1. 基体与磁层
在磁表面存储器中,记录信息的介质是一层很薄的磁层,它需要依附于具有一定机械强度的基体之上。根据不同磁表面存储器的需要,基体分为软质基体与硬质基体两大类,它们所要求的磁层材料与制造工艺也相应不同。
(1)软质基体与磁层
磁带的运行方式要求采用软质基体,如聚酯薄膜带。软盘的盘片在工作时与磁头接触,为了减少磁头磨损,也要求用软质基体,如聚酯薄片。
将具有距磁特性的氧化铁微粒,渗入少量钴,用树脂粘合剂混合后,涂敷在基本
体之上加工形成约1微米厚的均匀磁层。这就是记录信息用介质,属于颗粒型材料。
(2)硬质基体与磁层
硬盘的运行方式对基体与磁层要求更高,一般采用铝合金硬质盘片作为基体。为了进一步提高片光洁度与硬度,一些新型硬盘采用工程塑料、陶瓷、玻璃作为基体。
硬盘一般采用电镀工艺在盘片上形成一个很薄的磁层,所用材料为具有矩磁特性的铁镍钴合金。电镀形成的磁层属于连续型非颗粒型材料,又称薄膜介质,其均匀性与性能大为提高。磁层厚度大约只有0.1-0.2微米
,上面再镀一层保护膜,增加抗磨性和抗腐蚀性。 在更新的硬盘中,采用溅射工艺形成薄膜磁层,即用粒子撞击阴极,使阴极处的磁性材料原子淀积为磁性薄膜。其性能优于镀膜。
为了增加读出信号的幅度,希望选用材料的剩磁感应强度 比较大。但 过大,磁化状态翻转时间增加,因而影响记录密度。为了提高激励密度,要求磁层尽量薄。以减少磁化所需时间;磁层薄又使磁通变化量 减少,将影响读出信号幅度。这就要求改进读出放大的电子技术,以降低对磁层制造工艺的要求,或在相同工艺水平条件下,提高密度与可靠性。
此外,要求磁层内部无缺陷,表面组织致密、光滑、平整,磁层厚薄均匀,无污染,对环境温度不敏感,性能稳定。 磁头是实现读/写的关键元件。写入时,将脉冲代码以磁化电流形式加入磁头线圈,使记录介质产生相应的磁化状态,即电磁转换。读出时,磁层中的磁化翻转使磁头的读出线圈产生感应信号,即磁电转换。
图3-1 磁头原理图
图3-1是磁头的原理性示意图。磁头由高导磁材料构成,上面绕有线圈,有一个线圈兼做写入磁化与读出,或分设读磁头与写磁头。磁头面向记录介质的部分开有间隙,称作磁头间隙,简称头隙。如果没有这个间隙,磁化电流产生的磁通将只在闭合磁路中流过,对记录介质没有作用。开了间隙后,大部分磁通将流经头隙所对应的记录介质局部区域,使该作用区留下某种磁化状态。读出时,记录信息的介质经过磁头,由于对着磁头的区域中存在磁化状态翻转,若由正向饱和变为负向饱和,或由负向饱和变为正向饱和,使磁头的磁路中发生磁通变化 。读出线圈产生感应电势,即读出信号。因此头曦部分的形状与尺寸至关重要,又称工作间隙。磁头的磁路其余部分既可做成环状,也可做成马蹄形,影响不大。
在磁盘或磁带进行读/写时,记录介质运动而磁头不动,磁头在记录介质上的磁化区形成磁道。磁化后,磁道中心部分达到磁饱和,而磁道两侧的边缘部分磁化不足。在写入后,常将两侧进行清洗,称为夹缝清除。
从磁头的任务来看,在磁盘中,每个记录面有一个磁头,兼做读磁头与写磁头,又称复合磁头。在磁带机中,经常一次并行地读/写几个磁道。每个磁道中有一对磁头:一个读磁头和一个写磁头,可以实现写后读出检查。将几个磁道的读磁头与写磁头装配为一体,道间加屏蔽,称为组合头快。
从制造工艺方面来看,分为早期的传统工艺磁头与近期的薄膜磁头。
在早期的制造工艺中,或是用高导磁率铁淦氧材料热压成形,或用高导磁率铁镍合金(坡莫合金)叠片组装成形。通常是先制成几部分其中一段绕有线圈,然后将他们粘接起来。用于软盘的磁头,将上述铁芯封装在特种塑料外壳里,外壳做成球面形或平面扣子形,便于安装和定位,并使磁头与盘面接触良好,工作时磨损小。用于硬盘的磁头,将铁芯封装在一个陶瓷块内,该陶瓷块称为浮动块,工作时可由气垫使其浮空于盘面上;后来又将铁芯和浮动块改为用同样的材料制成。
近期的硬盘采用薄膜磁头,用类似于半导体工艺的淀积和成形技术,在基板上形成坡莫合金的铁芯,和具有一定匝数的线圈,如平面螺旋式导体线圈。由于制造成型过程中使用掩模光刻技术,精度很高,可以获得比较理想的极尖形状和工作间隙;然后在基板上烧固一层氧化铝和碳化钛,再切割加工成浮动块。相比之下,薄膜磁头在各方面的性能均优于传统工艺磁头。

