编译选项strip
⑴ 如何为嵌入式开发建立交叉编译环境
下面我们将以建立针对arm的交叉编译开发环境为例来解说整个过程,其他的体系结构与这个相类似,只要作一些对应的改动。我的开发环境是,宿主机 i386-redhat-7.2,目标机 arm。
这个过程如下
1. 下载源文件、补丁和建立编译的目录
2. 建立内核头文件
3. 建立二进制工具(binutils)
4. 建立初始编译器(bootstrap gcc)
5. 建立c库(glibc)
6. 建立全套编译器(full gcc)
下载源文件、补丁和建立编译的目录
1. 选定软件版本号
选择软件版本号时,先看看glibc源代码中的INSTALL文件。那里列举了该版本的glibc编译时所需的binutils 和gcc的版本号。例如在 glibc-2.2.3/INSTALL 文件中推荐 gcc 用 2.95以上,binutils 用 2.10.1 以上版本。
我选的各个软件的版本是:
linux-2.4.21+rmk2
binutils-2.10.1
gcc-2.95.3
glibc-2.2.3
glibc-linuxthreads-2.2.3
如果你选的glibc的版本号低于2.2,你还要下载一个叫glibc-crypt的文件,例如glibc-crypt-2.1.tar.gz。 Linux 内核你可以从www.kernel.org 或它的镜像下载。
Binutils、gcc和glibc你可以从FSF的ftp站点ftp://ftp.gun.org/gnu/ 或它的镜像去下载。 在编译glibc时,要用到 Linux 内核中的 include 目录的内核头文件。如果你发现有变量没有定义而导致编译失败,你就改变你的内核版本号。例如我开始用linux-2.4.25+vrs2,编译glibc-2.2.3 时报 BUS_ISA 没定义,后来发现在 2.4.23 开始它的名字被改为 CTL_BUS_ISA。如果你没有完全的把握保证你改的内核改完全了,就不要动内核,而是把你的 Linux 内核的版本号降低或升高,来适应 glibc。
Gcc 的版本号,推荐用 gcc-2.95 以上的。太老的版本编译可能会出问题。Gcc-2.95.3 是一个比较稳定的版本,也是内核开发人员推荐用的一个 gcc 版本。
如果你发现无法编译过去,有可能是你选用的软件中有的加入了一些新的特性而其他所选软件不支持的原因,就相应降低该软件的版本号。例如我开始用 gcc-3.3.2,发现编译不过,报 as、ld 等版本太老,我就把 gcc 降为 2.95.3。 太新的版本大多没经过大量的测试,建议不要选用。
回页首
2. 建立工作目录
首先,我们建立几个用来工作的目录:
在你的用户目录,我用的是用户liang,因此用户目录为 /home/liang,先建立一个项目目录embedded。
$pwd
/home/liang
$mkdir embedded
再在这个项目目录 embedded 下建立三个目录 build-tools、kernel 和 tools。
build-tools-用来存放你下载的 binutils、gcc 和 glibc 的源代码和用来编译这些源代码的目录。
kernel-用来存放你的内核源代码和内核补丁。
tools-用来存放编译好的交叉编译工具和库文件。
$cd embedded
$mkdir build-tools kernel tools
执行完后目录结构如下:
$ls embedded
build-tools kernel tools
3. 输出和环境变量
我们输出如下的环境变量方便我们编译。
$export PRJROOT=/home/liang/embedded
$export TARGET=arm-linux
$export PREFIX=$PRJROOT/tools
$export TARGET_PREFIX=$PREFIX/$TARGET
$export PATH=$PREFIX/bin:$PATH
如果你不惯用环境变量的,你可以直接用绝对或相对路径。我如果不用环境变量,一般都用绝对路径,相对路径有时会失败。环境变量也可以定义在.bashrc文件中,这样当你logout或换了控制台时,就不用老是export这些变量了。
体系结构和你的TAEGET变量的对应如下表
你可以在通过glibc下的config.sub脚本来知道,你的TARGET变量是否被支持,例如:
$./config.sub arm-linux
arm-unknown-linux-gnu
在我的环境中,config.sub 在 glibc-2.2.3/scripts 目录下。
网上还有一些 HOWTO 可以参考,ARM 体系结构的《The GNU Toolchain for ARM Target HOWTO》,PowerPC 体系结构的《Linux for PowerPC Embedded Systems HOWTO》等。对TARGET的选取可能有帮助。
4. 建立编译目录
为了把源码和编译时生成的文件分开,一般的编译工作不在的源码目录中,要另建一个目录来专门用于编译。用以下的命令来建立编译你下载的binutils、gcc和glibc的源代码的目录。
$cd $PRJROOT/build-tools
$mkdir build-binutils build-boot-gcc build-gcc build-glibc gcc-patch
build-binutils-编译binutils的目录
build-boot-gcc-编译gcc 启动部分的目录
build-glibc-编译glibc的目录
build-gcc-编译gcc 全部的目录
gcc-patch-放gcc的补丁的目录
gcc-2.95.3 的补丁有 gcc-2.95.3-2.patch、gcc-2.95.3-no-fixinc.patch 和gcc-2.95.3-returntype-fix.patch,可以从 http://www.linuxfromscratch.org/ 下载到这些补丁。
再将你下载的 binutils-2.10.1、gcc-2.95.3、glibc-2.2.3 和 glibc-linuxthreads-2.2.3 的源代码放入 build-tools 目录中
看一下你的 build-tools 目录,有以下内容:
$ls
binutils-2.10.1.tar.bz2 build-gcc gcc-patch
build-binutls build-glibc glibc-2.2.3.tar.gz
build-boot-gcc gcc-2.95.3.tar.gz glibc-linuxthreads-2.2.3.tar.gz
回页首
建立内核头文件
把你从 www.kernel.org 下载的内核源代码放入 $PRJROOT /kernel 目录
进入你的 kernel 目录:
$cd $PRJROOT /kernel
解开内核源代码
$tar -xzvf linux-2.4.21.tar.gz
或
$tar -xjvf linux-2.4.21.tar.bz2
小于 2.4.19 的内核版本解开会生成一个 linux 目录,没带版本号,就将其改名。
$mv linux linux-2.4.x
给 Linux 内核打上你的补丁
$cd linux-2.4.21
$patch -p1 < ../patch-2.4.21-rmk2
