红外线编译码
‘壹’ 什么是IrDA及其应用
IrDA器件及其应用电路设计
摘要:简要介绍IrDA红外数据传输的特征;详细说明各种常见IrDA类型器件的构成;重点阐述常用红外数据传输电路的设计及其注意事项。
本文就IrDA红外数据传输、各种IrDA器件的构成及其不同类型的红外通信电路设计进行综合阐述。
1 红外数据传输及其规范简介
红外数据传输,使用传播介质——红外线。红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。红外数据传输一般采用红外波段内的近红外线,波长在0.75μm~25μm之间。红外数据协会成立后,为保证不同厂商的红外产品能获得最佳的通信效果,限定所用红外波长在850nm~900nm。
IrDA是国际红外数据协会的英文缩写,IrDA相继制定了很多红外通信协议,有侧重于传输速率方面的,有侧重于低功耗方面的,也有二者兼顾的。IrDA1.0协议基于异步收发器UART,最高通信速率在115.2kbps,简称SIR(Serial Infrared,串行红外协议),采用3/16 ENDEC编/解码机制。 IrDA1.1协议提高通信速率到4Mbps,简称FIR(Fast Infrared,快速红外协议),采用4PPM (Pulse Position Molation,脉冲相位调制)编译码机制,同时在低速时保留1.0协议规定。之后,IrDA又推出了最高通信速率在16Mbps的协议,简称VFIR(Very Fast Infrared,特速红外协议)。
‘贰’ 红外遥控的编码和解码以及译码的定义
NB5026作为编码器有11个地址编码线,其编码信号由输出使能控制端(——TE)控制,11根具有4种状态的地址编码线(1脚为第四态端子4TH),每次的编码序列均被连续的发送两次以提高可靠性。NB5027解码器用来接收编码序列并对其进行译码,地址码由七位具有四种状态的地址线产生,总共可有16384种编码组合(1脚为第四态端子4TH),如果使用三态编码,7个地址线共有2187种编码方式,如用二态编码方式共有128种编码,另有四个连续的二进制数据输出端,可用于控制;当接收的码流序列有两次与芯片本地的地址编码相同,并且每次收到的数据位也相同时,数据被输出到数据管脚,同时VT端子输出一高电平脉冲。
nb5026在无线电遥控中的应用,多用于无线遥控,类似于电视机的遥控
随着电子技术的飞速发展,新型大规模遥控集成电路的不断出现,使遥控技术有了日新月异的发展。遥控装置的中心控制部件已从早期的分立元件、集成电路逐步发展到现在的单片微型计算机,智能化程度大大提高。近年来,遥控技术在工业生产、家用电器、安全保卫以及人们的日常生活中使用越来越广泛。
红外遥控就是把红外线作为载体的遥控方式。由于红外线的波长远小于无线电波的波长,因此在采用 红外遥控方式时,不会干扰其他电器的正常工作,也不会影响临近的无线电设备。同时,由于采用红外线遥控器件时,工作电压低,功耗小,外围电路简单,因此它在日常工作生活中的应用越来越广泛。
常用的红外遥控系统一般分发射和接收两个部分。发射部分的主要元件为红外发光二极管。它实际上是一只特殊的发光二极管;由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。目前大量的使用的红外发光二极管发出的红外线波长为940mm左右,外形与普通φ5发光二极管相同,只是颜色不同。红外发光二极管一般有黑色、深蓝、透明三种颜色。判断红外发光二极管好坏的办法与判断普通二极管一样;用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉锯法来粗略判判定。
接收部分的红外接收管是一种光敏二极管。在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。红外发光二极管一般有圆形和方形两种。