❺ 磁性粒子用作存储材料是不是粒径越小越好

相信你在物理或是化学方式制料过程中能达到分子级。所以,一般的磁记录材料,要细一些,比表面积大一些要好的多。相对涂层密度要大一些。记录效果当然也会好。

❻ U盘是半导体存储设备还是磁存储设备

电脑是如何工作的? --外部存储器之半导体存储设备篇

--------------------------------------------------------------------------------

在外部存储器之中。半导体存储设备是真正小巧和便携的外部移动存储器。它有着与磁存储介质设备和光存储设备完全不同的存储原理,下面就让我们一起来了解一下吧!

一、半导体存储设备的原理

目前市面上出现了大量的便携式存储设备,这些设备大部分是以半导体芯片为存储介质。采用半导体存储介质的优点在于可以把体积变的很小,便于携带;与硬盘类存储设备不同,它没有机械结构,所以不怕碰撞,没有机械噪声;与其它存储设备相比,耗电量很小;读写速度也非常快。半导体存储设备的主要缺点就是价格较高和容量有限。

现在的半导体存储设备普遍采用了一种叫做“Flash Memory”的技术。从字面上可理解为闪速存储器,它的擦写速度快是相对于EPROM而言的。Flash Memory是一种非易失型存储器,因为掉电后,芯片内的数据不会丢失,所以很适合用来作电脑的外部存储设备。它采用电擦写方式、可重复擦写10万次、擦写速度快、耗电量小。

1.NOR型FIaSh芯片

我们知道三极管具备导通和不导通两种状态,这两种状态可以用来表示数据“0”和数据“1”,因此利用三极管作为存储单元的三极管阵列就可作为存储设备。Flash技术是采用特殊的浮栅场效应管作为存储单元。这种场效应管的结构与普通场效应管有很大区别。它具有两个栅极,一个如普通场效应管栅极一样,用导线引出,称为“选择栅”;另一个则处于二氧化硅的包围之中不与任何部分相连,这个不与任何部分相连的栅极称为“浮栅”。通常情况下,浮栅不带电荷,则场效应管处于不导通状态,场效应管的漏极电平为高,则表示数据“1”。编程时,场效应管的漏极和选择栅都加上较高的编程电压,源极则接地。这样大量电子从源极流向漏极,形成相当大的电流,产生大量热电子,并从衬底的二氧化硅层俘获电子,由于电子的密度大,有的电子就到达了衬底与浮栅之间的二氧化硅层,这时由于选择栅加有高电压,在电场作用下,这些电子又通过二氧化硅层到达浮栅,并在浮栅上形成电子团。浮栅上的电子团即使在掉电的情况下,仍然会存留在浮栅上,所以信息能够长期保存(通常来说,这个时间可达10年)。由于浮栅为负,所以选择栅为正,在存储器电路中,源极接地,所以相当于场效应管导通,漏极电平为低,即数据“0”被写入。擦除时,源极加上较高的编程电压,选择栅接地,漏极开路。根据隧道效应(即微观粒子具有波动性的表现)和量子力学的原理,浮栅上的电子将穿过势垒到达源极,浮栅上没有电子后,就意味着信息被擦除了。NOR型Flash Memory的存储原理如图1所示。