编译内核生成头文件
$make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig
你也可以用 config 和 xconfig 来代替 menuconfig,但这样用可能会没有设置某些配置文件选项和没有生成下面编译所需的头文件。推荐大家用 make menuconfig,这也是内核开发人员用的最多的配置方法。配置完退出并保存,检查一下的内核目录中的 include/linux/version.h 和 include/linux/autoconf.h 文件是不是生成了,这是编译 glibc 是要用到的,version.h 和 autoconf.h 文件的存在,也说明了你生成了正确的头文件。
还要建立几个正确的链接
$cd include
$ln -s asm-arm asm
$cd asm
$ln -s arch-epxa arch
$ln -s proc-armv proc
接下来为你的交叉编译环境建立你的内核头文件的链接
$mkdir -p $TARGET_PREFIX/include
$ln -s $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include/linux
$in -s $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include/asm
也可以把 Linux 内核头文件拷贝过来用
$mkdir -p $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/linux $TARGET_PREFIX/include
$cp -r $PRJROOT/kernel/linux-2.4.21/include/asm-arm $TARGET_PREFIX/include
回页首
建立二进制工具(binutils)
binutils是一些二进制工具的集合,其中包含了我们常用到的as和ld。
首先,我们解压我们下载的binutils源文件。
$cd $PRJROOT/build-tools
$tar -xvjf binutils-2.10.1.tar.bz2
然后进入build-binutils目录配置和编译binutils。
$cd build-binutils
$../binutils-2.10.1/configure --target=$TARGET --prefix=$PREFIX
--target 选项是指出我们生成的是 arm-linux 的工具,--prefix 是指出我们可执行文件安装的位置。
会出现很多 check,最后产生 Makefile 文件。
有了 Makefile 后,我们来编译并安装 binutils,命令很简单。
$make
$make install
看一下我们 $PREFIX/bin 下的生成的文件
$ls $PREFIX/bin
arm-linux-addr2line arm-linux-gasp arm-linux-objmp arm-linux-strings
arm-linux-ar arm-linux-ld arm-linux-ranlib arm-linux-strip
arm-linux-as arm-linux-nm arm-linux-readelf
arm-linux-c++filt arm-linux-obj arm-linux-size
我们来解释一下上面生成的可执行文件都是用来干什么的
add2line - 将你要找的地址转成文件和行号,它要使用 debug 信息。
Ar-产生、修改和解开一个存档文件
As-gnu 的汇编器
C++filt-C++ 和 java 中有一种重载函数,所用的重载函数最后会被编译转化成汇编的标号,c++filt 就是实现这种反向的转化,根据标号得到函数名。
Gasp-gnu 汇编器预编译器。
Ld-gnu 的连接器
Nm-列出目标文件的符号和对应的地址
Obj-将某种格式的目标文件转化成另外格式的目标文件
Objmp-显示目标文件的信息
Ranlib-为一个存档文件产生一个索引,并将这个索引存入存档文件中
Readelf-显示 elf 格式的目标文件的信息
Size-显示目标文件各个节的大小和目标文件的大小
Strings-打印出目标文件中可以打印的字符串,有个默认的长度,为4
Strip-剥掉目标文件的所有的符号信息
回页首
建立初始编译器(bootstrap gcc)
首先进入 build-tools 目录,将下载 gcc 源代码解压
$cd $PRJROOT/build-tools
$tar -xvzf gcc-2.95.3.tar.gz
然后进入 gcc-2.95.3 目录给 gcc 打上补丁
$cd gcc-2.95.3
$patch -p1< ../gcc-patch/gcc-2.95.3.-2.patch
$patch -p1< ../gcc-patch/gcc-2.95.3.-no-fixinc.patch
$patch -p1< ../gcc-patch/gcc-2.95.3-returntype-fix.patch
echo timestamp > gcc/cstamp-h.in
在我们编译并安装 gcc 前,我们先要改一个文件 $PRJROOT/gcc/config/arm/t-linux,把
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC
这一行改为
TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer -fPIC -Dinhibit_libc -D__gthr_posix_h
你如果没定义 -Dinhibit,编译时将会报如下的错误
../../gcc-2.95.3/gcc/libgcc2.c:41: stdlib.h: No such file or directory
../../gcc-2.95.3/gcc/libgcc2.c:42: unistd.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
如果没有定义 -D__gthr_posix_h,编译时会报如下的错误
In file included from gthr-default.h:1,
from ../../gcc-2.95.3/gcc/gthr.h:98,
from ../../gcc-2.95.3/gcc/libgcc2.c:3034:
../../gcc-2.95.3/gcc/gthr-posix.h:37: pthread.h: No such file or directory
make[3]: *** [libgcc2.a] Error 1
make[2]: *** [stmp-multilib-sub] Error 2
make[1]: *** [stmp-multilib] Error 1
make: *** [all-gcc] Error 2
还有一种与-Dinhibit同等效果的方法,那就是在你配置configure时多加一个参数-with-newlib,这个选项不会迫使我们必须使用newlib。我们编译了bootstrap-gcc后,仍然可以选择任何c库。
