重编程物质
Ⅰ 2012年诺贝尔生理学或医学奖授予约翰格登和山中伸弥,以表彰他们在“体细胞重编程技术”领域作出的革命
(1)目的基因主要指编码蛋白质的基因,结合题意可知,山中因子在基因工程中指目的基因,基因工程中常用病毒作为运载体.
(2)将目的基因导入动物细胞的方法是显微注射法,由于早期胚胎培养动物血清中含有细胞生长所必需的物质,所以在体外培养胚胎时需要加入动物血清.
(3)哺乳动物的胚胎干细胞是从早期胚胎或原始性腺中分离出来,胚胎干细胞在功能上具有发育的全能性.
(4)早期胚胎通常要培养到桑椹胚或囊胚阶段才能进行移植;动物发情排卵后,同种动物的供、受体生殖器官的生理变化是相同的,所以在植入早期胚胎前,要对代孕鼠用促性腺激素进行同期发情处理,便于接受外来胚胎.通过胚胎分割获得的个体基因型相同.
故答案为:
(1)目的基因 运载体
(2)显微注射法 早期胚胎培养动物血清中含有细胞生长所必需的物质
(3)早期胚胎或原始性腺发育的全能性
(4)桑椹胚或囊胚 同期发情 相同
Ⅱ 什么是诱导多能干细胞
诱导多能干细胞是对成熟细胞“重编程”得到的,像胚胎干细胞一样具备分化成多种细胞的潜力,可用于修复受损的组织和器官。
“基因剪刀”指CRISPR基因编辑技术,用它能像在电脑上编辑文章一样,精确查找一串代码在基因组中的位置,进行删除或修改。
美国格拉德斯通研究所日前发布新闻公报说,该所研究人员发现,用“基因剪刀”对基因组进行一处修改,就能使皮肤细胞实现重编程,转变成干细胞。相关论文发表在新一期美国《细胞-干细胞》杂志上。
每个细胞都拥有生物的全套基因组,其具体身份和功能取决于哪些基因处于工作状态。在皮肤细胞里,与皮肤功能相关的基因打开,其他基因关闭。要把它变成干细胞,就要关闭皮肤相关基因,打开与干细胞功能相关的基因。
在以往研究中,人们一般用几种称为转录因子的蛋白质,来调整基因组代码读取过程、改变各基因的工作状态;另一种方法是用化学物质刺激细胞。直接修改基因组培育出干细胞,这还是第一次。
Ⅲ 一道难题,求学霸指点,谢谢
sfyz
1.嫦娥三号登陆月球、神舟十号飞船和天宫一号交会对接
12月15日,“嫦娥三号”携带的“玉兔”月球车在月球开始工作,标志着中国首次地外天体软着陆成功。这也是人类时隔37年再次在月球表面展开探测工作。
作为一项庞大的系统工程,探月任务成为中国科技工业综合实力的一次完美展现。准时发射,精确入轨,稳定落月,创新探索,嫦娥三号的每一步都代表着中国航天新的进步。探月工程副总指挥许达哲说:“美国和前苏联达到这样一个目标,都经过了20次以上的任务,我们是用三次就实现这样一个目标。”
2013年夏天,执行我国第五次载人航天任务的“神舟十号”飞船实现了我国首次载人航天应用性飞行,实施了我国首次航天器绕飞交会试验,这标志着神舟飞船与“天宫一号”的对接技术已经成熟,我国将就此进入空间站建设阶段。
2、实现量子反常霍尔效应
清华大学薛其坤院士领衔的团队2013年成功观测到“量子反常霍尔效应”,被杨振宁称为诺奖级的科研成果。“量子反常霍尔效应”的实现既是理论物理领域的突破,又具有极高的商用价值。量子霍尔效应是整个凝聚态物理领域最重要、最基本的量子效应之一。我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗。而量子霍尔效应则可以对电子的运动制定一个规则,让它们在各自的跑道上“一往无前
”地前进,“这就好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在‘各行其道、互不干扰’的高速路上前进。”
量子霍尔效应的产生需要非常强的磁场,而量子反常霍尔效应的美妙之处是不需要任何外加磁场,在零磁场中就可以实现量子霍尔态,更容易应用到人们日常所需的电子器件中。现代芯片处理器消耗约100瓦的功率,其中有约80%浪费在晶体管材料的能耗。量子反常霍尔效应可以解决电子设备的问题发热,让元器件集成密度大大提高,“上千亿次的计算机能够集成浓缩成一部Pad掌上电脑,或者迷你Pad,走进寻常百姓家,这完全有可能。”
量子反常霍尔效应的示意图:拓扑非平庸的能带结构产生具有手征性的边缘态,从而导致量子反常霍尔效应
3、使用小分子化学物质诱导多能干细胞,逆转生命时钟
北京大学邓宏魁教授领导的团队2013年成功使用4种小分子化学物质,将小鼠的皮肤细胞诱导成全能干细胞并克隆出后代。与克隆羊“多莉”的技术相比,诱导多能干细胞技术是更简便和彻底的克隆方式。
传统观点认为,哺乳动物细胞只有在胚胎的早期发育阶段具有分化为各种类型组织和器官的“多潜能性”,而随着生长发育分化成为成体细胞之后会逐渐丧失这一特性。人类一直在寻找方法让已分化的成体细胞逆转(脱分化),使之重新获得类似胚胎发育早期的“多潜能性”,并将其重新定向分化成为有功能的细胞或器官,应用于治疗多种重大疾病。通过借助卵母细胞进行细胞核移植(传统克隆)或者使用特定物质诱导(iPS)的方法,体细胞被证明可以被进行“重编程”获得“多潜能性”。日本人山中伸弥曾以病毒诱导法获得iPS细胞,获得2012年诺奖。而邓宏魁团队使用小分子化学物质替代病毒,大大提高了技术安全性,具有革命性意义。