由于热电子的速度快,所以编程时间短,并且数据保存的效果好,但是耗电量比较大。

每个场效应管为一个独立的存储单元。一组场效应管的漏极连接在一起组成位线,场效应管的栅极连接在一起组成选择线,可以直接访问每一个存储单元,也就是说可以以字节或字为单位进行寻址,属于并行方式(图2)。因此可以实现快速的随机访问,但是这种方式使得存储密度降低,相同容量时耗费的硅片面积比较大,因而这种类型的Flash芯片的价格比较高。

特点:数据线和地址线分离、以字节或字为单位编程、以块为单位擦除、编程和擦除的速度慢、耗电量大和价格高。

2.NAND型FlaSh芯片

NAND型Flash芯片的存储原理(图3)与NOR型稍有不同,编程时,它不是利用热电子效应,而是利用了量子的隧道效应。在选择栅加上较高的编程电压,源极和漏极接地,使电子穿越势垒到达浮栅,并聚集在浮栅上,存储信息。擦除时仍利用隧道效应,不过把电压反过来,从而消除浮栅上的电子,达到清除信息的结果。

利用隧道效应,编程速度比较慢,数据保存效果稍差,但是很省电。

一组场效应管为一个基本存储单元(通常为8位、16位等)。一组场效应管串行连接在一起,一组场效应管只有一根位线,属于串行方式,随机访问速度比较慢。但是存储密度很高,可以在很小的芯片上做到很大的容量(图4)。

特点:读写操作是以页为单位的,擦除是以块为单位的, 因此编程和擦除的速度都非常快;数据线和地址线共用,采用串行方式,随机读取速度慢,不能按字节随机编程。体积小,价格低。芯片内存在失效块,需要查错和效验功能。

3.AND型FlaSh芯片

AND技术是Hitachi公司的专利技术。AND是一种结合了NOR和NAND的优点的串行Flash芯片,它结合了Intel公司的MLC技术(见注),加上0.18μm的生产工艺,使生产出的芯片容量更大、功耗更低、体积更小,且因为采用单一操作电压、块比较小。并且由于内部包含与块一样大的RAM缓冲区,所以克服了因采用MLc技术带来的性能降低。

特点:功耗特别低,读电流为2mA,待机电流仅为1μA。芯片内部有RAM缓冲区,写入速度快。

注:MLC(Multi-level Cell)技术,这是Intel提出的一种旨在提高存储密度的新技术,通常数据存储中存在一个阙值电压,低于这个电压表示数据“0”,高于这个电压表示数据“1”,所以一个基本存储单元(即一个场效应管)可存储一位数据(“0”或者“1”)。现在将阙值电压变为4种,则一个基本存储单元可以辅出四种不同的电压,令这四种电压分别对应二进制数据00、0l、10、ll,则可以看出,每个基本存储单元一次可存储两位数据(00、0l、10或者11)。如果阙值电压变为8种,则一个基本存储单元一次可存储3位数据。阙值电压越多,则一个基本存储单元可存储的数据位数也越多。这样一来,存储密度大大增加,同样面积的硅片上就可以做到更大的存储容量。不过阙值电压越多,干扰也就越严重。