接着就是配置boostrap gcc, 后面要用bootstrap gcc 来编译 glibc 库。
$cd ..; cd build-boot-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX \
>--without-headers --enable-languages=c --disable-threads
这条命令中的 -target、--prefix 和配置 binutils 的含义是相同的,--without-headers 就是指不需要头文件,因为是交叉编译工具,不需要本机上的头文件。-enable-languages=c是指我们的 boot-gcc 只支持 c 语言。--disable-threads 是去掉 thread 功能,这个功能需要 glibc 的支持。
接着我们编译并安装 boot-gcc
$make all-gcc
$make install-gcc
我们来看看 $PREFIX/bin 里面多了哪些东西
$ls $PREFIX/bin
你会发现多了 arm-linux-gcc 、arm-linux-unprotoize、cpp 和 gcov 几个文件。
Gcc-gnu 的 C 语言编译器
Unprotoize-将 ANSI C 的源码转化为 K&R C 的形式,去掉函数原型中的参数类型。
Cpp-gnu的 C 的预编译器
Gcov-gcc 的辅助测试工具,可以用它来分析和优程序。
使用 gcc3.2 以及 gcc3.2 以上版本时,配置 boot-gcc 不能使用 --without-headers 选项,而需要使用 glibc 的头文件。
回页首
建立 c 库(glibc)
首先解压 glibc-2.2.3.tar.gz 和 glibc-linuxthreads-2.2.3.tar.gz 源代码
$cd $PRJROOT/build-tools
$tar -xvzf glibc-2.2.3.tar.gz
$tar -xzvf glibc-linuxthreads-2.2.3.tar.gz --directory=glibc-2.2.3
然后进入 build-glibc 目录配置 glibc
$cd build-glibc
$CC=arm-linux-gcc ../glibc-2.2.3/configure --host=$TARGET --prefix="/usr"
--enable-add-ons --with-headers=$TARGET_PREFIX/include
CC=arm-linux-gcc 是把 CC 变量设成你刚编译完的boostrap gcc,用它来编译你的glibc。--enable-add-ons是告诉glibc用 linuxthreads 包,在上面我们已经将它放入了 glibc 源码目录中,这个选项等价于 -enable-add-ons=linuxthreads。--with-headers 告诉 glibc 我们的linux 内核头文件的目录位置。
配置完后就可以编译和安装 glibc
$make
$make install_root=$TARGET_PREFIX prefix="" install
然后你还要修改 libc.so 文件
将
GROUP ( /lib/libc.so.6 /lib/libc_nonshared.a)
改为
GROUP ( libc.so.6 libc_nonshared.a)
这样连接程序 ld 就会在 libc.so 所在的目录查找它需要的库,因为你的机子的/lib目录可能已经装了一个相同名字的库,一个为编译可以在你的宿主机上运行的程序的库,而不是用于交叉编译的。
回页首
建立全套编译器(full gcc)
在建立boot-gcc 的时候,我们只支持了C。到这里,我们就要建立全套编译器,来支持C和C++。
$cd $PRJROOT/build-tools/build-gcc
$../gcc-2.95.3/configure --target=$TARGET --prefix=$PREFIX --enable-languages=c,c++
--enable-languages=c,c++ 告诉 full gcc 支持 c 和 c++ 语言。
然后编译和安装你的 full gcc
$make all
$make install
我们再来看看 $PREFIX/bin 里面多了哪些东西
$ls $PREFIX/bin
你会发现多了 arm-linux-g++ 、arm-linux-protoize 和 arm-linux-c++ 几个文件。
G++-gnu的 c++ 编译器。
Protoize-与Unprotoize相反,将K&R C的源码转化为ANSI C的形式,函数原型中加入参数类型。
C++-gnu 的 c++ 编译器。
到这里你的交叉编译工具就算做完了,简单验证一下你的交叉编译工具。
用它来编译一个很简单的程序 helloworld.c
#include <stdio.h>
int main(void)
{
printf("hello world\n");
return 0;
}
$arm-linux-gcc helloworld.c -o helloworld
$file helloworld
helloworld: ELF 32-bit LSB executable, ARM, version 1,
dynamically linked (uses shared libs), not stripped
上面的输出说明你编译了一个能在 arm 体系结构下运行的 helloworld,证明你的编译工具做成功了。
转载仅供参考,版权属于原作者
⑵ strip对动态库文件和静态库文件的不同效果
Linux库有动态与静态两种,动态通常用.so为后缀,静态用.a为后缀。例如:libhello.solibhello.a为了在同一系统中使用不同版本的库,可以在库文件名后加上版本号为后缀,例如:libhello.so.1.0,由于程序连接默认以.so为文件后缀名。所以为了使用这些库,通常使用建立符号连接的方式。ln-slibhello.so.1.0libhello.so.1ln-slibhello.so.1libhello.so动态库和静态库的区别:当要使用静态的程序库时,连接器会找出程序所需的函数,然后将它们拷贝到执行文件,由于这种拷贝是完整的,所以一旦连接成功,静态程序库也就不再需要了。然而,对动态库而言,就不是这样。动态库会在执行程序内留下一个标记‘指明当程序执行时,首先必须载入这个库。由于动态库节省空间,linux下进行连接的缺省操作是首先连接动态库,也就是说,如果同时存在静态和动态库,不特别指定的话,将与动态库相连接。两种库的编译产生方法:第一步要把源代码编绎成目标代码。以下面的代码hello.c为例,生成hello库:/*hello.c*/#includevoidsayhello(){printf("hello,world\n");}用gcc编绎该文件,在编绎时可以使用任何全法的编绎参数,例如-g加入调试代码等:gcc-chello.c-ohello.o1.连接成静态库连接成静态库使用ar命令,其实ar是archive的意思$arcqslibhello.ahello.o2.连接成动态库生成动态库用gcc来完成,由于可能存在多个版本,因此通常指定版本号:$gcc-shared-Wl,-soname,libhello.so.1-olibhello.so.1.0hello.o另外再建立两个符号连接:$ln-slibhello.so.1.0libhello.so.1$ln-slibhello.so.1libhello.so这样一个libhello的动态连接库就生成了。最重要的是传gcc-shared参数使其生成是动态库而不是普通执行程序。-Wl表示后面的参数也就是-soname,libhello.so.1直接传给连接器ld进行处理。实际上,每一个库都有一个soname,当连接器发现它正在查找的程序库中有这样一个名称,连接器便会将soname嵌入连结中的二进制文件内,而不是它正在运行的实际文件名,在程序执行期间,程序会查找拥有soname名字的文件,%B