由于红外发光二极管的发射功率一般都较小(100mW左右),所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电路。前些年常用Μpc1373H、CX20106A等红外接收专用放大集成电路。最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。红外接收头的引脚排列因型号不同而不尽相同,可参考厂家的使用说明。成品红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。但在使用时注意成品红外接收头的载波频率。红外遥控常用的载波频率为38kHz这是由发射端所使用的455kHz晶振来决定的。在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9kHz≈38kHz。也有一些遥控系统采用36 kHz、40 kHz、56 kHz等,一般由发射端晶振的振荡频率来决定。
‘叁’ 红外线通信的原理
大气对红外线辐射的吸收,主要是由大气中的水蒸汽、二氧化碳和高层大气中的臭氧分子造成的。这些大气分子的强烈吸收使大气对红外线辐射的大部分区域是不透明的,只有在某些特定的波长区,红外线辐射才能透过。这些特定的波长区称为红外线辐射的“大气窗口”,它们几乎都集中在25μm以下的近红外和中红外区域,即1.15~1.35,1.45~1.8,1.9~2.5,3.05~4.1,4.5~5.5,7.9~13.2、17~28μm。另外,在波长为300、600μm附近区域,大气也呈现出某些透过特性。
散射是大气对红外线辐射的另一种重要作用。散射有两种不同的类型,即瑞利散射和弥散射。瑞利散射是由大气分子引起的,它对红外线辐射的影响并不特别重要,对于波长大于lμm的辐射的影响常可被忽略。弥散射是由大气中的悬浮粒子如雨、雪、雾、云、灰尘和烟的微粒造成的,这对红外线传输过程中的衰减有重要作用。
红外通信是利用950nm近红外波段的红外线作为传递信息的媒体,即通信信道。发送端将基带二进制信号调制为一系列的脉冲串信号,通过红外发射管发射红外信号。接收端将接收到的光脉转换成电信号,再经过放大、滤波等处理后送给解调电路进行解调,还原为二进制数字信号后输出。常用的有通过脉冲宽度来实现信号调制的脉宽调制(PWM)和通过脉冲串之间的时间间隔来实现信号调制的脉时调制(PPM)两种方法。
简而言之,红外通信的实质就是对二进制数字信号进行调制与解调,以便利用红外信道进行传输;红外通信接口就是针对红外信道的调制解调器。
红外线通信可用于沿海岛屿间的辅助通信,室内通信,近距离遥控,飞机内广播和航天飞机内宇航员间的通信等。
特点
红外线具有容量大,保密性强,抗电磁干扰性能好,设备结构简单、体积小、重量轻、价格低;但在大气信道中传输时易受气候影响的特点。红外线波长范围为0.70μm~lmm,其中300μm~lmm区域的波也称为亚毫米波。大气对红外线辐射传输的影响主要是吸收和散射。
红外线通信系统
红外线通信系统一般由红外线发射系统和接收系统组成。对于客机内的红外线通信系统,采用低功率的近红外线(波长为0.72~1.5μm)传送信号,对人体健康尤其对人的眼睛无任何伤害作用,也不会干扰飞机与陆地之间的无线电通信。其工作过程是:音频信号先被转换成数字信号,再调制在红外线上,通过特制的红外线发射器,使载有音频信号的红外线充满机舱内的每一个角落。每个座位上备有的一副“耳机”,实际上是一只红外线接收机,它能将红外线信号变为电信号,再进而还原成声音;用电池工作,不需要任何外部连线。旅客只要载上这副“耳机”,开启电源,拨动相应的选择开关,就可收听到各种不同的节目。
技术标准
红外线通讯技术包含下列规格:IrPHY、IrLAP、IrLMP、IrCOMM、TinyTP、IrOBEX、IrLAN以及IrSimple。