二、各种各样的半导体存储卡

1.ATA FIaSh卡

这种存储卡是基于Flash技术(通常采用NAND型)的ATA接口的PC卡。在电源管理方面,具备休眠、待命、运行和闲置等4种模式,整体功耗比较小。具有I/0、内存和ATA三种接口方式。由于体积比较大,所以可以使用更多的存储芯片,因而也可以做到更大的容量。主要用于笔记本电脑、数码相机和台式PC机。

ATA Flash卡由控制芯片和存储模块两部分组成。智能化的控制芯片有两个作用,一是对Flash芯片的控制,另外就是完成PC卡的ATA(lDE)接口功能。由于接口支持IDE模式,所以可以通过简单的转接到PC机的IDE接口。它支持扇区方式读写,可以像操作硬盘一样对它进行各种操作。接口有68个引脚。因为引脚中的电源和地两个引脚比其它引脚要长,保证了信号脚先分离,最后断电,所以支持热插拔。

主要特点:存储容量大(可达1GB)、即插即用、支持热插拔和传输速率约10MB/s。

ATA FLASH卡需要专用的,读写设备,通常笔记本电脑内置了这种读写器。

2.CF卡

CF(Compact Flash)卡是一种小型移动存储设备。这种标准是在1994年由ScanDisk公司提出的。CF卡兼容PCMCIA-ATA、TRUEIDE和ATA/ATAPI—4标准。其体积为 43mm X 36mm x 3.3mm,有50条引脚。主要用于数码相机、MP3播放器和PDA等便携式产品。

CF卡的内部结构与ATA Flash卡类似,也是由控制芯片和存储模块组成。智能化的控制芯片提供一个连接到计算机的高电平接口,这个接口运行计算机发布命令对存储卡以块为单位进行读写操作。块的大小为16K,有ECC效验。控制芯片管理着接口协议、数据存储、通过ECC效验修复数据、错误诊断、电源管理和时钟控制,一旦CF卡通过计算机的设置,它将以一个标准的 ATA硬盘驱动器出现,你可以像对其它硬盘一样对它进行操作。

CF卡需要专用的读写设备。但是因为它兼容PCMCIA—ATA标准,所以可以通过一个转接卡当做PCMCIA设备来使用。

3.SM卡

Smart Media Card简称SM卡,它是基于NAND型Flash芯片的存储卡。它的最大特点是体积小(45.0mm x 37.0mm x 0.76mm)、重量轻(2克)。主要用于数码相机、PDA、电子音乐设备、数码录音机、打印机、扫描仪以及便携式终端设备等。

从结构上讲, SM卡非常简单,卡的内部没有任何控制电路,仅仅是一个Flash存储器芯片而已,芯片被封装到一个塑料卡片中,引脚与卡片表面的铜箔相连。

SM卡采用NAND型的Flash芯片,因而与其它存储卡相比具有较低的价格。但因为它只用了一个存储芯片,所以受到了很大的限制,不容易做到大容量。

SM卡可以采用专用的读写器进行读写,也可以通过一个转接卡当做PC卡来读写。

主要特点:NAND结构适合于文件存储;高速的读写操作;价格低廉,

4.Memory StiCk

Memory Stick(记忆棒)是SONY公司推出的一种小体积的存储卡。它可用于各种消费类电子设备:数码摄像机、便携式音频播放设备、掌上电脑和移动电话等。对于音乐等一些收保护的内容具备数字版权保护功能。

SONY的Memory Stick具有写保护开关,采用10个引脚的串行连接方式,具有很高的可靠性。通过一个PC卡适配器,它也可作为一个PC卡在各种PC卡读写设备上使用。

Memory stick内部包括控制器和存储模块,控制芯片负责控制各种不同类型的Flash存储芯片,并将负责并行数据和串行数据之间的相互转换。另外 Memory Stick采用了一种专用的串行接口,发送数据时附加了一位效验码,最高工作频率为20MHz。

