当前位置:首页 » 文件管理 » 压缩感知的应用

压缩感知的应用

发布时间: 2022-07-28 09:41:14

A. 压缩感知的图像处理与应用有哪些

数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大.因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理).目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用.2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量.压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行.编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术.3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等.图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分.如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响.图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像.4) 图像分割图像分割是数字图像处理中的关键技术之一.图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础.虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法.因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一.5) 图像描述是图像识别和理解的必要前提.作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法.对于特殊的纹理图像可采用二维纹理特征描述.随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法.6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类.图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视.

B. 压缩感知在无线通信信号处理中有哪些办法

通信与信息系统专业与信号与信息处理专业区别

通信与信息系统专业

()《移通信与线技术》 研究数字移通信通信系统系统模拟、址技术、数字调制解调技术、信道态指配技术、同步技术、用户检测技术、语音压缩技术、宽带媒体技术及射频技术研究各种数字微波通信、移通信卫星通信系统及WLAN、WMAN、ad-Roc网组、新技术及性能析并包括SDH技术述系统用编码、调制解调、同步与信令式、址及网络安全等技术研究与发

(二)《线数据与移计算网络》 研究线数据通信广域网、线局域网区域网线数字传输、媒质接入控制、线资源管理、移性管理、移媒体接入、线接入Internet、移IP、线IP、移计算网络等理论、协议、技术、实现及基于移计算网络各种应用本向研究现代移通信智能技术(智能线、智能传输、智能化通信协议智能网管系统等)

(三)《IP宽带网络技术》 研究宽带IP通信网QoS、流量工程合侦听;VoIP组网技术、通信协议控制技术;代网络软交换技术;SIP协议研究及应用发;B3G核网络技术;IP宽带接入城域网关键设备技术发;层交换技术、IP/ATM集技术MPLS技术;IP网络管理模型技术实现;移代理及其IP通信网应用

(四)《网络与应用技术》 研究宽带通信网结构、接口、协议、网络仿真设计技术;网络管理管理模型、接口标准、网管系统设计发;编程网络体系、软件系统发

(五)《通信信息系统信息安全》 研究与通信信息系统信息安全关理论技术主要包括数据加密密钥管理数字签名与身份认证网络安全计算机安全安全协议隐形技术智能卡安全等重点线通信网信息安全根据OSI协议网络各层发研究安全解决案达信、控、用

信号与信息处理专业

()《现代通信智能信号处理技术》 本研究向现代信号处理基础研究提高通信与信息系统效性靠性各种智能处理技术及其移通信、媒体通信、宽带接入IP网应用目前侧重于研究新代线通信网络各种先进智能信号处理技术通信信号盲离、信道盲辨识与均衡、载波调制、用户检测、空-联合处理、信源-信道编码及网络环境各种自适应技术等

(二)《量信息技术》 研究量态信息载体信息处理与传输技术包括量纠错编码、量数据压缩、量隐形传态、量密码体系等关键技术与理论实现新代高性能计算机超高速、超容量通信信息系统具极其重要意义

(三)《线通信与信号处理技术》 本研究向研究ad hoc自组织网络、传器网络、超宽带(UWB)网络等新代线通信网络通信信号处理技术主要研究内容包括基于信号处理包接收盲处理技术基于粒(particle)滤波信道估计均衡技术基于信号处理媒体接入控制技术目标跟踪与信息融合技术及网络协议体系等

(四)《现代语音处理与通信技术》 语音类进行通信交往便快捷手段各种现代通信网络智能信号处理应用起着十重要作用本研究向研究语音信号数字压缩、识别、合增强技术基于语音智能化机接口技术面向IP网络实语音通信技术信息隐藏技术移通信语音数字处理及传输技术基于DSPs软件线电通信技术及各种网络环境音频、视频、数据、文字媒体处理及通信技术