IrDA1.0标准简称SIR(SerialInfrared,串行红外协议),它是基于HP-SIR开发出来的一种异步的、半双工的红外通信方式,它以系统的异步通信收发器(UniversalAsynchronousReceiver/Transmitter,UART))依托,通过对串行数据脉冲的波形压缩和对所接收的光信号电脉冲的波形扩展这一编解码过程(3/16EnDec)实现红外数据传输。SIR的最高数据速率只有115.2kbps。在1996年,发布了IrDA1.1协议,简称FIR(FastInfrared,快速红外协议),采用4PPM(PulsePositionMolation,脉冲相位调制)编译码机制,最高数据传输速率可达到4Mbps,同时在低速时保留1.0标准的规定。之后,IrDA又推出了最高通信速率在16Mbps的VFIR(VeryFastInfrared)技术,并将其作为补充纳入IrDA1.1标准之中。
IrDA标准都包括三个基本的规范和协议:红外物理层连接规范IrPHY()、红外连接访问协议IrLAP(InfraredLinkAccessProtoco1)和红外连接管理协议IrLMP()。IrPHY规范制订了红外通信硬件设计上的目标和要求;IrLAP和IrLMP为两个软件层,负责对连接进行设置、管理和维护。在IrLAP和IrLMP基础上,针对一些特定的红外通信应用领域,IrDA还陆续发布了一些更高级别的红外协议,如TinyTP、IrOBEX、IrCOMM、IrLAN、IrTran-P和IrBus等等。
IrPHY:是指红外线通信的最低层,物理层。其中重要的规格如下:
距离(标准:1米,低功率传输至低功率:0.2米,标准至低功率:0.3米)
角度(最小圆锥状+-15°)
速度(2.4千位元/秒至16百万位元/秒)
调变(基频带,无载波)
红外线过滤视窗
红外线通信收发器借由一束圆锥状光束范围内的红外线脉波传输,其圆锥状光束自中心算起最小有15度的范围。
红外线通信物理层规范需要至少在一米外还能辨识的光信号的最小光量。
同时,规范中也定义两通讯装置接近时不会过量的最大光量。
在实用阶段,市场上有些装置没有做到一米的传输距离。
同时也有些装置没有预留非常接近时的容忍值。
红外线通信的典型甜区为距离收发器5厘米至60厘米范围之中,在圆锥状光束的中心点处。
红外线通信的资料通讯作动在半双工模式,这是因为装置在发射时会被自己的接收器接收到,因此全双工变得不可行。
两装置间借由快速切换连接便可模拟全双工。
主要装置端控制着连接的时序,但双边可依照实际情况将传输速度切换至最高。
传输速率落在三大分类:SIR、MIR以及FIR。
SIR的速度范围包含了RS-232的速度定义(9600位元/秒,19.2千位元/秒,38.4千位元/秒,57.6千位元/秒,115.2千位元/秒)
装置最常见的传输速率为9600位元/秒,因此此一传输速率为所有在discovery状态与negotiation状态的速率。
MIR(中速率红外线)不是官方名词,有时用来表示0.576百万位元/秒至1.152百万位元/秒的速率范围。
FIR为IrDA物理层标准陈废的名词,虽然如此这个名词却也常用在表示4百万位元/秒速率。
FIR有时也用来表示所有大于SIR标定速率以上的速率。
然而,MIR与FIR使用不同的编码方式,与不同的封包架构。
因此,这两个非官方用词分别了两种不同的物理层实作方式。
未来有更快的传输速率(目前有VFIR),可支援到16百万位元/秒。
有VFIR的商品可用例如TFDU8108可操作在9.6千位元/秒至16百万位元/秒。
UFIR协定正在发展中。此一协定将可支援100百万位元/秒。
‘肆’ 红外光如何传输的呢
