python的聚类算法
‘壹’ python怎么做大数据分析
数据获取:公开数据、Python爬虫外部数据的获取方式主要有以下两种。(推荐学习:Python视频教程)
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数………
以及,如何用 Python 库(urlpb、BeautifulSoup、requests、scrapy)实现网页爬虫。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、使用cookie信息、模拟用户登录、抓包分析、搭建代理池等等,来应对不同网站的反爬虫限制。
数据存取:SQL语言
在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据
数据库的增、删、查、改
数据的分组聚合、如何建立多个表之间的联系
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
对于数据预处理,学会 pandas (Python包)的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
异常值处理:清除不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显着性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。你可以使用 Seaborn、matplotpb 等(python包)做一些可视化的分析,通过各种可视化统计图,并得出具有指导意义的结果。
Python 数据分析
掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类。
然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去了解如何通过特征提取、参数调节来提升预测的精度。
你可以通过 Python 中的 scikit-learn 库来实现数据分析、数据挖掘建模和分析的全过程。
更多Python相关技术文章,请访问Python教程栏目进行学习!以上就是小编分享的关于python怎么做大数据分析的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
‘贰’ 如何用Python对人员轨迹聚类
把你的 xy 变换成 onehot编码 ,这样的话 聚类算法就都可以兼容了,
KMeans, DBScan, 层次聚类,等等都是可以的
‘叁’ python 层次聚类的谱系聚类图怎么看
K均值聚类 K-Means算法思想简单,效果却很好,是最有名的聚类算法。聚类算法的步骤如下: 1:初始化K个样本作为初始聚类中心; 2:计算每个样本点到K个中心的距离,选择最近的中心作为其分类,直到所有样本点分类完毕
‘肆’ 用python2.7做kmeans聚类算法怎么导入数据
指定文件名
问题描述:一堆二维数据,用kmeans算法对其进行聚类,下面例子以分k=3为例。
原数据:
1.5,3.1
2.2,2.9
3,4
2,1
15,25
43,13
32,42
0,0
8,9
12,5
9,12
11,8
22,33
24,25
实现代码:
[python] view plain
#coding:utf-8
from numpy import *
import string
import math
def loadDataSet(filename):
dataMat = []
fr = open(filename)
for line in fr.readlines():
element = line.strip('\n').split(',')
number = []
for i in range(len(element)):
number.append(string.atof(element[i]))
dataMat.append(number)
return dataMat
def distEclud(vecA, vecB):
count = len(vecA)
s = 0.0
for i in range(0, count):
s = s + power(vecA[i]-vecB[i], 2)
return sqrt(s)
def clusterOfElement(means, element):
min_dist = distEclud(means[0], element)
lable = 0
for index in range(1, len(means)):
dist = distEclud(means[index], element)
if(dist < min_dist):
min_dist = dist
lable = index
return lable
def getMean(cluster): #cluster=[[[1,2],[1,2],[1,2]....],[[2,1],[2,1],[2,1],[2,1]...]]
num = len(cluster) #1个簇的num,如上为3个
res = []
temp = 0
dim = len(cluster[0])
for i in range(0, dim):
for j in range(0, num):
temp = temp + cluster[j][i]
temp = temp / num
res.append(temp)
return res
def kMeans():
k = 3
data = loadDataSet('data.txt')
print "data is ", data
inite_mean = [[1.1, 1], [1, 1],[1,2]]
count = 0
while(count < 1000):
count = count + 1
clusters = []
means = []
for i in range(k):
clusters.append([])
means.append([])
for index in range(len(data)):
lable = clusterOfElement(inite_mean, data[index])
clusters[lable].append(data[index])
for cluster_index in range(k):
mea = getMean(clusters[cluster_index])
for mean_dim in range(len(mea)):
means[cluster_index].append(mea[mean_dim])
for mm in range(len(means)):
for mmm in range(len(means[mm])):
inite_mean[mm][mmm] = means[mm][mmm]
print "result cluster is ", clusters
print "result means is ", inite_mean
kMeans()
‘伍’ k均值聚类算法代码python运行后的图片在哪
图像处理
python实现K-means聚类法对图片进行RGB颜色聚类,然后计算信息熵并对聚类后的颜色进行Huffman编码
Love _YourSelf
原创
关注
0点赞·652人阅读
问题描述
1、对一张给定的图片,使用python实现K-means聚类算法,对该图片的颜色进行聚类,需要给出聚类的个数
2、计算图片的信息熵,然后对其进行颜色聚类,最后对颜色进行Huffman编码,结果表示为 一个三列的表格,其中第一列为颜色RGB(或BGR)代码,第二列为该颜色出现的概率,第三列为对应颜色的Huffman编码。
文章目录
问题描述
K-means
信息熵
Huffman编码
对图片使用K-means算法对颜色进行聚类
效果展示
计算信息熵和huffman编码
结果展示
K-means
将n个样本依据最小化类内距离的准则分到K个聚类中
算法的步骤是:
1、先随机选择K个初始的聚类中心
2、计算每个样本和这k个聚类中心的距离,按照最近原则将这些点分到这K个聚类中
3、重新计算每个聚类的均值,再进行划分