5.MultiMedia卡(MMC)

MultiMedia卡(MMC)是由美国SanDisk公司和德国西门子公司共同开发的一种通用的低价位的可用于数据存储和数据交换的多功能存储卡。作为一种低价位、小体积、大容量的存储卡,它的应用范围很广。可用于数码相机、数码摄像机、PDA、数码录音机、MP3和移动电话等设备。

MMC卡的数据通讯是基于一种可工作在低电压范围下的串行总线,它有7条引线。它支持MMC总线和SPI总线。MMC卡的结构。

特点:由于工作电压低,耗电量很小;体积小,与一张邮票差不多大小;可对数据实行密码保护;内置写保护功能。

6.Secure Digital Memory卡

SD卡是由Panasonic、Toshiba及美国SanDisk公司于1999年8月共同开发研制的一种基于NAND技术的Flash存储卡。它的体积非常小,仅有一张邮票大小,但是容量却很大。SD卡的另一个特点是具有非常好的数据安全性和版权保护功能。

7.UDISK

优递卡,也称邮递卡。这是台湾八达创新科技开发的一种存储卡,它的存储部分仍是普通的Flash Memory。不同的是,它的内部具有两种接口:一个是与电脑相连的USB接口,这是由专用的USB接口芯片来完成;另一方面有单片机构建了一个Device Interface(设备接口),这个接口可支持Serial Mode、 Byte Mode及Word Mode(图20)。

优递卡的一个优点是它可以支持各种类型的 Flash存储芯片,例如:串行或并行Flash——NAND、 AND、NOR、Gate Flash及Mask ROM等。

编者按

电脑的外部存储器包含磁存储介质、光存储设备和半导体存储设备几个方面的内容,对它们的介绍到本期就暂告一段落。下期我们将为大家介绍电脑的BIOS,这是电脑内部重要的信息储存器,敬请期待!

❼ 闪存卡的存储原理是什么

闪存卡存储原理是什么?闪存(Flash Memory)是非挥发存储的一种,具有关掉电源仍可保存数据的优点,同时又可重复读写且读写速度快、单位体积内可储存最多数据量,以及低功耗特性等优点。其存储物理机制实际上为一种新型EEPROM(电可擦除可编程只读存储)。是SCM(半导体存储器)的一种。早期的SCM采用典型的晶体管触发器作为存储位元,加上选择、读写等电路构成存储器。现代的SCM采用超大规模集成电路工艺制成存储芯片,每个芯片中包含相当数量的存储位元,再由若干芯片构成存储器。目前SCM广泛采用的主要材料是金属氧化物场效应管(MOS),包括PMOS、NMOS、CMOS三类,尤其是NMOS和CMOS应用最广泛。RAM(随机存取存储),是一种半导体存储器。必须在通电情况下工作,否则会丧失存储信息。RAM又分为DRAM(动态)和SRAM(静态)两种,我们现在普遍使用的PC机内存即是SDRAM(同步动态RAM),它在运行过程当中需要按一定频率进行充电(刷新)以维持信息。DDR DDR2内存也属于SDRAM。而SRAM不需要频繁刷新,成本比DRAM高,主要用在CPU集成的缓存(cache)上。PROM(可编程ROM)则只能写入一次,写入后不能再更改。EPROM(可擦除PROM)这种EPROM在通常工作时只能读取信息,但可以用紫外线擦除已有信息,并在专用设备上高电压写入信息。EEPROM(电可擦除PROM),用户可以通过程序的控制进行读写操作。闪存实际上是EEPROM的一种。一般MOS闸极(Gate)和通道的间隔为氧化层之绝缘(gate oxide),而Flash Memory的特色是在控制闸(Control gate)与通道间多了一层称为“浮闸”(floating gate)的物质。拜这层浮闸之赐,使得Flash Memory可快速完成读、写、抹除等三种基本操作模式;就算在不提供电源给存储的环境下,也能透过此浮闸,来保存数据的完整性。 Flash Memory芯片中单元格里的电子可以被带有更高电压的电子区还原为正常的1。Flash Memory采用内部闭合电路,这样不仅使电子区能够作用于整个芯片,还可以预先设定“区块”(Block)。在设定区块的同时就将芯片中的目标区域擦除干净,以备重新写入。传统的EEPROM芯片每次只能擦除一个字节,而Flash Memory每次可擦写一块或整个芯片。Flash Memory的工作速度大幅领先于传统EEPROM芯片。 MSM(磁表面存储)是用非磁性金属或塑料作基体,在其表面涂敷、电镀、沉积或溅射一层很薄的高导磁率、硬矩磁材料的磁面,用磁层的两种剩磁状态记录信息"0"和"1"。基体和磁层合称为磁记录介质。依记录介质的形状可分别称为磁卡存储器、磁带存储器、磁鼓存储器和磁盘存储器。计算机中目前广泛使用的MSM是磁盘和磁带存储器。硬盘属于MSM设备。ODM(光盘存储)和MSM类似,也是将用于记录的薄层涂敷在基体上构成记录介质。不同的是基体的圆形薄片由热传导率很小,耐热性很强的有机玻璃制成。在记录薄层的表面再涂敷或沉积保护薄层,以保护记录面。记录薄层有非磁性材料和磁性材料两种,前者构成光盘介质,后者构成磁光盘介质。ODM是目前辅存中记录密度最高的存储器,存储容量很大且盘片易于更换。缺点是存储速度比硬盘低一个数量级。现已生产出与硬盘速度相近的ODM。CD-ROM、DVD-ROM等都是常见的ODM。