(五)《现代信息理论与通信信号处理》 现代信息理论基础研究ATMIP网、移与通信、媒体通信、宽带接入网各种信号处理技术低延、低比特率、高质量语音编码、图像编码适用于第三代移通信纠错编码高效载波调制各种自适应处理技术等;确保实现二十世纪通信发展目标提高通信效性靠性核技术本向侧重于些技术应用基础研究

(六)《图像处理与媒体通信》 研究媒体信息特别图像信息处理、描述应用系统关键技术包括:①图像视频信号处理及压缩编码算研究应用系统设计实现;②基于IP视频传输技术业务环境;③移网及cable网数据与媒体通信;④基于xDSL宽带接入网技术;⑤图像数据库及影像网络技术;⑥三维图像处理、建模、显示析技术

(七)《信息网络与媒体技术》 进行信息网络及媒体技术应用基础研究同利用DSP、FPGA、CPLD等软硬件发平台着重研究发各种媒体终端包括①媒体信息压缩编码②信道编码(重点纠错编解码)③视频点播(VOD)与交互电视议电视、远程教/考试/医疗④视频驱系统⑤视音频信号编码压缩算研究及ASIC设计⑥宽带网络应用研究

源:

C. 压缩感知的主要应用

认知无线电方向:宽带谱感知技术是认识无线电应用中一个难点和重点。它通过快速寻找监测频段中没有利用的无线频谱,从而为认知无线电用户提供频谱接入机会。传统的滤波器组的宽带检测需要大量的射频前端器件,并且不能灵活调整系统参数。普通的宽带接收电路要求很高的采样率,它给模数转换器带来挑战,并且获得的大量数据处理给数字信号处理器带来负担。针对宽带谱感知的难题,将压缩感知方法应用到宽带谱感知中:采用一个宽带数字电路,以较低的频谱获得欠采样的随机样本,然后在数字信号处理器中采用稀疏信号估计算法得到宽带谱感知结果。
信道编码:压缩传感理论中关于稀疏性、随机性和凸最优化的结论可以直接应用于设计快速误差校正编码, 这种编码方式在实时传输过程中不受误差的影响。在压缩编码过程中, 稀疏表示所需的基对于编码器可能是未知的. 然而在压缩传感编码过程中, 它只在译码和重构原信号时需要, 因此不需考虑它的结构, 所以可以用通用的编码策略进行编码. Haupt等通过实验表明如果图像是高度可压缩的或者SNR充分大, 即使测量过程存在噪声, 压缩传感方法仍可以准确重构图像。 波达方向估计:目标出现的角度在整个扫描空间来看,是极少数。波达方向估计问题在空间谱估计观点来看是一个欠定的线性逆问题。通过对角度个数的稀疏限制,可以完成压缩感知的波达方向估计。
波束形成:传统的 自适应波束形成因其高分辨率和抗干扰能力强等优点而被广泛采用。但同时它的高旁瓣水平和角度失匹配敏感度高问题将大大降低接收性能。为了改进Capon 波束形成的性能,这些通过稀疏波束图整形的方法限制波束图中阵列增益较大的元素个数,同时鼓励较大的阵列增益集中在波束主瓣中,从而达到降低旁瓣水平同时,提高主瓣中阵列增益水平,降低角度失匹配的影响。例如,最大主瓣旁瓣能量比,混合范数法,最小全变差。 运用压缩传感原理, RICE大学成功研制了单像素压缩数码照相机。 设计原理首先是通过光路系统将成像目标投影到一个数字微镜器件(DMD)上, 其反射光由透镜聚焦到单个光敏二极管上, 光敏二极管两端的电压值即为一个测量值y, 将此投影操作重复M次, 得到测量向量 , 然后用最小全变分算法构建的数字信号处理器重构原始图像。数字微镜器件由数字电压信号控制微镜片的机械运动以实现对入射光线的调整。 由于该相机直接获取的是M次随机线性测量值而不是获取原始信号的N(M,N)个像素值, 为低像素相机拍摄高质量图像提供了可能.。
压缩传感技术也可以应用于雷达成像领域, 与传统雷达成像技术相比压缩传感雷达成像实现了两个重要改进: 在接收端省去脉冲压缩匹配滤波器; 同时由于避开了对原始信号的直接采样, 降低了接收端对模数转换器件带宽的要求. 设计重点由传统的设计昂贵的接收端硬件转化为设计新颖的信号恢复算法, 从而简化了雷达成像系统。 生物传感中的传统DNA芯片能平行测量多个有机体, 但是只能识别有限种类的有机体, Sheikh等人运用压缩传感和群组检测原理设计的压缩传感DNA芯片克服了这个缺点。 压缩传感DNA芯片中的每个探测点都能识别一组目标, 从而明显减少了所需探测点数量. 此外基于生物体基因序列稀疏特性, Sheikh等人验证了可以通过置信传播的方法实现压缩传感DNA芯片中的信号重构。