4、艾滋病感染粘膜疫苗研究取得重大进展
清华大学张林琦、香港大学陈志伟和中科院广州生物医药与健康研究院陈凌的研究团队三方合作,于2013年完成了艾滋病感染黏膜疫苗在恒河猴体内的临床前试验研究,看清了预防艾滋病的“攀登珠峰之路”。
该团队发现这种黏膜疫苗可以大大提高针对艾滋病病毒的T和B淋巴细胞的免疫能力,从而可以有效地抑制病毒在体内的复制与传播。
艾滋病被发现的30多年以来,已导致2500万人死亡,至今全球仍有3300万感染者人体内的各类粘膜是艾滋病毒感染的主要途径,该疫苗如能最终进入临床试验并证实有效,将对阻断和减缓艾滋病毒通过粘膜途径感染(性接触)在普通人群中的流行具有重大科学意义和社会意义。
张林琦形容说,过去的艾滋病载体疫苗、DNA疫苗和重组蛋白疫苗等都只能打中艾滋病毒的“手脚”,粘膜疫苗则有望最终打中“心脏”。
5、中科大测出量子纠缠速度下限(光速的10000倍)
相距遥远的两个量子会呈现关联性,影响其中一个粒子时,另一个也会发生反应,这就是被爱因斯坦称为“鬼魅般超距作用”的量子纠缠。我们知道,爱因斯坦的相对论认为光速是物质传播的最大速度,而中科大70后青年物理学家潘建伟院士的团队测出,量子纠缠的速度下限比光速高四个数量级(可理解为30亿公里每秒)。
这一成果标志着我国在自由空间量子物理实验领域继续保持着国际领先地位,另一方面也为未来基于量子科学实验卫星进行大尺度量子理论基础检验、探索如何融合量子理论与爱因斯坦广义相对论奠定了必要的技术基础。
中国科学技术大学潘建伟院士是国际量子信息实验研究领域的杰出科学家。他12年前回国组建实验室,为中国在该领域迅速走到世界前列作出了突出贡献,并培养了一批科技英才。潘建伟院士与他所在的中科院量子科技先导专项协同创新团队,2013年还实现了单个量子高维度存储、星地量子通信地面验证等,继续向着建立实用的全球性量子通信网络稳步迈进,帮助中国在“绝对保密”的量子通信这个未来战略性领域继续领跑全球。
量子纠缠现象被爱因斯坦称为“鬼魅般超距作用”,是量子通信的理论基础。
6、成功研发世界第一个半浮栅晶体管(SFGT)
复旦大学微电子学院张卫教授团队研发出世界第一个半浮栅晶体管(SFGT),这是我国微电子器件领域首次领跑世界。半浮栅晶体管(SFGT)作为一种新型的微电子基础器件,它的成功研制将有助于我国掌握集成电路的核心技术,从而在芯片设计与制造上逐渐获得更多话语权。2013年8月9日出版的《科学》杂志(Science)刊发了张卫团队关于半浮栅晶体管(SFGT,Semi-Floating-Gate Transistor)的科研论文。
新型晶体管可在三大领域应用 拥有巨大的潜在市场:作为一种新型的基础器件半浮栅晶体管(SFGT)可应用于不同的集成电路、还可以应用于DRAM领域以及主动式图像传感器芯(AP
Ⅳ 多利是怎样诞生的
【动物克隆的理论基础】
在许多人眼里,体细胞克隆羊多利(Dolly)的诞生是克隆技术的开始。其实不然。“克隆(clone)”一词来源于希腊语,原意是用于扦插的枝条,也就是指无性繁殖。克隆在植物界的应用已有上千年的历史,理论上的突破则是本世纪的事。1902年德国植物学家Haberlandt指出,植物的体细胞具有母体全部的遗传信息,并具有发育成为完整个体的潜能,因而每个植物细胞都可像胚胎细胞那样,经离体培养再生成为完整植株。这就是所谓的细胞全能性。许多科学家为证实植物细胞的全能性作出了不懈的努力。1958年,Steward成功地将一个胡萝卜细胞试管培养,长成了一株具有根、茎、叶等器官的完整植株。1964年Guha和Maheshwari利用毛叶曼陀罗的花药培育出单倍体植株。这样,植物细胞全能性获得了充分的论证。建立在此基础上的组织培养技术也得到迅速发展。
与植物细胞不同,在动物发育过程中分化了的细胞不能再产生完整的充分分化的个体。然而,动物胚胎的生长、分化和发育是否造成体细胞基因组的不可逆性修饰,即在发育过程中分化了的细胞是否具有与受精卵相同的核等价性(nuclear equivalency)或基因组连续性,一直是发育生物学要解决的问题。早在30年代,着名的胚胎学家Spemann就已经提出“分化了的细胞核移人卵子中能否指导胚胎发育”这样的设想。用两栖类动物进行的一些克隆实验表明,早期胚胎细胞核经移植可产生成熟的动物个体,而从蝌蚪及成体动物细胞中取出的细胞核经移植生成的克隆动物最晚只能发育至蝌蚪期。胚胎分割及胚胎细胞核移植克隆动物已在许多物种中获得了成功。体细胞克隆绵羊、小鼠,牛及山羊的成功,证明高度分化的细胞核仍具有全能性。
【体细胞克隆羊及小鼠实验成功分析】