并非因为我们看不到红外线,就表示它不存在,在我们生活的四周即充斥着红外线光,它可能是从电灯发出,也可能太阳光发出,使用者并不需要使用执照即可以使用红外线。例如,低速红外线(Slow IR)应用在电视遥控器上己有相当长的一段时间了,其它像是录像机、音响等遥控器也是;电视遥控器将特定的讯号编码,然后透过红外线通讯技术将编码送出(通常你可以看到遥控器的讯号灯亮了一下),而设置在电视上的红外线接收器收到编码之后,将其进行译码而得到原来的讯号;例如,电视端解得的讯号为加大音量,则译码后即进行加大音量的动作。低速红外线是指其传输速率在每秒115.2Kbits者而言,它适用于传送简短的讯息、文字或是档案。有低速红外线也有高速红外线(Fast IR),它是指传输速率在每秒1或是4Mbits者而言,其它更高传输速率则仍在发展中。对于网络解决方案而言,高速红外线可以说是其基础,包括档案传输、局域网络连结甚至是多媒体传输。
‘伍’ 红外遥控工作原理
先讲下红外线。红外线又称红外光波,在电磁波谱中,光波的波长范围为0.01um~1000um。根据波长的不同可分为可见光和不可见光,波长为0.38um~0.76um的光波可为可见光,依次为红、橙、黄、绿、青、蓝、紫七种颜色。光波为0.01um~0.38um的光波为紫外光(线),波长为0.76um~1000um的光波为红外光(线)。红外光按波长范围分为近红外、中红外、远红外、极红外4类。红外线遥控是利用近红外光传送遥控指令的,波长为0.76um~1.5um。用近红外作为遥控光源,是因为目前红外发射器件(红外发光管)与红外接收器件(光敏二极管、三极管及光电池)的发光与受光峰值波长一般为0.8um~0.94um,在近红外光波段内,二者的光谱正好重合,能够很好地匹配,可以获得较高的传输效率及较高的可靠性。
然后这是红外遥控的原理,红外遥控的发射电路是采用红外发光二极管来发出经过调制的红外光波;红外接收电路由红外接收二极管、三极管或硅光电池组成,它们将红外发射器发射雕红外光转换为相应的电信号,再送后置放大器。
发射机一般由指令键(或操作杆)、指令编码系统、调制电路、驱动电路、发射电路等几部分组成。当按下指令键或推动操作杆时,指令编码电路产生所需的指令编码信号,指令编码信号对载体进行调制,再由驱动电路进行功率放大后由发射电路向外发射经调制定指令编码信号。
接收电路一般由接收电路、放大电路、调制电路、指令译码电路、驱动电路、执行电路(机构)等几部分组成。接收电路将发射器发出的已调制的编码指令信号接收下来,并进行放大后送解调电路,解调电路将已调制的指令编码信号解调出来,即还原为编码信号。指令译码器将编码指令信号进行译码,最后由驱动电路来驱动执行电路实现各种指令的操作控制(机构)。
‘陆’ 红外遥控技术的原理及应用
红外遥控的基本原理
红外遥控的发射电路是采用红外发光二极管来发出经过调制的红外光波;红外接收电路由红外接收二极管、三极管或硅光电池组成,它们将红外发射器发射的红外光转换为相应的电信号,再送后置放大器。 发射机一般由指令键(或操作杆)、指令编码系统、调制电路、驱动电路、发射电路等几部分组成。当按下指令键或推动操作杆时,指令编码电路产生所需的指令编码信号,指令编码信号对载波进行调制,再由驱动电路进行功率放大后由发射电路向外发射经调制定的指令编码信号。 接收电路一般由接收电路、放大电路、调制电路、指令译码电路、驱动电路、执行电路(机构)等几部分组成。接收电路将发射器发出的已调制的编码指令信号接收下来,并进行放大后送解调电路,解调电路将已调制的指令编码信号解调出来,即还原为编码信号。指令译码器将编码指令信号进行译码,最后由驱动电路来驱动执行电路实现各种指令的操作控制(机构)。
红外遥控的应用范围
由于红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以,在设计家用电器的红外线遥控器时,不必要像无线电遥控器那样,每套(发射器和接收器)要有不同的遥控频率或编码(否则,就会隔墙控制或干扰邻居的家用电器),所以同类产品的红外线遥控器,可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方便。由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。