⑶ vc的各编译选项都是什么意思
VC编译选项
/Od 禁用优化(默认值) disable optimizations (default)
/Ox 最大化选项。(/Ogityb2 /Gs) maximum opts. (/Ogityb1 /Gs)
/Og 启用全局优化 enable global optimization
/Oy[-] 启用框架指针省略 enable frame pointer omission
/Oi 启用内建函数 enable intrinsic functions
-代码生成-
/G3 为 80386 进行优化 optimize for 80386
/G4 为 80486 进行优化 optimize for 80486
/GR[-] 启用 C++ RTTI enable C++ RTTI
/G5 为 Pentium 进行优化 optimize for Pentium
/G6 为 Pentium Pro 进行优化 optimize for Pentium Pro
/GX[-] 启用 C++ 异常处理(与 /EHsc 相同) enable C++ EH (same as /EHsc)
/EHs 启用同步 C++ 异常处理 enable synchronous C++ EH
/GD 为 Windows DLL 进行优化 optimize for Windows DLL
/GB 为混合模型进行优化(默认) optimize for blended model (default)
/EHa 启用异步 C++ 异常处理 enable asynchronous C++ EH
/Gd __cdecl 调用约定 __cdecl calling convention
/EHc extern“C”默认为 nothrow extern "C" defaults to nothrow
/Gr __fastcall 调用约定 __fastcall calling convention
/Gi[-] 启用增量编译 enable incremental compilation
/Gz __stdcall 调用约定 __stdcall calling convention
/Gm[-] 启用最小重新生成 enable minimal rebuild
/GA 为 Windows 应用程序进行优化 optimize for Windows Application
/Gf 启用字符串池 enable string pooling
/QIfdiv[-] 启用 Pentium FDIV 修复 enable Pentium FDIV fix
/GF 启用只读字符串池 enable read-only string pooling
/QI0f[-] 启用 Pentium 0x0f 修复 enable Pentium 0x0f fix
/Gy 分隔链接器函数 separate functions for linker
/GZ 启用运行时调试检查 enable runtime debug checks
/Gh 启用钩子函数调用 enable hook function call
/Ge 对所有函数强制堆栈检查 force stack checking for all funcs
/Gs[num] 禁用堆栈检查调用 disable stack checking calls
-输出文件-
/Fa[file] 命名程序集列表文件 name assembly listing file
/Fo 命名对象文件 name object file
/FA[sc] 配置程序集列表 configure assembly listing
/Fp 命名预编译头文件 name precompiled header file
/Fd[file] 命名 .PDB 文件 name .PDB file
/Fr[file] 命名源浏览器文件 name source browser file
/Fe 命名可执行文件 name executable file
/FR[file] 命名扩展 .SBR 文件 name extended .SBR file
/Fm[file] 命名映射文件 name map file
-预处理器-
/FI 命名强制包含文件 name forced include file
/C 不吸取注释 don't strip comments
/U 移除预定义宏 remove predefined macro
/D{=|#} 定义宏 define macro
/u 移除所有预定义宏 remove all predefined macros
/E 将预处理定向到标准输出 preprocess to stdout
/I 添加到包含文件的搜索路径 add to include search path
/EP 将预处理定向到标准输出,不要带行号 preprocess to stdout, no #line
/X 忽略“标准位置” ignore "standard places"
/P 预处理到文件 preprocess to file
-语言-
/Zi 启用调试信息 enable debugging information
/Zl 忽略 .OBJ 中的默认库名 omit default library name in .OBJ
/ZI 启用调试信息的“编辑并继续”功能 enable Edit and Continue debug info
/Zg 生成函数原型 generate function prototypes
/Z7 启用旧式调试信息 enable old-style debug info
/Zs 只进行语法检查 syntax check only
/Zd 仅要行号调试信息 line number debugging info only
/vd{0|1} 禁用/启用 vtordisp disable/enable vtordisp
/Zp[n] 在 n 字节边界上包装结构 pack structs on n-byte boundary
/vm 指向成员的指针类型 type of pointers to members
/Za 禁用扩展(暗指 /Op) disable extensions (implies /Op)
/noBool 禁用“bool”关键字 disable "bool" keyword
/Ze 启用扩展(默认) enable extensions (default)
- 杂项 -