克隆羊多利是世界上第一只由成体细胞通过无性过程产生的哺乳动物。在多利诞生后的一年多时间里,全世界掀起了一股克隆热,并引起了一些激烈的争论和对多利身份的质疑。1998年7月出版的《自然》报道两个独立的研究小组分别对多利的血样、供体母羊冷冻组织及其细胞培养物进行卫星DNA分析和DNA指纹分析,确认三者的一致性,证明多利确实是体细胞克隆动物。在同期《自然》上,美国夏威夷大学Wakayama等人报道,由小鼠卵丘细胞(cumulus cells)克隆了27只存活小鼠,其中7只是由克隆小鼠再次克隆的后代。
两栖类和哺乳类核移植实验发现,经核移植的卵母细胞不能正常发育的一个关键问题是供体核和受体卵母细胞之间的细胞周期的不相容性。Wilmut等的成功之处就在于他们找到了一种使供体核和受体卵母细胞更相容的方法。他们通过血清饥饿法使供体核细胞处于二倍体的Go期,这样处理的供体核在DNA复制的时间上就与处于中期Ⅱ的受体卵母细胞同步。从建立正确的染色体倍性(ploidy)这个角度来看,供体核处于G1期也可以获得克隆动物。稳定表达半乳糖苷酶一新霉素基因的胎儿成纤维细胞作核供体,获得克隆牛证明了这一点。
人们一般认为,供体核和卵母细胞组成的重组胚胎的发育过程与正常状况受精卵相仿。羊胚胎基因组的转录一直到8~16个细胞才开始,这种转录时间的差异在理论上将允许胚胎有充裕的时间对植入的成体羊细胞核进行重新编程,使其进入胚胎发育期。由于不同的物种胚胎转录的起始时间各异,所以克隆的难易也不同。以往的研究发现,在小鼠的克隆过程中,基因组很早就被激活,移植的细胞核没有足够的时间进行重新编程。因此,许多研究者tk)gd,鼠是最难克隆的动物之一。
Wakayama等人的工作改变了这种观点。与Wilmut等的方法相比,Wakayama等采用了一种新的、相对简单的克隆技术。多利是采用母羊的乳腺组织细胞经过“饥饿”培养,与去核的卵细胞进行电融合,促使融合细胞中遗传物质的重编程(reprogramming),然后逐步发育成胚胎。克隆小鼠采用核移植的方法,将自然状态下处于G0期的卯丘细胞作核供体,直接注入去核的卵细胞。小鼠克隆过程中核移植后的重组胚胎放置O~6小时后再激活,也有异于Wilmut等用电刺激法同时融合重组胚胎和激活胚胎。多利的产生过程中遗传物质的重编程和卵细胞的激活是电刺激法,而小鼠的克隆则采用在培养基中添加锶离T-(Sr2+)和细胞松弛素B的化学方法激活重组胚胎。
【动物克隆技术的应用】
动物克隆近几年取得的一些突破性进展,为动物发育过程中基因表达的调控及发育生物学、遗传学等相关学科的发展必将产生深远的影响。虽然目前这种方法尚不成熟,但它已显示出诱人的应用前景。
动物克隆技术将首先应用于医药领域。利用体细胞供体经核移植生产转基因动物,可望降低生产成本。到目前为止,产生转基因动物的方法仍主要是1985年Hammer等建立的原核显微注射法。但是,这种方法只能使大约5%的动物携带外源基因。外源基因整合入动物基因组是个随机的过程,这导致外源基因在许
多转基因动物系中的表达量不够高,而且因整合进生殖细胞的机率低而难以遗传给下一代。Schnieke等发现,利用体细胞克隆技术生产含人凝血因子IX的转基因羊比原核显微注射法要有效得多。其中,两者最显着的差异是体细胞克隆中的受体母羊全都携带外源基因,而原核显微注射法会产生许多不带外源基因的羊羔。这是由于,原核显微注射法中所用胚胎在体外培养的时间较短,在此期间被检测为阳性的转基因可能会在以后的发育过程中丢失。用作核移植供体的细胞在体外培养的时间则较长,有较多的检测机会。另外,显微注射法制备的转基因动物的性别只有等到动物出生后才能得知,而核移植可以通过鉴别核供体的核型而预先得知转基因动物的性别,可选择性地制备雌性的转基因动物,有利于在母乳中表达外源基因。
克隆技术除了可以生产各种医用人体蛋白外,对人类的细胞和组织治疗也大有好处。利用克隆技术,可以用患者本人细胞培育出新组织,用来治疗糖尿病、帕金森氏症、神经损伤等多种疾病。用这种方法培育出的组织具有与患者正常组织完全相同的基因构成,因此不会产生免疫排斥反应。但是这些都涉及到克隆人这个敏感话题,目前克隆人在许多国家是法律禁止的。随着人类胚胎干细胞培养技术的完善,目前已有两家美国公司开始研究利用克隆技术培育人胚胎,希望大批量生产治疗疾病的干细胞。事实上,几年前人们就曾把人胎儿神经组织用来治疗帕金森氏症。考虑到伦理上的原因,人们也可以用克隆动物的胚胎干细胞作异源移植,以解决人类移植器官供求矛盾。
动物克隆技术还有助于加速动物育种的进程。利用优良动物品种的体细胞作核供体克隆动物,可以避免自然条件下选种所受到的动物生育周期和生育效率的限制,从而大大缩短育种年限,提高育种效率。动物克隆技术用于拯救濒危动物也受到广泛的关注。中国科学院动物研究所陈大元研究员提出用动物克隆技术拯救大熊猫的计划,在国内外均引起一定的反响。
【动物克隆技术的不足及未来发展方向】
