python历史波动率
‘壹’ 有大神能给写下用python怎么算欧式股票期权的隐含波动率么
用BS model计算欧式call option的implied volatility。
稍微修改一下也可以算put option。计算结果可以和期权计算器上的结果对比。
‘贰’ python能做什么有趣的东西
python能做什么有趣的东西?下面给大家介绍35个Python实例:
1. Python3 实现图片识别
2. Python3 图片隐写术
3. 200 行 Python 代码实现 2048
4. Python实现3D建模工具
5. 使用 Python 定制词云
相关推荐:《Python教程》
6. Python3 智能裁切图片
7.微信变为聊天机器人
8. 使用 Python 解数学方程
9. 使用 Python 创建照片马赛克
10. Python 基于共现提取《釜山行》人物关系
11. Python 气象数据分析:《Python 数据分析实战》
12. NBA常规赛结果预测:利用Python进行比赛数据分析
13. Python 的循环语句和隐含波动率的计算
14. K-近邻算法实现手写数字识别系统
15. 数独游戏的 Python 实现与破解
16. 基于 Flask 与 MySQL 实现番剧推荐系
17. Python 实现英文新闻摘要自动提取
18. Python 解决哲学家就餐问题
19. Ebay 在线拍卖数据分析
20. 神经网络实现人脸识别任务
21. 使用 Python 解数学方程
22. Python3 实现火车票查询工具
23. Python 实现端口扫描器
24. Python3 实现可控制肉鸡的反向Shell
25. Python 实现 FTP 弱口令扫描器
26. 基于PyQt5 实现地图中定位相片拍摄位置
27. Python实现网站模拟登陆
28.Python实现简易局域网视频聊天工具
29. 基于 TCP 的 python 聊天程序
30. Python3基于Scapy实现DDos
31. 高德API + Python 解决租房问题
32. 基于 Flask 与 RethinkDB 实现TODO List
33. Python3 实现简单的 Web 服务器
34. Python 实现 Redis 异步客户端
35. 仿 StackOverflow 开发在线问答系统
‘叁’ python编程求解答哦!下面是我的程序,现实错误如图所示。求解惑~
访问了某个不存在的字典key
‘肆’ 第1章 为什么将Python用于金融
python是一门高级的编程语言,广泛应用在各种领域之中,同时也是人工智能领域首选的语言。
为什么将python用于金融?因为Python的语法很容易实现金融算法和数学计算,可以将数学语句转化成python代码,没有任何语言能像Python这样适用于数学。
‘伍’ Quant 应该学习哪些 Python 知识
Python是非常适合做quant类工作的语言,本身就是科学计算方面的统治级语言,现在加入了IPython,pandas等重量级神器,为Quant类工作量身定做,而且仍在飞速发展中,以后会越来越重要。
关于其他语言,首先介绍一下我自己最喜欢的一个比较小众的组合,Mathematica+Java/Scala。
Mathematica的优点在于:本身提供函数式的编程语言,表达能力非常强大,比如Map/Rece是标配,很多时候不需要去做烦人的for循环或下标控制,排版经常可以直接照数学公式原样输入,即直观又不容易写错;代码和输出混排的排版方式使得建模时的演算和推理过程非常流畅,甚至还可以直接生成动画,对于找直观理解非常有帮助(这几点分别被IPython和R偷师了一部分)。Mathematica的缺点在于对金融类的时间序列数据没有很好的内建支持,使得存储和计算都会比较低效,因此需要用内嵌Java的方式来补足,对于数据格式或性能敏感的操作都可以用Java/Scala实现。这个组合在我心目中无出其右,不论是快速建模,还是建模转生产,都远远领先于其他选择。但Mathematica的商用授权很贵,如果公司本身不认可的话很难得到支持,这是最致命的缺陷。另外随着Python系的逐渐成熟,领先优势在逐渐缩小,长远看Python的势头更好一些。
其他答案里也列举了不少其他语言,我自己既做Quant的工作,也做软件开发的工作,这里想从一个软件工程师的角度,说说我的理解。平时工作中会和一些偏Quant背景的人合作,很容易发现建模能力好的人往往在计算机方面基础比较薄弱(因为以前的训练重点不在这里)。他们也可以快速学习掌握一种像C++,Java这样的语言,实现很多必要的功能。但是一方面这些语言陡峭的学习曲线和繁琐的开发步骤会给他们真正要做的工作增加不必要的负担,另一方面一旦涉及到性能敏感的情景,他们对计算机体系结构缺乏理解的缺点就容易暴露,比如说很可能他们没有计算复杂度,内存碎片,cache
miss,甚至多线程等概念,导致写出的程序存在相当大的隐患。