/?, /help 打印此帮助消息 print this help message
/c 只编译,不链接 compile only, no link
/W 设置警告等级(默认 n=1) set warning level (default n=1)
/H 最大化外部名称长度 max external name length
/J 默认 char 类型是 unsigned default char type is unsigned
/nologo 取消显示版权消息 suppress right message
/WX 将警告视为错误 treat warnings as errors
/Tc 将文件编译为 .c compile file as .c
/Yc[file] 创建 .PCH 文件 create .PCH file
/Tp 将文件编译为 .cpp compile file as .cpp
/Yd 将调试信息放在每个 .OBJ 中 put debug info in every .OBJ
/TC 将所有文件编译为 .c compile all files as .c
/TP 将所有文件编译为 .cpp compile all files as .cpp
/Yu[file] 使用 .PCH 文件 use .PCH file
/V 设置版本字符串 set version string
/YX[file] 自动的 .PCH 文件 automatic .PCH
/w 禁用所有警告 disable all warnings
/Zm 最大内存分配(默认为 %) max memory alloc (% of default)
-链接-
/MD 与 MSVCRT.LIB 链接 link with MSVCRT.LIB
/MDd 与 MSVCRTD.LIB 调试库链接 link with MSVCRTD.LIB debug lib
/ML 与 LIBC.LIB 链接 link with LIBC.LIB
/MLd 与 LIBCD.LIB 调试库链接 link with LIBCD.LIB debug lib
/MT 与 LIBCMT.LIB 链接 link with LIBCMT.LIB
/MTd 与 LIBCMTD.LIB 调试库链接 link with LIBCMTD.LIB debug lib
/LD 创建 .DLL Create .DLL
/F 设置堆栈大小 set stack size
/LDd 创建 .DLL 调试库 Create .DLL debug libary
/link [链接器选项和库] [linker options and libraries]
⑷ 怎么编译MT7620A程序包
其实解决方案很简单,既然编译器不能根据包名找到A类,那我们就把A类的绝对路径直接告诉编译器不就可以了吗?事实上就是这么做的,具体操作为:在命令行模式下进入F:\test目录,然后运行编译命令javacF:\test\e\main\A.java,可以成功编译生成A.class文件。(注意:如果不在此目录下执行编译命令的话,就要将f:\test加入到当前的classpath中为make工具提供B.java的位置信息)接下来就要运行这个class文件了,运行仍然在F:\test目录下执行(注意:如果不在此目录下执行运行命令的话,一定要把F:\test加入到当前的classpath中),命令为:javae.main.A,很显然,这里就是根据输入的package名称找到对应的class文件,并检验找到的class文件的与输入的包名是否匹配(例如:如果你在e目录下新建一个test目录,将A.class文件拷贝进去,输入javae.test.A的话还是会报错:找不到class文件)。可能有人要问:为什么运行的时候又可以根据包名找到相应的class文件呢?因为运行的时候默认是从当前路径开始搜索的,如果当前路径找不到的话,就在系统的classpath中找,如果再找不到就会报错。由上面的分析我们可以得出:(1)在命令行模式下编译java文件时,如果cmd不在该java文件所在的目录下,就要直接指定文件的绝对路径(javacF:\test\e\main\A.java),如果在java文件所在的目录下,可以不指定路径,但是要设置classpath让编译器的make工具找到其他import的类(2)运行的时候要指出包路径(javae.main.A),并且一定要在class文件名前带上完整的包名(e.main.A),而且该包所在的文件夹(即e所在的文件夹)一定要在classpath中,这样才能找到对应的class文件(在包所在的文件夹目录下运行cmd程序或者将该目录加入到classpath中均可)。(3)在命令行模式下非直接编译的java,编译器使用make工具根据java文件中的import信息间接找到引用的java文件,所以一定要注意文件的配置,以及相互之间的位置关系。当然也可以通过设置classpath提供给make工具,但是如果文件比较多而且相互之间的引用关系比较复杂的话会比较麻烦。(4)classpath只能供make工具以及运行class文件时使用,在直接编译的时候不使用classpath信息,必须在要编译的java文件前带上其绝对的路径名。
⑸ Java strip脚本是什么
这是一个很难一句话两句话说清楚的问题,请参考以下内容
JS即javascript,Javascript是一种由Netscape的LiveScript发展而来的脚本语言,主要目的是为了解决服务器终端语言,比如Perl,遗留的速度问题。当时服务端需要对数据进行验证,由于网络速度相当缓慢,只有28.8kbps,验证步骤浪费的时间太多。于是Netscape的浏览器Navigator加入了Javascript,提供了数据验证的基本功能。
JavaScript 的正式名称是 "ECMAScript"。这个标准由 ECMA 组织发展和维护。ECMA-262 是正式的 JavaScript 标准。这个标准基于 JavaScript (Netscape) 和 JScript (Microsoft)。Netscape (Navigator 2.0) 的 Brendan Eich 发明了这门语言,从 1996 年开始,已经出现在所有的 Netscape 和 Microsoft 浏览器中。ECMA-262 的开发始于 1996 年,在 1997 年 7 月,ECMA 会员大会采纳了它的首个版本。
在 1998 年,该标准成为了国际 ISO 标准 (ISO/IEC 16262)。这个标准仍然处于发展之中。
脚本script是使用一种特定的描述性语言,依据一定的格式编写的可执行文件,又称作宏或批处理文件。脚本通常可以由应用程序临时调用并执行。各类脚本目前被广泛地应用于网页设计中,因为脚本不仅可以减小网页的规模和提高网页浏览速度,而且可以丰富网页的表现,如动画、声音等。举个最常见的例子,当我们点击网页上的E-mail地址时能自动调用Outlook Express或Foxmail这类邮件软件,就是通过脚本功能来实现的。也正因为脚本的这些特点,往往被一些别有用心的人所利用。例如在脚本中加入一些破坏计算机系统的命令,这样当用户浏览网页时,一旦调用这类脚本,便会使用户的系统受到攻击。所以用户应根据对所访问网页的信任程度选择安全等级,特别是对于那些本身内容就非法的网页,更不要轻易允许使用脚本。通过“安全设置”对话框,选择“脚本”选项下的各种设置就可以轻松实现对脚本的禁用和启用。