4、直到聚类结果没有变化时,算法收敛
K-means算法实现起来比较简单,空间和计算复杂度较低,经过有限步数就能够收敛得到聚类输出,但是最后的结果受初始聚类均值选择的影响,这有可能导致收敛于不同的局部极小解,而且这个算法需要预先设定聚类个数,这个在实际使用时很难判断
‘陆’ 聚类算法之K均值算法(k-means)的Python实现
K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数。
通常,人们根据样本间的某种距离或者相似性来定义聚类,即把相似的(或距离近的)样本聚为同一类,而把不相似的(或距离远的)样本归在其他类。
所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。其中每个子集叫做一个簇。
k-means算法是一种很常见的聚类算法,它的基本思想是:通过迭代寻找k个聚类的一种划分方案,使得用这k个聚类的均值来代表相应各类样本时所得的总体误差最小。
看起来还不错
分析一个公司的客户分类,这样可以对不同的客户使用不同的商业策略,或是电子商务中分析商品相似度,归类商品,从而可以使用一些不同的销售策略,等等。
‘柒’ k-means聚类算法python实现,导入的数据集有什么要求
一,K-Means聚类算法原理
k-means 算法接受参数 k
;然后将事先输入的n个数据对象划分为
k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对
象”(引力中心)来进行计算的。
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
‘捌’ 减法聚类如何用Python实现
下面是一个k-means聚类算法在python2.7.5上面的具体实现,你需要先安装Numpy和Matplotlib:
from numpy import *
import time
import matplotlib.pyplot as plt
# calculate Euclidean distance
def euclDistance(vector1, vector2):
return sqrt(sum(power(vector2 - vector1, 2)))
# init centroids with random samples
def initCentroids(dataSet, k):
numSamples, dim = dataSet.shape
centroids = zeros((k, dim))
for i in range(k):
index = int(random.uniform(0, numSamples))
centroids[i, :] = dataSet[index, :]
return centroids
# k-means cluster
def kmeans(dataSet, k):
numSamples = dataSet.shape[0]
# first column stores which cluster this sample belongs to,
# second column stores the error between this sample and its centroid
clusterAssment = mat(zeros((numSamples, 2)))
clusterChanged = True
## step 1: init centroids
centroids = initCentroids(dataSet, k)
while clusterChanged:
clusterChanged = False
## for each sample
for i in xrange(numSamples):
minDist = 100000.0
minIndex = 0
## for each centroid
## step 2: find the centroid who is closest
for j in range(k):
distance = euclDistance(centroids[j, :], dataSet[i, :])
if distance < minDist:
minDist = distance
minIndex = j
## step 3: update its cluster
if clusterAssment[i, 0] != minIndex:
clusterChanged = True
clusterAssment[i, :] = minIndex, minDist**2
## step 4: update centroids
for j in range(k):
pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis = 0)
print 'Congratulations, cluster complete!'
return centroids, clusterAssment
# show your cluster only available with 2-D data
def showCluster(dataSet, k, centroids, clusterAssment):
numSamples, dim = dataSet.shape
if dim != 2:
print "Sorry! I can not draw because the dimension of your data is not 2!"
return 1
mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
if k > len(mark):
print "Sorry! Your k is too large! please contact Zouxy"
return 1
# draw all samples
for i in xrange(numSamples):
markIndex = int(clusterAssment[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
# draw the centroids
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
plt.show()
‘玖’ 谱聚类(Spectral clustering)(python实现)
谱聚类概念 :
谱聚类是一种基于图论的聚类方法,通过对样本数据的拉普拉斯矩阵的特征向量进行聚类,从而达到对样本数据聚类的母的。谱聚类可以理解为将高维空间的数据映射到低维,然后在低维空间用其它聚类算法(如KMeans)进行聚类。
算法步骤
1 计算相似度矩阵 W
2 计算度矩阵 D
3 计算拉普拉斯矩阵L=D-W
4 计算L的特征值,将特征值从小到大排序,取前k个特征值.将这个特征值向量转换为矩阵
5 通过其他聚类算法对其进行聚类,如k-means
详细公式和概念请到 大佬博客
相比较PCA降维中取前k大的特征值对应的特征向量,这里取得是前k小的特征值对应的特征向量。但是上述的谱聚类算法并不是最优的,接下来我们一步一步的分解上面的步骤,总结一下在此基础上进行优化的谱聚类的版本。
python实现
例子一:使用谱聚类从噪声背景中分割目标
效果图
例子2:分割图像中硬币的区域
效果图
注意
1)当聚类的类别个数较小的时候,谱聚类的效果会很好,但是当聚类的类别个数较大的时候,则不建议使用谱聚类;
(2)谱聚类算法使用了降维的技术,所以更加适用于高维数据的聚类;
(3)谱聚类只需要数据之间的相似度矩阵,因此对于处理稀疏数据的聚类很有效。这点传统聚类算法(比如K-Means)很难做到
(4)谱聚类算法建立在谱图理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解
(5)谱聚类对相似度图的改变和聚类参数的选择非常的敏感;
(6)谱聚类适用于均衡分类问题,即各簇之间点的个数相差不大,对于簇之间点个数相差悬殊的聚类问题,谱聚类则不适用;
参考
谱聚类算法介绍
sklearn官网