即使是计算机功底扎实,如果每天的工作需要在C++,Python,R/Matlab,甚至一众脚本语言之前来回切换,思维负担也会非常重,人的精力是有限的,很难同时兼顾数学建模和底层代码调试这种差距巨大的工作。长期发展下去最可能的结果就是要么远离建模,专心做生产环境开发,要么远离生产环境,专心建模。这种局面显然不论对个人还是团队都是有很大弊端的。
如果深入思考这个问题,相信不难得出结论,对于Quant来说,C++这种相当面向机器的语言肯定不是最佳选择。的确在历史上,它比更面向机器的C已经友好了很多,但是在计算机技术飞速发展的今天,如果还需要Quant大量使用C++做建模类的工作显然是很遗憾的事情。设想一下你拿到一份股票数据,不论你是想分析价格走势,成交量分布,还是波动性,第一件要做的事一定是画出图来看看,有一个直观认识。如果你的工具是C++,肯定有很多时间花在编译,调试,再编译的过程上,好容易能解析文件了,接下来怎么算移动平均?怎么算波动性?全都要自己写代码。再然后怎么画图?这整个工作流简直惨不忍睹,这些问题浪费掉你大部分精力,而他们全部和你真正感兴趣的工作毫无关系。所以如果你是一个数理金融等背景的新人打算开始Quant生涯,在决定是否要投资到这项重量级技术上时需要慎重,即便它目前的市场定价可能仍在峰值。相比之下我认为Python会是更理想的选择,即能很好的完成建模工作,也可以训练一定的编程技巧,使你在必要时也能胜任一些简单的C++工作。
‘陆’ 如何用python计算隐含波动率
用BS model计算欧式call option的implied volatility。稍微修改一下也可以算put option。计算结果可以和期权计算器上的结果对比。
‘柒’ python编程哪错了
import pandas as pd
import numpy as np
import math
df=pd.read_excel('波动率数据.xlsx')
jz=df["净值"]
xh=df["序号"]
proct=1
i=1
j=0
k=0
result1=0
for i in jz:
proct*=i
averagelogproct=np.log(proct)/len(jz)
for j in xh:
result=np.square(np.log(jz[j]/jz[j+1]) - averagelogproct)
result1+=result
print(result1)
DASL
‘捌’ 请问怎样用Python计算配对交易组合的VaR
*var在定义函数参数时,是可变个数参数的意思。在调用时,是要unpack tuple的意思,
t = (1,2,3)
直接带入是一个参数,但是*t后就是3个参数了。所以你的2个都不对。
写的时候
def restoreDataType(old_type, var):
调用时:
print restoreDataType(old_type='>f', var=(16435, 13107))
‘玖’ python可以做哪些有趣的事情
1. Python3 实现色情图片识别
2. Python3 图片隐写术
3. 200 行 Python 代码实现 2048
4. Python实现3D建模工具
5. 使用 Python 定制词云
6. Python3 智能裁切图片
7.微信变为聊天机器人
8. 使用 Python 解数学方程
9. 使用 Python 创建照片马赛克
10. Python 基于共现提取《釜山行》人物关系
11. Python 气象数据分析:《Python 数据分析实战》
12. NBA常规赛结果预测:利用Python进行比赛数据分析
13. Python 的循环语句和隐含波动率的计算
14. K-近邻算法实现手写数字识别系统
15. 数独游戏的 Python 实现与破解
16. 基于 Flask 与 MySQL 实现番剧推荐系
17. Python 实现英文新闻摘要自动提取
18. Python 解决哲学家就餐问题
19. Ebay 在线拍卖数据分析
20. 神经网络实现人脸识别任务
21. 使用 Python 解数学方程
22. Python3 实现火车票查询工具
23. Python 实现端口扫描器
24. Python3 实现可控制肉鸡的反向Shell
25. Python 实现 FTP 弱口令扫描器
26. 基于PyQt5 实现地图中定位相片拍摄位置
27. Python实现网站模拟登陆
28.Python实现简易局域网视频聊天工具
29. 基于 TCP 的 python 聊天程序
30. Python3基于Scapy实现DDos
31. 高德API + Python 解决租房问题
32. 基于 Flask 与 RethinkDB 实现TODO List
‘拾’ 如何用Python画实时更新的波动率曲线图
用python做是不是有些太重了,python只需要负责给前端返回格式化的数据就好啦,这种图片的事情让这种专业的工具去做岂不更好
实时刷新的曲线图 | Highcharts
需要一点点js知识和最简单的flask知识,但是时间成本和效果表现肯定要优于python GUI