现在的脚本语言是比较多的,一般的脚本语言的执行只同具体的解释执行器有关,所以只要系统上有相应语言的解释程序就可以做到跨平台。脚本(Script),就是含有bind和alias等命令的集合,你可以把这个集合存为一个独立的文件然后在需要的时候执行,这样就可以方便你在CS中的使用。脚本可以存为后缀名为.cfg的文件放在cstrike文件夹下,执行时在控制台输入:exec(脚本文件名).cfg即可。比如将一个脚本存为 buys.cfg文件,则在控制台中输入:execbuys.cfg则可以实现我们所需要的功能。要实现一个命令只要把这一过程定义(alias)好,并且分配一个键位给这个命令,以后只要按分配好的键位,就可以实现这一过程。所有的脚本都是通过这一方法实现的。
附加解释
动态程序一般有两种实现方式,一是二进制方式,一是脚本方式。
二进制方式是先将我们编写的程序进行编译,变成机器可识别的指令代码(如.exe文件),然后再执行。这种编译好的程序我们只能执行、使用,却看不到他的程序内容。
脚本简单地说就是一条条的文字命令,这些文字命令是我们可以看到的(如可以用记事本打开查看、编辑),脚本程序在执行时,是由系统的一个解释器,将其一条条的翻译成机器可识别的指令,并按程序顺序执行。因为脚本在执行时多了一道翻译的过程,所以它比二进制程序执行效率要稍低一些。
常用JS库
较常用的JS函数库有Prototype、Dojo、YUI、Ext JS、Moo Tools、Jquery等。现在最流行的是Jquery库。
[编辑本段]什么是脚本
脚本是批处理文件的延伸,是一种纯文本保存的程序,一般来说的计算机脚本程序是确定的一系列控制计算机进行运算操作动作的组合,在其中可以实现一定的逻辑分支等。
⑹ gcc 编译生成外部调试语法文件
你用的是linux系统吧? binutil包里面有个objcpy命令:
obj --only-keep-debug [被提取的文件] [提取出来的调试符号文件,建议加.debug后缀]
另外要把调试信息去掉是用strip命令。你可以man下看看。
strip --strip-debug [需要处理的文件]
把debug信息加回去:
obj --add-gnu-debuglink=[debug文件] [需要添加debug信息的文件]
⑺ Linux 编译选项
gcc -E source_file.c
-E,只执行到预编译。直接输出预编译结果。gcc -S source_file.c
-S,只执行到源代码到汇编代码的转换,输出汇编代码。gcc -c source_file.c
-c,只执行到编译,输出目标文件。gcc (-E/S/c/) source_file.c -o output_filename
-o, 指定输出文件名,可以配合以上三种标签使用。
-o 参数可以被省略。这种情况下编译器将使用以下默认名称输出:
-E:预编译结果将被输出到标准输出端口(通常是显示器)
-S:生成名为source_file.s的汇编代码
-c:生成名为source_file.o的目标文件。
无标签情况:生成名为a.out的可执行文件。gcc -g source_file.c
-g,生成供调试用的可执行文件,可以在gdb中运行。由于文件中包含了调试信息因此运行效率很低,且文件也大不少。
这里可以用strip命令重新将文件中debug信息删除。这是会发现生成的文件甚至比正常编译的输出更小了,这是因为strip把原先正常编译中的一些额外信息(如函数名之类)也删除了。用法为 strip a.outgcc -s source_file.c
-s, 直接生成与运用strip同样效果的可执行文件(删除了所有符号信息)。gcc -O source_file.c
-O(大写的字母O),编译器对代码进行自动优化编译,输出效率更高的可执行文件。
-O 后面还可以跟上数字指定优化级别,如:
gcc -O2 source_file.c
数字越大,越加优化。但是通常情况下,自动的东西都不是太聪明,太大的优化级别可能会使生成的文件产生一系列的bug。一般可选择2;3会有一定风险。gcc -Wall source_file.c
-W,在编译中开启一些额外的警告(warning)信息。-Wall,将所有的警告信息全开。gcc source_file.c -L/path/to/lib -lxxx -I/path/to/include
-l, 指定所使用到的函数库,本例中链接器会尝试链接名为libxxx.a的函数库。
-L,指定函数库所在的文件夹,本例中链接器会尝试搜索/path/to/lib文件夹。
-I, 指定头文件所在的文件夹,本例中预编译器会尝试搜索/path/to/include文件夹。
⑻ linux 用g++编译c++代码的问题
*
运行 gcc/egcs
*
gcc/egcs 的主要选项
*
gdb
*
gdb 的常用命令
*
gdb 使用范例
*
其他程序/库工具 (ar, objmp, nm, size, strings, strip, ...)
* 创建和使用静态库
* 创建和使用共享库
* 使用高级共享库特性
1.7.1 运行 gcc/egcs
Linux 中最重要的软件开发工具是 GCC。GCC 是 GNU 的 C 和 C++ 编译器。实际上,GCC 能够编译三种语言:C、C++ 和 Object C(C 语言的一种面向对象扩展)。利用 gcc 命令可同时编译并连接 C 和 C++ 源程序。
#DEMO#: hello.c
如果你有两个或少数几个 C 源文件,也可以方便地利用 GCC 编译、连接并生成可执行文件。例如,假设你有两个源文件 main.c 和 factorial.c 两个源文件,现在要编译生成一个计算阶乘的程序。
-----------------------
清单 factorial.c
-----------------------
#include <stdio.h>
#include <stdlib.h>
int factorial (int n)
{
if (n <= 1)
return 1;
else
return factorial (n - 1) * n;
}
-----------------------
-----------------------
清单 main.c
-----------------------
#include <stdio.h>
#include <stdlib.h>
int factorial (int n);
int main (int argc, char **argv)
{
int n;
if (argc < 2) {
printf ("Usage: %s n\n", argv [0]);
return -1;
}
else {
n = atoi (argv[1]);
printf ("Factorial of %d is %d.\n", n, factorial (n));
}
return 0;
}
-----------------------
利用如下的命令可编译生成可执行文件,并执行程序:
$ gcc -o factorial main.c factorial.c
$ ./factorial 5
Factorial of 5 is 120.