D. 压缩感知是什么

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

E. 压缩感知的历史背景

尽管压缩感知是由 E. J. Candes、J. Romberg、T. Tao 和D. L. Donoho 等科学家于2004 年提出的。但是早在上个世纪,相关领域已经有相当的理论和应用铺垫,包括图像处理、地球物理、医学成像、计算机科学、信号处理、应用数学等。
可能第一个与稀疏信号恢复有关的算法由法国数学家Prony 提出。这个被称为的Prony 方法的稀疏信号恢复方法可以通过解一个特征值问题,从一小部分等间隔采样的样本中估计一个稀疏三角多项式的非零幅度和对应的频率。而最早采用基于L1范数最小化的稀疏约束的人是B. Logan。他发现在数据足够稀疏的情况下,通过L1范数最小化可以从欠采样样本中有效的恢复频率稀疏信号。D. Donoho和B.Logan 是信号处理领域采用L1范数最小化稀疏约束的先驱。但是地球物理学家早在20 世纪七八十年代就开始利用L1范数最小化来分析地震反射信号了。上世纪90 年代,核磁共振谱处理方面提出采用稀疏重建方法从欠采样非等间隔样本中恢复稀疏Fourier 谱。同一时期,图像处理方面也开始引入稀疏信号处理方法进行图像处理。在统计学方面,使用L1范数的模型选择问题和相关的方法也在同期开始展开。
压缩感知理论在上述理论的基础上,创造性的将L1范数最小化稀疏约束与随机矩阵结合,得到一个稀疏信号重建性能的最佳结果。
压缩感知基于信号的可压缩性, 通过低维空间、低分辨率、欠Nyquist采样数据的非相关观测来实现高维信号的感知,丰富了关于信号恢复的优化策略,极大的促进了数学理论和工程应用的结合 。它是传统信息论的一个延伸,但是又超越了传统的压缩理论,成为了一门崭新的子分支。它从诞生之日起到现在不过五年时间,其影响却已经席卷了大半个应用科学。

F. 压缩感知究竟是什么原理求大神帮助

压缩感知(compressed sensing)。所谓压缩感知,最核心的概念在于试图从原理上降低对一个信号进行测量的成本。比如说,一个信号包含一千个数据,那么按照传统的信号处理理论,至少需要做一千次测量才能完整的复原这个信号。这就相当于是说,需要有一千个方程才能精确地解出一千个未知数来。但是压缩感知的想法是假定信号具有某种特点(比如文中所描述得在小波域上系数稀疏的特点),那么就可以只做三百次测量就完整地复原这个信号(这就相当于只通过三百个方程解出一千个未知数)。可想而知,这件事情包含了许多重要的数学理论和广泛的应用前景,因此在最近三四年里吸引了大量注意力,得到了非常蓬勃的发展。陶哲轩本身是这个领域的奠基人之一(可以参考《陶哲轩:长大的神童》一文),因此这篇文章的权威性毋庸讳言。另外,这也是比较少见的由一流数学家直接撰写的关于自己前沿工作的普及性文章。需要说明的是,这篇文章是虽然是写给非数学专业的读者,但是也并不好懂,也许具有一些理工科背景会更容易理解一些。
麻烦采纳,谢谢!