动物克隆技术虽然取得了一定的进展,在生物医药领域也得NT初步应用。但是,该技术目前还很不完善。存活率低是当今核移植技术的最大缺陷。它突出表现为:孕期流产率高,围产期死亡率高,新生儿体重较重及产生后对环境的适应性较差。以成体细胞核作核供体问题更为严重。最近,Shiels等报道克隆羊的端粒较同年羊短。Renard等报道,体细胞核移植可能影响克隆动物免疫系统的正常发育。他们用胚胎细胞克隆牛的耳细胞通过核移植克隆出一头牛。牛犊看起来很健康,但出生一个半月后,它体内的淋巴细胞和红血球急剧减少,不久就死于贫血。尸体解剖发现,该牛犊脾脏、胸腺和淋巴结等淋巴组织都没有得到正常发育。
导致动物克隆存活率低和异常发育的原因很多,缺乏基础理论支撑是其中之一。动物克隆技术的不断完善,还需要分子遗传学、细胞学、发育生物学等相关基础学科的进一步研究和发展。迄今为止,人们虽然在动物克隆过程中已经积累了不少数据,但一些很基本的问题仍亟需解决。
基因组重新编程的机制尚不清楚。人们虽然观测到核移植后细胞核的激活与早期胚胎原核发育类似,但较详细的信息仍不甚明了。其中,成熟促进因子(maturation promoting factor,MPF)、核膜破裂(nuclear envelope breakdown,NEBD)和早熟染色体凝集(premature chromosome condensation,PCC)在基因组重编过程中的作用还需明确。
基因印记(imprinting)对核移植后基因组重新编程的影响。基因印记现象在哺乳动物的发育过程中普遍存在,它是指基因的表达与否取7央.于它们是在父源染色体上还是母源染色体上。有些基因印记只从母源染色体上表达,而有些则只从父源染色体上表达。基因印记与动物克隆技术的成功及不足有何关系值得深入研究。
动物克隆种属及细胞差异的原因。克隆不同种属的动物难易有别,其中的原因目前人们还不清楚。目前可以用作体细胞核移植核供体的细胞类型还较少。Wakayama等用处于Go/G1期的卵丘细胞克隆得到小鼠,而他们采用处于Go期的足细胞、神经细胞作核供体进行的克隆实验均未获得成活个体,这显示核供体处于Go期并非保证胚胎发育的充分条件。Dominko等发现去核的牛卵细胞能使来自羊、猴、鼠、猪等不同种属的细胞核激活,并在体外发育为相应的胚胎,但目前还没有一个可继续发育为完整的动物个体。如果这项工作能成功,将十分有利于濒危动物的保护。
动物克隆技术条件的优化还没有解决。如核供体和卵细胞的选材、核质比的选择、重组胚胎的激活方式、是否需要作连续核移植等。
【谈谈动物克隆】
首先,何谓克隆。克隆是由klone一词音译过来的,又叫无性繁殖,也就是不需两性配子结合即可产生后代的繁殖方式,与无性繁殖相对的则是有性繁殖,高等动物和我们人类的传宗接代都属于有性繁殖,是生物进化到高级阶段的一种表现。让我们用一个具体的例子说明什么是无性繁殖?我们学校离江边很近,如果您在江边散步,会发现岸边泥土中插着很多柳条,您随意在那支柳条上折一截,再插在泥土里,过不了多久,您扦插的柳条又可发芽并长成~棵小树。这是一个非常典型的无性繁殖的例子。这样的例子在我们身边很多,《西游记》中孙悟空抓几根猴毛一吹,变成几只小猴子,这也是克隆。
1997年英国罗斯林研究所的资深科学家IanWilmut及其合作者向全世界宣布他们成功地以分化的成年母羊乳腺细胞为核供体,克隆出一只绵羊,取名多利(Dolly)这一研究结果推翻了长期以来一直认为分化的动物细胞不具备发育全能性的观点。该研究成果被列入1997年世界十大研究成果之首。这里需要解释的另一概念是细胞的全能性,简单地说全能性就是一个细胞可发育成一个个体,植物细胞具有全能性是公认的,但植物细胞具有全能性也是有条件的,举一个简单的例子,我们可以从某一株植物的嫩芽组织培养出新的植株,但我们不能从枯死的叶子中培养出一个新的植株。
其次,介绍一下克隆的过程。克隆动物有提供核即遗传物质的一方,称核供体,此外还需来自母畜一方的卵母细胞,卵母细胞最外层是一圈在光学显微镜下呈透明状的结构,称透明带,透明带内层是一层很薄的膜,称卵黄膜,卵黄膜内包着卵黄,卵黄是胚胎发育早期的营养物质,卵黄膜与透明带之间有一定的空隙,称卵周隙。克隆时可以将核供体置人卵周隙,也可将核供体直接置人细胞质内,即卵黄当中,之后采用电脉冲或化学物质刺激使核供体与卵母细胞融合,成为合子(Zygote),随即合子开始卵裂,一分为二,二分为四,当卵裂到一定程度,即当卵裂的细胞(卵裂球,Blastermere)达到一定数目后,卵裂球中间形成一个空腔,这时候的胚胎被称之为囊胚(Blastocyst),之后囊胚将被送人代孕母畜的子宫,一直到出生,这样出生的动物即克隆动物。这中间的问题是成功率非常低,就拿“多利”来说,当时科学家将277个经过上述过程获得的克隆胚胎送入代孕母羊的子宫,只得到一只“多利”,大家可以算一算成功的概率是多少。