❽ 磁储存原理

磁存储技术的工作原理

是通过改变磁粒子的极性来在磁性介质上记录数据。在读取数据时,磁头将存储介质上的磁粒子极性转换成相应的电脉冲信号,并转换成计算机可以识别的数据形式。进行写操作的原理也是如此。要使用硬盘等介质上的数据文件,通常需要依靠操作系统所提供的文件系统功能,文件系统维护着存储介质上所有文件的索引。因为效率等诸多方面的考虑,在我们利用操作系统提供的指令删除数据文件的时候,磁介质上的磁粒子极性并不会被清除。操作系统只是对文件系统的索引部分进行了修改,将删除文件的相应段落标识进行了删除标记。同样的,目前主流操作系统对存储介质进行格式化操作时,也不会抹除介质上的实际数据信号。正是操作系统在处理存储时的这种设定,为我们进行数据恢复提供了可能。

值得注意的是,这种恢复通常只能在数据文件删除之后相应存储位置没有写入新数据的情况下进行。因为一旦新的数据写入,磁粒子极性将无可挽回的被改变从而使得旧有的数据真正意义上被清除。另外,除了磁存储介质之外,其它一些类型存储介质的数据恢复也遵循同样的原理,例如U盘、CF卡、SD卡等等。因为这些存储设备也和磁盘一样使用类似扇区、簇这样的方式来对数据进行管理。举个例子来说,目前几乎所有的数码相机都遵循DCIM标准,该标准规定了设备以FAT形式来对存储器上的相片文件进行处理。