GCC 可同时用来编译 C 程序和 C++ 程序。一般来说,C 编译器通过源文件的后缀名来判断是 C 程序还是 C++ 程序。在 Linux 中,C 源文件的后缀名为 .c,而 C++ 源文件的后缀名为 .C 或 .cpp。
但是,gcc 命令只能编译 C++ 源文件,而不能自动和 C++ 程序使用的库连接。因此,通常使用 g++ 命令来完成 C++ 程序的编译和连接,该程序会自动调用 gcc 实现编译。假设我们有一个如下的 C++ 源文件(hello.C):
#include <iostream.h>
void main (void)
{
cout << "Hello, world!" << endl;
}
则可以如下调用 g++ 命令编译、连接并生成可执行文件:
$ g++ -o hello hello.C
$ ./hello
Hello, world!
1.7.2 gcc/egcs 的主要选项
表 1-3 gcc 命令的常用选项
选项 解释
-ansi 只支持 ANSI 标准的 C 语法。这一选项将禁止 GNU C 的某些特色,
例如 asm 或 typeof 关键词。
-c 只编译并生成目标文件。
-DMACRO 以字符串“1”定义 MACRO 宏。
-DMACRO=DEFN 以字符串“DEFN”定义 MACRO 宏。
-E 只运行 C 预编译器。
-g 生成调试信息。GNU 调试器可利用该信息。
-IDIRECTORY 指定额外的头文件搜索路径DIRECTORY。
-LDIRECTORY 指定额外的函数库搜索路径DIRECTORY。
-lLIBRARY 连接时搜索指定的函数库LIBRARY。
-m486 针对 486 进行代码优化。
-o FILE 生成指定的输出文件。用在生成可执行文件时。
-O0 不进行优化处理。
-O 或 -O1 优化生成代码。
-O2 进一步优化。
-O3 比 -O2 更进一步优化,包括 inline 函数。
-shared 生成共享目标文件。通常用在建立共享库时。
-static 禁止使用共享连接。
-UMACRO 取消对 MACRO 宏的定义。
-w 不生成任何警告信息。
-Wall 生成所有警告信息。
#DEMO#
MiniGUI 的编译选项
1.7.3 gdb
GNU 的调试器称为 gdb,该程序是一个交互式工具,工作在字符模式。在 X Window 系统中,
有一个 gdb 的前端图形工具,称为 xxgdb。gdb 是功能强大的调试程序,可完成如下的调试
任务:
* 设置断点;
* 监视程序变量的值;
* 程序的单步执行;
* 修改变量的值。
在可以使用 gdb 调试程序之前,必须使用 -g 选项编译源文件。可在 makefile 中如下定义
CFLAGS 变量:
CFLAGS = -g
运行 gdb 调试程序时通常使用如下的命令:
gdb progname
在 gdb 提示符处键入help,将列出命令的分类,主要的分类有:
* aliases:命令别名
* breakpoints:断点定义;
* data:数据查看;
* files:指定并查看文件;
* internals:维护命令;
* running:程序执行;
* stack:调用栈查看;
* statu:状态查看;
* tracepoints:跟踪程序执行。
键入 help 后跟命令的分类名,可获得该类命令的详细清单。
#DENO#
1.7.4 gdb 的常用命令
表 1-4 常用的 gdb 命令
命令 解释
break NUM 在指定的行上设置断点。
bt 显示所有的调用栈帧。该命令可用来显示函数的调用顺序。
clear 删除设置在特定源文件、特定行上的断点。其用法为:clear FILENAME:NUM。
continue 继续执行正在调试的程序。该命令用在程序由于处理信号或断点而
导致停止运行时。
display EXPR 每次程序停止后显示表达式的值。表达式由程序定义的变量组成。
file FILE 装载指定的可执行文件进行调试。
help NAME 显示指定命令的帮助信息。
info break 显示当前断点清单,包括到达断点处的次数等。
info files 显示被调试文件的详细信息。
info func 显示所有的函数名称。
info local 显示当函数中的局部变量信息。
info prog 显示被调试程序的执行状态。
info var 显示所有的全局和静态变量名称。
kill 终止正被调试的程序。
list 显示源代码段。
make 在不退出 gdb 的情况下运行 make 工具。
next 在不单步执行进入其他函数的情况下,向前执行一行源代码。
print EXPR 显示表达式 EXPR 的值。
1.7.5 gdb 使用范例
-----------------
清单 一个有错误的 C 源程序 bugging.c
-----------------
#include <stdio.h>
#include <stdlib.h>
static char buff [256];
static char* string;
int main ()
{
printf ("Please input a string: ");
gets (string);
printf ("\nYour string is: %s\n", string);
}
-----------------
上面这个程序非常简单,其目的是接受用户的输入,然后将用户的输入打印出来。该程序使用了
一个未经过初始化的字符串地址 string,因此,编译并运行之后,将出现 Segment Fault 错误:
$ gcc -o test -g test.c
$ ./test
Please input a string: asfd
Segmentation fault (core mped)
为了查找该程序中出现的问题,我们利用 gdb,并按如下的步骤进行:
1.运行 gdb bugging 命令,装入 bugging 可执行文件;