第三,克隆动物的意义。“多利”的问世在世界范围内引起很大的震动;这项研究成果不仅在理论上具有重大突破,而且有非常广阔的应用前景,突出地表现在拯救濒危动物品种,甚至可以使一些灭绝的动物再世。举个例子来说,我们国家的大熊猫近年来由于植被被破坏,数目锐减,以至成为一种濒危动物。我国科学家从大熊猫身上获取细胞,并与兔卵母细胞融合,融合胚胎在体外发育到囊胚,值得一提的是,大熊猫的体重虽说是兔子体重的上百倍,但刚出生的大熊猫与刚出生的兔子体重十分接近,这种克隆与上面所介绍的克隆有所不同,这种克隆被称之为异种克隆。通过这种克隆生出的大熊猫是什么样子,现在尚无法估计,可以确定的是和正常出生的大熊猫会有所不同,因为兔子卯母细胞的细胞质中含有大量的线粒体,线粒体中的基因是编码蛋白质的,这些基因极有可能影响到大熊猫的毛色,也就是说通过这种方法出生的大熊猫可能是灰色的。
最后谈谈克隆动物出现的问题。2003年2月14日世界首例体细胞克隆绵羊寿终正寝,带给人类很多思考,这只羊仅活了6岁,而正常羊的寿命应为12~13岁。这只羊是从一只6岁母羊的乳腺细胞中克隆出来的,问题的焦点就在于克隆出来的个体不仅继承了原来的性状,也继承了原来的年龄。如果这一结论成立,这就大大地削弱克隆技术的应用价值。不久前许多媒体报道首例克隆人在以色列出生,如果上述结论成立,则可以得出这样一个结论,那就是出生的婴儿无论得到多么无微不至的照顾也将是短命的?研究者发现克隆绵羊染色体的端粒比正常羊短20%,而众所周知端粒是决定动物一生中细胞分裂次数的主要因素。
【动物基因工程良种与克隆技术】
(1)动物转基因育种技术。
自从1982年美国科学家Palmiter等将大鼠生长激素基因用微注射(microin—jection)方法转移到小鼠的卵原核(pronuclei),获得了个体比普通小鼠大一倍多的超级鼠(Supermouse)~,充分揭示了基因转移技术运用于畜禽和鱼类育种工作的巨大潜力。由此,该技术得到了世界各国的高度重视,并激发人们把目标转向家畜、家禽和鱼类的转基因研究,并成功获得了转基因猪、牛、羊、鸡、兔和鱼等的“超级动物”。
(2)动物克隆技术。
动物克隆技术包括动物胚胎细胞克隆技术和动物体细胞克隆技术。就目前研究水平而言,两者成功机率相差很大,利用胚胎细胞克隆可能要比体细胞克隆容易一些。截至目前,全世界应用胚胎细胞克隆技术几乎成功地克隆了所有家畜,并获得了后代,而用体细胞克隆成功的报道只有羊、猴数例。从生产利用角度看,虽然运用胚胎细胞克隆与体细胞克隆技术在创造动物新品种方面都具有广阔的前景,但当前动物胚胎细胞克隆技术比较成熟,应用于畜牧业生产由一枚优良畜种胚胎重组数以千计的同基因优良种畜,在实现动物无性繁殖和胚胎生产工厂化方面具有极为重要的应用价值。
【世界首匹克隆马诞生,母马生下“自己”】
意大利克雷莫纳市繁殖技术与家畜饲养实验室6日证实,世界上第一匹克隆马已于今年5月28日在意大利诞生,这也是世界上首例哺乳动物生下它自己的克隆体。
实验室的克隆马科研小组负责人切萨雷·加利教授接受新华社记者电话采访时说,他的研究小组克隆出的雌性小马被取名为“普罗梅泰亚”。这匹小马自然顺产,出生时体重36公斤,属正常范围。加利说,母马和小马身体状况都很好,尤其是小马活泼健壮,喜好运动,平时喝母奶或吃干草饲料,现在其体重已经增至约100公斤。据介绍,克隆马计划从去年初开始进行,前后共耗资15万欧元。7日出版的英国《自然》杂志还将详细介绍这一成果。
加利是意大利知名的动物克隆专家。他曾在1999年9月克隆出公牛“加俐略”,此前还在1996年参与培育了世界上第一只体细胞克隆动物——克隆羊“多利”。在这次研究中,他们采用了母马的表皮细胞,将其细胞核注入除去细胞核的卵细胞内。研究人员总共用了800多个卵细胞,其中有22个发育成7天大的胚胎,但最后只有“普罗梅泰亚”成功诞生。
检测表明,小马“普罗梅泰亚”的DNA与其生母几乎完全相同。加利进一步解释说,用于克隆小马、培植胚胎的表皮细胞就是由生下小马的母马提供的,是世界上首次由哺乳动物生下它自己的克隆体。也就是说,“普罗梅泰亚”相当于它生母的同卵双胞胎。
加利说,与以前使用过的克隆方法相比,这次在克隆马过程中所采用的方法更容易、更实用。科研人员希望利用新技术克隆出的动物能够对疯牛病等具有免疫力,还希望这项研究能帮助人们克隆赛马和其他良种马。
曾于2001年在世界上首次克隆出濒危野生动物欧洲盘羊的意大利科学家帕斯夸利里诺·洛伊说,克隆小马的诞生在国际上是一项“了不起的成就”,在研究中所应用的技术将有助于挽救濒临灭绝的稀有马种。意大利卫生部长杰罗拉莫·西尔基也说,这是意大利科学界“一个巨大的成功”。
Ⅳ 细胞重塑是怎么让人“返老还童”的
中科院称,我国科学家最新研究发现细胞重塑是解决病痛的关键作用和调节机制。该发现将拓展人们对糖尿病、癌症以及神经退行性疾病等代谢疾病的认识,细胞重塑如何影响细胞命运的认识。
4、细胞重塑对治疗糖尿病与癌症有哪些益处?