❾ 永磁体保留磁性的原理是

随着时间的推移,由于温度变化、机械损伤、腐蚀和不适当的储存,永磁体确实会失去可忽略不计的磁性。
众所周知,附着在冰箱上磁铁会在几年后脱落,随着时间的推移,玩具上的磁铁也会失去其强度。实际上,所谓的“永磁铁”并不是真正的永久。
退磁——降低或消除磁体磁性的过程,通常是人为完成的,但也可以自然发生。
极端的温度波动、由于机械损坏造成的体积损失、不适当的储存、磁滞损耗和腐蚀都会导致磁铁失去磁性。
时光会打磨掉磁铁的磁性
原子磁矩与物体磁性
在我们进一步了解磁铁如何失去磁性之前,让我们先试着了解磁铁如何产生磁性。
电磁力是自然界四种基本力之一,是带电亚原子粒子运动的结果,尤其是电子。这些带负电的粒子不断地围绕原子核旋转,同时也在自转。这两种运动中的后一种,被称为电子自旋,是一种内在的性质,在很大程度上促成了吸引力或排斥力的产生,我们称之为磁力。
简单地说,电子的公转和自转被认为产生了电流(电子流),这使得单个电子像微小的磁铁一样工作(电磁)。每一个电子都产生它们自己的磁偶极矩,分别是轨道磁偶极矩和自旋磁偶极矩,并结合起来产生一个净原子磁偶极矩。
尽管质子和中子也绕着它们的轴旋转,增加了原子的净磁矩,但是它们产生的磁矩比电子小1000倍,因此可以忽略不计。
电子的运动是磁性产生的主要原因
每一个电子都可以看做是一个微小的磁铁,而物体中都包含数万亿个电子,理应每一个物体都有磁性才对,为什么我们周围的一切都不是磁性的呢?
答案是:微观电子产生的磁矩相互抵消,宏观物体不显磁性。
根据泡利不相容原理,同一个轨道壳层中的电子具有相反的自旋方向,因此会抵消彼此的磁矩。在某些元素中,如铁和钴(铁磁性材料),最终的价态电子层只有一半被填满,含有未成对电子。

由于没有自旋方向相反的电子来中和它们,这些未成对电子共同赋予原子以磁力。
当形成晶体时,金属原子可以把它们的磁矩排列在同一个方向,也可以不排列,这取决于能量大小,会以能量较低的方式排列。单个磁矩相互平行的区域称为,磁畴和单个原子对外加磁场的响应构成了各种磁性材料分类的基础。
铁磁材料中的磁畴在存在外部磁场的情况下自行排列,从而形成永久磁铁。
是什么导致磁力的损失?
磁性材料不是真正的磁性材料,除非它的磁畴精确排列;任何单个磁畴方向的改变都会导致净磁场强度的损失。各种自然因素可以促使这些磁畴随机排列,最常见和最具破坏性的是高温加热。
宏观物体虽然表面上看起来平静无常,但在微观层面上,原子却在不停地振动。振动的程度取决于它们的能量状态,而能量状态又取决于温度。温度的任何微小波动都会影响原子振动的强度,从而影响总的磁场强度。温度的降低会放大磁铁的磁力,而温度的升高会对其产生不利影响。
当磁体暴露在高温下时,磁体中的原子开始以越来越快的速度振动,并且更加疯狂。这导致一些磁畴的排列方式发生变化,导致净磁性降低。在足够高的温度下,所有磁畴的排列变得随机无序,随之磁体完全失去磁性。磁体失去永久磁性的转变温度称为居里温度。
温度与磁性
如果磁体被加热到居里温度以下的温度,然后冷却,磁体将恢复其磁性。然而,将磁体加热到居里温度以上后再冷却,磁性恢复无望。在这种情况下,需要引入外部磁场来重新排列磁畴再次磁化材料。
不同材料的磁性随温度变化
虽然加热是退磁的主要方法之一,但在日常生活中暴露在如此高的温度下(铁氧体磁体~ 460℃,铝镍钴磁体~ 860℃,钴磁体~ 750℃,磁体~ 310℃)是不常见的。磁性的自然丧失主要是其他因素导致的。
存储不当
虽然看起来微不足道,但磁铁的适当存储对于确保它们不会随着时间的推移而失去强度至关重要。
大多数磁铁都含有适量的铁,铁在氧气和水的存在下会发生氧化腐蚀。最常用和最强的永磁体,磁铁,由于其含铁量高(超过60%),也最容易受到腐蚀。由于腐蚀改变了使材料具有磁性的潜在化学结构(铁→氧化铁),导致磁性的损失。
为了防止氧化腐蚀,增加磁铁使用时间,制造商已经开始采用防腐涂层,但在储存磁铁时仍需小心。
一块磁铁不正确地放置在另一个更强的磁体附近也会失去部分或全部磁性。不同磁体的相似磁极不应该互相接触,因为强磁体将迫使弱磁体的磁畴改变方向;在某些情况下,磁极可能会完全反转。这种由外部磁场引起的磁损耗称为磁滞损耗。
除了磁铁,日常生活中含有磁介质的物品,如信用卡、硬盘、显示器等,在保存放置时也要避免由外部磁场引起的磁损耗。
结构损坏
最后,任何结构性损坏也会导致磁场强度的降低。显然,由相同材料制成的磁铁产生的磁场取决于磁铁的大小。磁铁越大,产生的磁场就越大。结构性损伤会使磁体的尺寸减小,从而降低其磁场强度。
此外,尖锐物体的撞击,如反复敲打磁铁或掉落在坚硬的物体表面上,会迫使磁畴排列方式发生改变降低磁性。这仅适用于某些永磁体。、钐钴和铁氧体磁体非常脆,如果掉落在坚硬的表面或被反复锤打,就会发生结构性损伤。另一方面,铝镍钴磁体非常坚固,在机械应力下不会断裂或破裂。
磁铁的保存与“传承”
为了延长磁铁的寿命并防止磁力的损失,请将磁铁存放在干燥的地方。如果要把多个条形磁铁放在一起,把一个磁铁的N端贴在另一个磁铁的S端,依此类推;马蹄形磁铁也可以像这样储存。
当多种力量合力夺走你的磁铁的能量时,长期磁力的净减少是非常微小的。例如,钴磁体需要大约700年才能自然失去一半的强度,而钕磁体每100年才会失去大约5%的磁性。
所以,你可以放心,目前放在你抽屉里的磁铁将会伴随你一生,甚至可以作为传家宝传给你的孙子孙女们!