2.执行装入的 bugging 命令;
3.使用 where 命令查看程序出错的地方;
4.利用 list 命令查看调用 gets 函数附近的代码;
5.唯一能够导致 gets 函数出错的因素就是变量 string。用 print 命令查看 string 的值;
6.在 gdb 中,我们可以直接修改变量的值,只要将 string 取一个合法的指针值就可以了,为
此,我们在第 11 行处设置断点;
7.程序重新运行到第 11 行处停止,这时,我们可以用 set variable 命令修改 string 的取值;
8.然后继续运行,将看到正确的程序运行结果。
#DEMO#
1.7.6 其他程序/库工具
strip:
nm:
size:
string:
1.7.7 创建和使用静态库
创建一个静态库是相当简单的。通常使用 ar 程序把一些目标文件(.o)组合在一起,成为一个单独的库,然后运行 ranlib,以给库加入一些索引信息。
1.7.8 创建和使用共享库
特殊的编译和连接选项
-D_REENTRANT 使得预处理器符号 _REENTRANT 被定义,这个符号激活一些宏特性。
-fPIC 选项产生位置独立的代码。由于库是在运行的时候被调入,因此这个
选项是必需的,因为在编译的时候,装入内存的地址还不知道。如果
不使用这个选项,库文件可能不会正确运行。
-shared 选项告诉编译器产生共享库代码。
-Wl,-soname -Wl 告诉编译器将后面的参数传递到连接器。而 -soname 指定了
共享库的 soname。
# 可以把库文件拷贝到 /etc/ld.so.conf 中列举出的任何目录中,并以
root 身份运行 ldconfig;或者
# 运行 export LD_LIBRARY_PATH='pwd',它把当前路径加到库搜索路径中去。
1.7.9 使用高级共享库特性
1. ldd 工具
ldd 用来显示执行文件需要哪些共享库, 共享库装载管理器在哪里找到了需要的共享库.
2. soname
共享库的一个非常重要的,也是非常难的概念是 soname——简写共享目标名(short for shared object name)。这是一个为共享库(.so)文件而内嵌在控制数据中的名字。如前面提到的,每一个程序都有一个需要使用的库的清单。这个清单的内容是一系列库的 soname,如同 ldd 显示的那样,共享库装载器必须找到这个清单。
soname 的关键功能是它提供了兼容性的标准。当要升级系统中的一个库时,并且新库的 soname 和老的库的 soname 一样,用旧库连接生成的程序,使用新的库依然能正常运行。这个特性使得在 Linux 下,升级使用共享库的程序和定位错误变得十分容易。
在 Linux 中,应用程序通过使用 soname,来指定所希望库的版本。库作者也可以通过保留或者改变 soname 来声明,哪些版本是相互兼容的,这使得程序员摆脱了共享库版本冲突问题的困扰。
查看/usr/local/lib 目录,分析 MiniGUI 的共享库文件之间的关系
3. 共享库装载器
当程序被调用的时候,Linux 共享库装载器(也被称为动态连接器)也自动被调用。它的作用是保证程序所需要的所有适当版本的库都被调入内存。共享库装载器名字是 ld.so 或者是 ld-linux.so,这取决于 Linux libc 的版本,它必须使用一点外部交互,才能完成自己的工作。然而它接受在环境变量和配置文件中的配置信息。
文件 /etc/ld.so.conf 定义了标准系统库的路径。共享库装载器把它作为搜索路径。为了改变这个设置,必须以 root 身份运行 ldconfig 工具。这将更新 /etc/ls.so.cache 文件,这个文件其实是装载器内部使用的文件之一。
可以使用许多环境变量控制共享库装载器的操作(表1-4+)。
表 1-4+ 共享库装载器环境变量
变量 含义
LD_AOUT_LIBRARY_PATH 除了不使用 a.out 二进制格式外,与 LD_LIBRARY_PATH 相同。
LD_AOUT_PRELOAD 除了不使用 a.out 二进制格式外,与 LD_PRELOAD 相同。
LD_KEEPDIR 只适用于 a.out 库;忽略由它们指定的目录。
LD_LIBRARY_PATH 将其他目录加入库搜索路径。它的内容应该是由冒号
分隔的目录列表,与可执行文件的 PATH 变量具有相同的格式。
如果调用设置用户 ID 或者进程 ID 的程序,该变量被忽略。
LD_NOWARN 只适用于 a.out 库;当改变版本号是,发出警告信息。
LD_PRELOAD 首先装入用户定义的库,使得它们有机会覆盖或者重新定义标准库。
使用空格分开多个入口。对于设置用户 ID 或者进程 ID 的程序,
只有被标记过的库才被首先装入。在 /etc/ld.so.perload 中指定
了全局版本号,该文件不遵守这个限制。
4. 使用 dlopen
另外一个强大的库函数是 dlopen()。该函数将打开一个新库,并把它装入内存。该函数主要用来加载库中的符号,这些符号在编译的时候是不知道的。比如 Apache Web 服务器利用这个函数在运行过程中加载模块,这为它提供了额外的能力。一个配置文件控制了加载模块的过程。这种机制使得在系统中添加或者删除一个模块时,都不需要重新编译了。
可以在自己的程序中使用 dlopen()。dlopen() 在 dlfcn.h 中定义,并在 dl 库中实现。它需要两个参数:一个文件名和一个标志。文件名可以是我们学习过的库中的 soname。标志指明是否立刻计算库的依赖性。如果设置为 RTLD_NOW 的话,则立刻计算;如果设置的是 RTLD_LAZY,则在需要的时候才计算。另外,可以指定 RTLD_GLOBAL,它使得那些在以后才加载的库可以获得其中的符号。
当库被装入后,可以把 dlopen() 返回的句柄作为给 dlsym() 的第一个参数,以获得符号在库中的地址。使用这个地址,就可以获得库中特定函数的指针,并且调用装载库中的相应函数。