利用细胞重塑可以产生胰岛细胞,可望用于治疗糖尿病。在I型糖尿病患者体内,胰岛β细胞被自体免疫反应所摧毁,患者必须注射胰岛素来维持正常的血糖水平。而在II型糖尿病患者体内,胰岛β细胞要么不正常工作要么数量减少。但人类β细胞在数量和可用性方面的局限,限制了该方面的研究。若能通过干细胞产生无限的胰岛β细胞,就能满足众多患者的需要,同时将成为干细胞生物学应用到临床治疗工作中。但是这中间还有很多路要走,才有可能真正用于治疗。至于癌症,则更不容易。
正是因为细胞的不断衰老,才导致人体各机能都在不断地衰老。如果能够保持细胞一直处于年轻的状态,这样会减速器官的衰老速度,从而达到返老还童的效果。希望这一成果早日研究出来,完成人们的不老梦。
Ⅵ 谈谈你对转基因动物的看法
胚胎发育过程是核质之间、细胞与细胞及细胞与胞外基质按严格的时空秩序相互作用的结果。从全能或多能胚胎干细胞分化为具有独特功能的体细胞,完全取决于基因在时间与地点上的选择性表达。对细胞分化和发育来说,最重要的不是个别基因的表达,而是整个基因网络在时间和空间上的紧密联系和配合。组成包括人体在内的高等动物机体的亿万个细胞,都是由一个受精卵发育而来的。像胚胎干细胞一样,分化了的体细胞仍然具有一整套完整的遗传信息。过去人们认为,细胞的分化程度越高,它指导早期胚胎发育成新个体的能力就越低,高度分化的体细胞甚至完全不具备这种能力。近几年体细胞动物克隆技术上取得的突破,不仅给人们的观念带来了很大的改变,而且由于它所蕴藏的商业和社会价值,在全世界引起了轰动。
1. 动物克隆的理论基础
在许多人眼里,体细胞克隆羊多莉 (Dolly) 的诞生是克隆技术的开始。其实不然。“克隆 (clone)”一词来源于希腊语,原意是用于扦插的枝条,也就是指无性繁殖。克隆在植物界的应用已有上千年的历史,理论上的突破则是本世纪的事。1902 年德国植物学家 Haberlandt指出,植物的体细胞具有母体全部的遗传信息,并具有发育成为完整个体的潜能,因而每个植物细胞都可像胚胎细胞那样,经离体培养再生成为完整植株。这就是所谓的细胞全能性。许多科学家为证实植物细胞的全能性作出了不懈的努力。1958 年,Steward成功地将一个胡萝卜细胞试管培养,长成了一株具有根、茎、叶等器官的完整植株。1964年Guha 和 Maheshwari利用毛叶曼陀罗的花药培育出单倍体植株。这样,植物细胞全能性获得了充分的论证。建立在此基础上的组织培养技术也得到迅速发展。
与植物细胞不同,在动物发育过程中分化了的细胞不能再产生完整的充分分化的个体。然而,动物胚胎的生长、分化和发育是否造成体细胞基因组的不可逆性修饰,即在发育过程中分化了的细胞是否具有与受精卵相同的核等价性 (nuclear equivalency) 或基因组连续性,一直是发育生物学要解决的问题。早在30 年代,着名的胚胎学家 Spemann 就已经提出“分化了的细胞核移入卵子中能否指导胚胎发育”这样的设想。用两栖类动物进行的一些克隆实验表明,早期胚胎细胞核经移植可产生成熟的动物个体,而从蝌蚪及成体动物细胞中取出的细胞核经移植生成的克隆动物最晚只能发育至蝌蚪期。胚胎分割及胚胎细胞核移植克隆动物已在许多物种中获得了成功。体细胞克隆绵羊[1]、小鼠[2,3]、牛[4,5] 及山羊[6]的成功,证明高度分化的细胞核仍具有全能性。
2. 体细胞克隆羊及小鼠实验成功分析
克隆羊Dolly 是世界上第一只由成体细胞通过无性过程产生的哺乳动物。在Dolly 诞生后的一年多时间里,全世界掀起了一股克隆热,并引起了一些激烈的争论和对Dolly身份的质疑。1998 年7 月出版的《Nature》报道两个独立的研究小组分别对Dolly 的血样、供体母羊冷冻组织及其细胞培养物进行卫星DNA 分析和DNA指纹分析,确认三者的一致性,证明Dolly 确实是体细胞克隆动物。在同期《Nature》上,美国夏威夷大学Wakayama 等人报道,由小鼠卵丘细胞 (cumulus cells) 克隆了27 只存活小鼠,其中7只是由克隆小鼠再次克隆的后代。
两栖类和哺乳类核移植实验发现,经核移植的卵母细胞不能正常发育的一个关键问题是供体核和受体卵母细胞之间的细胞周期不相容性。Wilmut 等的成功之处就在于他们找到了一种使供体核和受体卵母细胞更相容的方法。他们通过血清饥饿法使供体核细胞处于二倍体的G0 期,这样处理的供体核在DNA复制的时间上就与处于中期II的受体卵母细胞同步。从建立正确的染色体倍性 (ploidy) 这个角度来看,供体核处于G1 期也可以获得克隆动物。稳定表达b -半乳糖苷酶-新霉素基因的胎儿成纤维细胞作核供体,获得克隆牛证明了这一点[7]。