❿ 刚才我们老师说U盘属于磁存储器。我觉得应该是半导体存储器呀!哪位

U盘是半导体存储器,USB是英文Universal Serial Bus的缩写,中文含义是“通用串行总线”,用第一个字母U命名,所以简称“U盘”。U盘内集成的是Flash芯片,存储介质为半导体,为mos管。而mos管是金属(metal)—氧化物(oxid)—半导体(semiconctor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。
半导体存储器和磁芯存储器最大的不同,就是半导体存储器体积小,容量大,速度快,磁芯存储器是体积大,容量小,速度慢。半导体存储器用半导体的通断状态来记录数据,体积可以做的很小,容量却很大。磁芯存储器是华裔王安于1948年发明的,磁芯的英文名称就是core,磁芯存储器就叫作core memory。磁芯存储器用磁芯的磁极方向来存储数据,体积大,速度慢,容量小,性能远不上半导体存储器,所以逐步被淘汰,现在很少使用。

热点内容
组成c语言程序的是 发布:2025-07-16 21:38:30 浏览:882
cpg编程 发布:2025-07-16 21:28:04 浏览:58
腾讯云服务器公跟内什么意思 发布:2025-07-16 21:12:19 浏览:368
王者荣耀ios系统如何转到安卓系统 发布:2025-07-16 20:52:37 浏览:694
青少年趣味编程社区 发布:2025-07-16 20:35:26 浏览:98
小黄车怎么更改密码 发布:2025-07-16 20:34:43 浏览:190
为什么国产车气囊少配置高 发布:2025-07-16 20:18:46 浏览:462
pci加密解密控制器驱动 发布:2025-07-16 20:16:18 浏览:176
锐龙本编程 发布:2025-07-16 19:35:08 浏览:646
初学c语言用什么软件 发布:2025-07-16 19:29:12 浏览:339