‘柒’ 红外遥控器怎么对码
同时长按遥控器上的数字7和9键进行对码,指示灯闪烁开始对码,红色常亮对码成功,否则失败。
遥控器是一种用来远控机械的装置。现代的遥控器,主要是由集成电路电板和用来产生不同讯息的按钮所组成。
简介:遥控器是一种无线发射装置,通过现代的数字编码技术,将按键信息进行编码,通过红外线二极管发射光波,光波经接收机的红外线接收器将收到的红外信号转变成电信号,进处理器进行解码。 遥控器电路设计:在遥控发射电路中,有两种电路,即编码器和38kHz 载波信号发生器。
在不需要多路控制的应用电路中,可以使用常规集成电路组成路数不多的红外遥控发射和接收电路,该电路无需使用较复杂的专用编译码器,因此制作容易。 如果防盗系统的遥控距离太近或遥控根本不起作用,应考虑遥控接收器电路是否有故障。
遥控器失灵应对方法:
1、检查电池是否正常。
电视遥控器是靠电池操作的,如果遥控器失灵,那么可能就是电池原因。可以将电池拔下来检查下,将它的电源接触点擦拭下,再安装好。如果电池长时间没电的话,可以更换一个新的电池。
2、检查是否对准电视,是否有遮挡物。
使用遥控器需要掌握方法,如果电视和遥控器中间有遮挡物,或者遥控器没有对准电视机,那么遥控器也不能正常操作。所以,使用遥控器时,一定要对准电视机。
‘捌’ 电视遥控器的红外线灯没反应了,怎么办
遥控器的红外线肉眼几乎看不到。
遥控器红外灯不好用,一般有两个原因:
一是遥控器电池没电了,解决方法是更换新电池。
二是电路板的电子元件故障,要送专业人员检修。建议,买个万能遥控器,价格便宜,好操作。
电视机遥控器是一种用来远控机械的装置。可以实现对电视机频道的转换等功能。现代的遥控器,主要是由集成电路电板和用来产生不同讯息的按钮所组成。内装有一个叫‘中央处理器’,英文叫CPU,它是电视机的电脑。
遥控器是一种无线发射装置,通过现代的数字编码技术,将按键信息进行编码,通过红外线二极管发射光波,光波经接收机的红外线接收器将收到的红外信号转变成电信号,进处理器进行解码,解调出相应的指令来达到控制机顶盒等设备完成所需的操作要求。
‘玖’ 什么是IrDA及其应用
IrDA器件及其应用电路设计
摘要:简要介绍IrDA红外数据传输的特征;详细说明各种常见IrDA类型器件的构成;重点阐述常用红外数据传输电路的设计及其注意事项。
本文就IrDA红外数据传输、各种IrDA器件的构成及其不同类型的红外通信电路设计进行综合阐述。
1 红外数据传输及其规范简介
红外数据传输,使用传播介质——红外线。红外线是波长在750nm~1mm之间的电磁波,是人眼看不到的光线。红外数据传输一般采用红外波段内的近红外线,波长在0.75μm~25μm之间。红外数据协会成立后,为保证不同厂商的红外产品能获得最佳的通信效果,限定所用红外波长在850nm~900nm。
IrDA是国际红外数据协会的英文缩写,IrDA相继制定了很多红外通信协议,有侧重于传输速率方面的,有侧重于低功耗方面的,也有二者兼顾的。IrDA1.0协议基于异步收发器UART,最高通信速率在115.2kbps,简称SIR(Serial Infrared,串行红外协议),采用3/16 ENDEC编/解码机制。 IrDA1.1协议提高通信速率到4Mbps,简称FIR(Fast Infrared,快速红外协议),采用4PPM (Pulse Position Molation,脉冲相位调制)编译码机制,同时在低速时保留1.0协议规定。之后,IrDA又推出了最高通信速率在16Mbps的协议,简称VFIR(Very Fast Infrared,特速红外协议)。