人们一般认为,供体核和卵母细胞组成的重组胚胎的发育过程与正常状况受精卵相仿。 羊胚胎基因组的转录一直到8~16个细胞才开始,这种转录时间的差异在理论上将允许胚胎有充裕的时间对植入的成体羊细胞核进行重新编程,使其进入胚胎发育期。由于不同的物种胚胎转录的起始时间各异,所以克隆的难易也不同。以往的研究发现,在小鼠的克隆过程中,基因组很早就被激活,移植的细胞核没有足够的时间进行重新编程。因此,许多研究者认为小鼠是最难克隆的动物之一。
Wakayama 等人的工作改变了这种观点。与Wilmut 等的方法相比,Wakayama 等采用了一种新的、相对简单的克隆技术。Dolly 是采用母羊的乳腺组织细胞经过“饥饿“ 培养,与去核的卵细胞进行电融合,促使融合细胞中遗传物质的重编程 (reprogramming), 然后逐步发育成胚胎。克隆小鼠采用核移植的方法,将自然状态下处于G0 期的卵丘细胞作核供体,直接注入去核的卵细胞。小鼠克隆过程中核移植后的重组胚胎放置0~6 小时后再激活,也有异于Wilmut 等用电刺激法同时融合重组胚胎和激活胚胎。Dolly 的产生过程中遗传物质的重编程和卵细胞的激活是电刺激法,而小鼠的克隆则采用在培养基中添加锶离子 (Sr2+) 和细胞松弛素B 的化学方法激活重组胚胎。
3. 动物克隆技术的应用
动物克隆近几年取得的一些突破性进展,为动物发育过程中基因表达的调控及发育生物学、遗传学等相关学科的发展必将产生深远的影响。虽然目前这种方法尚不成熟,但它已显示出诱人的应用前景。
动物克隆技术将首先应用于医药领域。利用体细胞供体经核移植生产转基因动物,可望降低生产成本。到目前为止,产生转基因动物的方法仍主要是1985 年Hammer 等建立的原核显微注射法。但是,这种方法只能使大约5%的动物携带外源基因。外源基因整合入动物基因组是个随机的过程,这导致外源基因在许多转基因动物系中的表达量不够高,而且因整合进生殖细胞的机率低而难以遗传给下一代。Schnieke 等发现,利用体细胞克隆技术生产含人凝血因子 IX 的转基因羊比原核显微注射法要有效得多[8]。其中,两者最显着的差异是体细胞克隆中的受体母羊全都携带外源基因,而原核显微注射法会产生许多不带外源基因的羊羔。这是由于,原核微注射法中所用胚胎在体外培养的时间较短,在此期间被检测为阳性的转基因可能会在以后的发育过程中丢失。用作核移植供体的细胞在体外培养的时间则较长,有较多的检测机会。另外,显微注射法制备的转基因动物的性别只有等到动物出生后才能得知, 而核移植可以通过鉴别核供体的核型而预先得知转基因动物的性别,可选择性地制备雌性的转基因动物, 有利于在母乳中表达外源基因。
克隆技术除了可以生产各种医用人体蛋白外,对人类的细胞和组织治疗也大有好处。利用克隆技术,可以用患者本人细胞培育出新组织,用来治疗糖尿病、帕金森氏症、神经损伤等多种疾病。用这种方法培育出的组织具有与患者正常组织完全相同的基因构成,因此不会产生免疫排斥反应。但是这些都涉及到克隆人这个敏感话题,目前克隆人在许多国家是法律禁止的。随着人类胚胎干细胞培养技术的完善,目前已有两家美国公司开始研究利用克隆技术培育人胚胎,希望大批量生产治疗疾病的干细胞。事实上,几年前人们就曾把人胎儿神经组织用来治疗帕金森氏症。考虑到伦理上的原因,人们也可以用克隆动物的胚胎干细胞作异源移植,以解决人类移植器官供求矛盾。
动物克隆技术还有助于加速动物育种的进程。利用优良动物品种的体细胞作核供体克隆动物,可以避免自然条件下选种所受到的动物生育周期和生育效率的限制,从而大大缩短育种年限,提高育种效率。动物克隆技术用于拯救濒危动物也受到广泛的关注。中国科学院动物研究所陈大元研究员提出用动物克隆技术拯救大熊猫的计划,在国内外均引起一定的反响。
4. 动物克隆技术的不足及未来发展方向
动物克隆技术虽然取得了一定的进展,在生物医药领域也得到了初步应用。但是,该技术目前还很不完善。存活率低是当今核移植技术的最大缺陷。它突出表现为:孕期流产率高,围产期死亡率高,新生儿体重较重及产生后对环境的适应性较差。以成体细胞核作核供体问题更为严重。最近,Shiels 等报道克隆羊的端粒较同年羊短[9]。Renard 等报道,体细胞核移植可能影响克隆动物免疫系统的正常发育[10]。他们用胚胎细胞克隆牛的耳细胞通过核移植克隆出一头牛。牛犊看起来很健康,但出生一个半月后,它体内的淋巴细胞和红血球急剧减少,不久就死于贫血。尸体解剖发现,该牛犊脾脏、胸腺和淋巴结等淋巴组织都没有得到正常发育。