G. 什么是“压缩感知”

压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling)或稀疏采样(Sparse sampling),是一种寻找欠定线性系统的稀疏解的技术。

压缩感知被应用于电子工程尤其是信号处理中,用于获取和重构稀疏或可压缩的信号。这个方法用到讯号稀疏的特性,得以从相对较少的测量值还原出原来整个欲得知的讯号。
MRI就是一个可能使用此方法的应用。这一方法至少已经存在了四十年,由于David Donoho、Emmanuel Candès和陶哲轩的工作,最近这个领域有了长足的发展。

H. 请问研究压缩感知需要学哪些相关知识比如,数字信号处理数字图像处理请明白人指点迷津!谢谢啦!

我个人觉得,数字信号处理和数字图像处理是针对具体的应用领域做基础知识学习。而你说的压缩感知是一种高于具体应用领域的智能算法,压缩感知可以用于数字信号方面,同样也可以应用与数字图像处理。确切的说数字信号处理包含了数字图像处理,只是数字图像处理后来发展了跟多深入的知识,所以又把其独立成一门课程。比如Mallat的《信号处理的小波导引:稀疏方法(原书第3版)》这本书上的内容,就大部分说的应用时数字图像。
总之,数字信号处理、数字图像处理肯定是要学的,否则你学了压缩感知也不知道用在什么领域,要具体学习压缩感知方面的知识,再去看看IEEE里的一些论文还有一些博士论文。

I. 如何解决基不匹配问题:从原子范数到无网格压缩感知

更好的求解方法应该是连续建模法, 即在对稀疏域建模时直接采用连续处理方法, 而不对稀疏域进行离散化表示, 在一般的稀疏分析中, 都直接采用定义在l2 空间的范数来度量稀疏参数. 要避免离散化处理, 最根本的方法是将范数定义在连续空间中, 这样就从源头上避免了基不匹配问题的发生. 原子范数利用原子集合凸包的连续特性来计算范数, 能够在约束信号稀疏特性的同时保证其参数空间的连续性。

J. 压缩感知的展望

非线性测量的压缩感知。讲压缩感知解决的线性逆问题推广到非线性函数参数的求解问题。广义的讲,非线性测量的压缩感知,可以包括以前的测量矩阵不确定性问题,量化误差问题,广义线性模型问题,有损压缩样本问题。
压缩感知在矩阵分解中的推广应用。主成分分析,表示字典学习,非负矩阵分解,多维度向量估计,低秩或高秩矩阵恢复问题。
确定性测量矩阵的设计问题。 随机矩阵在实用上存在难点。随机矩阵满足的RIP是充分非必要条件。在实际中,稀疏表示矩阵和随机矩阵相乘的结果才是决定稀疏恢复性能字典。
传统压缩感知是以稀疏结构为先验信息来进行信号恢复。当前最新进展显示数据中存在的其他的简单代数结果也作为先验信息进行信号估计。联合开发这些信号先验信息,将进一步提高压缩感知的性能。

热点内容
pythonforinkeys 发布:2024-05-19 01:55:44 浏览:792
电脑如何局域网共享文件夹 发布:2024-05-19 01:25:01 浏览:68
手机存储越大性能越好吗 发布:2024-05-19 01:14:28 浏览:176
我的世界hyp服务器怎么玩 发布:2024-05-19 00:51:25 浏览:801
手机如何解压百度云文件 发布:2024-05-19 00:32:24 浏览:905
centos使用python 发布:2024-05-18 23:39:48 浏览:869
幻影天龙脚本 发布:2024-05-18 23:38:17 浏览:714
编程的py 发布:2024-05-18 23:36:22 浏览:76
安卓系统怎么改序列号 发布:2024-05-18 23:28:16 浏览:785
c语言中实数 发布:2024-05-18 23:21:03 浏览:897