IrDA标准包括三个基本的规范和协议:红外物理层连接规范IrPHY(Infrared Physical Layer Link Specification),红外连接访问协议IrLAP (Infrared Link Access Protocol) 和红外连接管理协议IrLMP(Infrared Link Management Protocol)。IrPHY规范制定了红外通信硬件设计上的目标和要求;IrLAP和IrLMP为两个软件层,负责对连接进行设置、管理和维护。在IrLAP和IrLMP基础上,针对一些特定的红外通信应用领域,IrDA还陆续发布了一些更高级别的红外协议,如TinyTP、IrOBEX、IrCOMM、IrLAN、IrTran-P等等。[1~3]
红外传输距离在几cm到几十m,发射角度通常在0~15°,发射强度与接收灵敏度因不同器件不同应用设计而强弱不一。使用时只能以半双工方式进行红外通信。
在此把符合IrDA红外通信协议的器件称为IrDA器件,符合SIR协议的器件称为SIR器件,符合FIR协议的器件称为FIR器件,符合VFIR协议的器件称为VFIR器件。
2 红外数据传输的基本模型
红外数据传输可用图1简单表示。
3 IrDA器件的类型划分[3~8]
根据图1所述模型,把IrDA器件划分类型,如图2所示。
根据传输速率的大小,可以把IrDA器件区分为SIR、FIR、VFIR类型。如Vishay的红外收发器,TFDU4300是SIR器件,TFDU6102是FIR器件,TFDU8108是VFIR器件。
根据应用功耗的大小,可以把IrDA器件区分为标准型和低功耗型。低功耗型器件,通常使用1.8~3.6V电源,传输距离较小(约20cm),如Agilent的红外收发器HSDL-3203。标准型器件,通常使用DC5V电源,传输距离大(在30cm~几十m),如Vishay的红外接收器TSOP12xx系列,配合其发射器TSAL5100,传输距离可达35m。
使用上述三种分类方法,可以清晰地表明一个IrDA红外器件的性能。如Agilent的SIR标准型红外收发器HSDL-3000。
4 IrDA器件的构成及其使用[3~8]
4.1 红外发送器件
红外发送器大多是使用Ga、As等材料制成的红外发射二极管,其能够通过的LED电流越大,发射角度越小,产生的发射强度就越大;发射强度越大,红外传输距离就越远,传输距离正比于发射强度的平方根。有少数厂商的红外发送器件内置有驱动电路。该类器件的构成如图3所示。
红外发送器件在使用时通常需要串联电阻,用以分压限流。
4.2 红外检测器件
红外检测器件的主要部件是红外敏感接收管件,有独立接收管构成器件的,有内含放大器的,有集成放大器与解调器的。后面两种类型的红外检测器件构成如图4所示。
接收灵敏度是衡量红检测器件的主要性能指标,接收灵敏度越高,传输距离越远,误码率越低。
内部集成有放大与解调功能的红外检测器件通常还含有带通滤波器,这类器件常用于固定载波频率(如40kHz)的应用。
4.3 红外收发器件
红外收发器件集发射与接收于一体。通常,器件的发射部分含有驱动器,接收部分含有放大器,并且内部集成有关断控制逻辑。关断控制逻辑在发送时关断接收,以避免引入干扰;不使用红外传输时,该控制逻辑通过SD引脚接受指令,关断器件电源供应,以降耗节能。使用器件时需要在LED引脚接入适当的限流电阻。大多数红外收发器件带有屏蔽层。该层不要直接接地,可以通过串联一磁珠再接地,以引入干扰影响接收灵敏度。红外收发器件的构成如图5所示。
4.4 红外编/解码器件
编/解码,英文简称ENDEC,即实现调制/解调。编/解码机制,SIR器件多采用3/16 ENDEC,FIR器件多采用4PPM ENDEC。在此解释一下3/16 ENDEC,其它可参阅有关资料。3/16 ENDEC,即把一个有效数字位(bit)时间段,划分为16等分小时间段,以连续3个小时间段内有无脉冲表示调制/解调信息。红外编/解码器件,需要从外部接入时钟或使用自身的晶体振荡电路,进行调制或解调。
红外编/解码器件,有单独编码的集成器件,如键盘遥控红外编码器Mitsubishi的M50462AP;也有集编码/解码于一体的,这类器件较为多见,其构成如图6所示。
4.5 红外接口器件
红外接口器件,实现红外传输系统与微控制器、PC机或网络系统的连接。设计中经常使用的器件有UART串行异步收发器件、USB接口转换器件等。
USB接口器件,实现红外收发与PC机的USB连接。集成度较高的USB接口器件如SigmaTel的STIr4200。STIr4200全兼容IrDA1.3和USB1.1,IrDA速率在2.4k~4Mbps,内含有红外编/解码器和4KB的FIFO缓存,20/28脚封装,可直接相联标准的IrDA收发器件,其构成如图7所示。
5 常用红外数据传输电路设计[3~9]
5.1 家电红外遥控收发电路的设计
彩电、空调、VCD等家用电器的遥控收发,是单向传输,通信距离通常在3~5m,调制/解调的载波频率通常在36~40kHz,可用“集成键盘编码IC+带驱动的红外发射管”构成发射遥控器,用“带放大与解调功能的红外检测器”构成接收端,接收后的信息可直接送给简易单片机(如AT89C2051),由单片机通过软件进行遥控功能识别并产生相应动作。
图8是一个通用的家电遥控收发电路框图。
5.2 PC机简易红外收发装置设计
现在的笔记本电脑、掌上电脑、移动手机等,常常集成有含编/解码功能(38kHz载波)的5针红外接口;可以很容易地设计电路,给PC机配上红外收发装置,无须考虑调制/解调。
5针红外接口插座引脚定义了:一对电源脚Vcc和GND,一对收发接口IrTx(红外发射端)和IrRx(红外接收端),有一针NC未定义。
根据IrDA异步串行通信有关标准,IrTx引脚能提供 >6.0mA的输出电流,IrRx引脚在吸收<1.5 mA电流时就能对输入信号作出反应。依此可以设计出如图9(a)所示的简易红外收发装置。为进一步提高收发传输能力,可在发射端增加驱动,在接收端增加放大。这样做,分立元件过多,电路不够简洁。为简化电路,可以使用带有驱动和放大能力的红外收发器件。图9(b)就是用Zilog的红外收发器ZHX1010构成的简易收发装置。
给PC机加上红外收发装置后,需要对系统做如下设置:在BIOS中打开红外线接口,在使用时于设备管理器中启动“红外线监视器”。通常,PC机红外接口与其COM2口共用同一地址和中断,打开了红外接口,COM2口就不能再使用了。
5.3 RS232-IrDA红外收发电路设计
这种类型电路工作在异步串行通信方式下,可以直接采用“UART电平转换器件 + 红外编/解码器件 + 红外收发器件”构成。图10是一个设计举例,图中器件使用了Maxim的MAX232。MAX232完成RS232信号电平到标准数字信号电平(如5V系统)的转换,HSDL-7000是红外编/解码器。
5.4 USB-IrDA红外收发电路设计
设计这种类型的电路,最简捷的途经就是使用USB-IrDA接口器件。图11是采用SigmaTel的STIr4200接口器件的一个设计举例。STIr4200有一个可选择的外部增强性发射端口,如果要增强红外传输能力(如传输距离),可在该端口增加发射管。对于STIr4200,SigamTel提供有各种Windows版本的驱动程序,使用十分方便。
5.5 微控制器-IrDA红外收发电路设计
现在很多微控制器,内部集成有UART单元及其接口,支持IrDA标准,并可以直接与红外收发体系连接。图12是这类电路设计的一个举例。图中MCP2120是Microchip的红外可编程波特率编/解码器件。
有些微控制器,如80C51单片机,虽然内含有UART,却不支持IrDA标准或高速通信,不能直接相连红外收发体系。还有些微控制器,虽然所含的UART可以直接连接红外收发体系,但UART已用于其它目的。此时,可以选用UART接口器件。图13是80C51通过Maxim的MAX3110连接红外收发体系的,80C51单片机没有SPI接口。这里使用其I/O口,通过软件模拟SPI工作机制。MAX3110有一个收发传输中断脚,十分有利于软件编制。
6 红外数据传输电路设计的注意事项
① 要做好红外器件的选型。要求传输快速时,可选择FIR、VFIR收发器与编/解码器。要求长距离传输时,可选择大LED电流、小发射角发射器和灵敏度高的接收检测器。低功耗场合应用时,可选取低功耗的红外器件。要注意低功耗与传输性能之间存在着矛盾:通常低功耗器件,传输距离很小。这一点在应用时应该综合考虑。
② 红外数据传输是半双工性质的。为避免自身产生的信号干扰自身,要确保发送时不接收,接收时不发送,可以着眼于软件设计,使软件在一种状态时暂不理会另一种状态;同时要合理设置好收发之间的时间间隔,不立即从一种方式转入另一种方式。
③ 要合理设计好各种红外器件的供电电路,选择适当的DC-DC器件,恰当地进行电磁抑制,做好电源滤波。同时还要注意尽可能减少功耗,不使用红外电路时要在软件上能够控制关闭其供电。很多厂家对自己推出的红外器件都有推荐的电路设计,要注意参考并实验。
④ PCB设计时,要合理布局器件。滤波电感、电容等要就近器件放置,以确保滤波效果;红外器件与系统的地线要分开布置,仅在一点相连;晶体等振荡器件要靠近所供器件,以减少辐射干扰。
⑤ 增大红外传输距离、提高收发灵敏度的方法:增加发射电路的数量,使几只发射管同时启动发送;在接收管前加装红色滤光片,以滤除其它光线的干扰;在接收管和发射管前面加凸透镜,提高其光线采集能力等等。
‘拾’ 红外线识别条形码原理
条码是由宽度不同、反射率不同的条和空,按照一定的编码规则(码制)编制成的,用以表达一组数字或字母符号信息的图形标识符.即条码是一组粗细不同,按照一定的规则安排间距的平行线条图形.常见的条码是由反射率相差很大的黑条(简称条)和白条(简称空)组成的。
条码扫描器网首页-->>条码扫描器设备条形码技术知识
了解条形码识别原理(条码识别原理)
一、条码概述-条形码识别原理(条码识别原理)
条码是由美国的N.T.Woodland在1949年首先提出的.近年来,随着计算机应用的不断普及,条码的应用得到了很大的发展.条码可以标出商品的生产国、制造厂家、商品名称、生产日期、图书分类号、邮件起止地点、类别、日期等信息,因而在商品流通、图书管理、邮电管理、银行系统等许多领域都得到了广泛的应用。
条码是由宽度不同、反射率不同的条和空,按照一定的编码规则(码制)编制成的,用以表达一组数字或字母符号信息的图形标识符.即条码是一组粗细不同,按照一定的规则安排间距的平行线条图形.常见的条码是由反射率相差很大的黑条(简称条)和白条(简称空)组成的。
二、条码识别系统的组成-条形码识别原理(条码识别原理)
为了阅读出条码所代表的信息,需要一套条码识别系统,它由条码扫描器、放大整形电路、译码接口电路和计算机系统等部分组成。
由于不同颜色的物体,其反射的可见光的波长不同,白色物体能反射各种波长的可见光,黑色物体则吸收各种波长的可见光,所以当条码扫描器光源发出的光经光阑及凸透镜1后,照射到黑白相间的条码上时,反射光经凸透镜2聚焦后,照射到光电转换器上,于是光电转换器接收到与白条和黑条相应的强弱不同的反射光信号,并转换成相应的电信号输出到放大整形电路.白条、黑条的宽度不同,相应的电信号持续时间长短也不同.但是,由光电转换器输出的与条码的条和空相应的电信号一般仅10mV左右,不能直接使用,因而先要将光电转换器输出的电信号送放大器放大.放大后的电信号仍然是一个模拟电信号,为了避免由条码中的疵点和污点导致错误信号,在放大电路后需加一整形电路,把模拟信号转换成数字电信号,以便计算机系统能准确判读.整形电路的脉冲数字信号经译码器译成数字、字符信息.它通过识别起始、终止字符来判别出条码符号的码制及扫描方向;通过测量脉冲数字电信号0、1的数目来判别出条和空的数目.通过测量0、1信号持续的时间来判别条和空的宽度.这样便得到了被辩读的条码符号的条和空的数目及相应的宽度和所用码制,根据码制所对应的编码规则,便可将条形符号换成相应的数字、字符信息,通过接口电路送给计算机系统进行数据处理与管理,便完成了条码辨读的全过程.