导致动物克隆存活率低和异常发育的原因很多,缺乏基础理论支撑是其中之一。动物克隆技术的不断完善,还需要分子遗传学、细胞学、发育生物学等相关基础学科的进一步研究和发展。迄今为止,人们虽然在动物克隆过程中已经积累了不少数据,但一些很基本的问题仍亟需解决。
基因组重新编程的机制尚不清楚。人们虽然观测到核移植后细胞核的激活与早期胚胎原核发育类似,但较详细的信息仍不甚明了。其中,成熟促进因子(maturation promoting factor,MPF)、核膜破裂(nuclear envelope breakdown,NEBD) 和早熟染色体凝集 (premature chromosome condensation, PCC) 在基因组重编过程中的作用还需明确。
基因印记 (imprinting) 对核移植后基因组重新编程的影响。基因印记现象在哺乳动物的发育过程中普遍存在,它是指基因的表达与否取决于它们是在父源染色体上还是母源染色体上。有些印记基因只从母源染色体上表达,而有些则只从父源染色体上表达。基因印记与动物克隆技术的成功及不足有何关系值得深入研究。
动物克隆种属及细胞差异的原因。克隆不同种属的动物难易有别,其中的原因目前人们还不清楚。目前可以用作体细胞核移植核供体的细胞类型还较少。Wakayama 等用处于 G0/G1期的卵丘细胞克隆得到小鼠,而他们采用处于G0 期的足细胞 、神经细胞作核供体进行的克隆实验均未获得成活个体,这显示供体核处于G0 期并非保证胚胎发育的充分条件。Dominko等发现去核的牛卵细胞能使来自羊、猴、鼠、猪等不同种属的细胞核激活,并在体外发育为相应的胚胎,但目前还没有一个可继续发育为完整的动物个体。如果这项工作能成功,将十分有利于濒危动物的保护。
动物克隆技术条件的优化还没有解决。如核供体和卵细胞的选材、核质比的选择、重组胚胎的激活方式、是否需要作连续核移植等。
综上所述,动物克隆研究已在理论基础、技术优化及实际应用等方面取得很大的进展。但该技术目前还很不完善,相关理论研究还很薄弱,人们要提高动物克隆的成功率还需不懈的努力。另外,克隆动物与正常胚胎的发育有何异同,也值得深入研究。这些问题的解决,将有助于加深人们对动物胚胎发育过程中分子机制的认识。
Ⅶ 什么是细胞重编程,什么是细胞转分化它们的过程是怎样的求详解!拜托了!!
2006年日本科学家山中伸弥(Shinya
Yamanaka)首次利用病毒载体将四个转录因子(Oct4,Sox2,Klf4和c-myc)的组合转入分化的体细胞中,使其重编程而得到了类似胚胎干细胞的一种细胞类型——诱导多能干细胞(iPSCs)。这一了不起的成果在本月早些时候被授予了诺贝尔生理学/医学奖。
尽管近年来iPS技术不断取得发展,各种改良技术时有出现。然而转化效率低下一直都是科学家们头疼的问题。成为了iPS临床转化的重要障碍之一。此外,由于基因插入可能导致细胞癌变,研究人员和临床医生对于推动这些细胞的潜在治疗应用也一直抱谨慎的态度。
现在,斯坦福大学医学院的研究人员设计了一种高效安全的新方法,只需利用基因编码的蛋白就可以生成诱导多能干细胞。这一研究成果发布在10月26日的《细胞》(Cell)杂志上。
这并非是首次尝试这样的方法。许多研究人员曾证实利用蛋白质来生成诱导多能干细胞虽然有可能实现,但效率却远远低于病毒方法。斯坦福大学的研究人员能取得前所未有的成功归因于一个意外的发现:最初方法中使用的病毒不仅仅对于基因传递至关重要。
斯坦福大学心血管研究所副所长和医学教授John Cooke博士说:“过去一直认为病毒仅仅是作为特洛伊木马(Trojan
horse)将基因传递到细胞中。现在我们知道病毒可导致细胞松开染色体,使得DNA发生逆转至多能状态必需的改变。”
无需人类胚胎,iPS细胞为解决与干细胞研究相关的伦理道德困境提供了一个可能的替代方法。它们由机体内承担某一专门功能的成体细胞生成。在山中伸弥之前,人们认为这些细胞绝不可能恢复为起源的多能干细胞。然而山中伸弥却证实这些高度特化的细胞比之前认为的具有更大的发育灵活性或可塑性。在存在四个基因的条件下,它们就可以呈现出胚胎干细胞的特征,在合适的条件下可以变成几乎所有的细胞类型。
现在Cooke研究小组确定了这一转变发生的一个重要的组件。Cooke说:“我们发现当细胞暴露于一种病原体时,它会发生改变以适应或抵御挑战。这一先天免疫的一部分包括促进了DNA的可接近性。这使得细胞能够伸入它的遗传工具箱中,取出生存所需的东西。”它也使得多能诱导蛋白能够修饰DNA,将皮肤细胞或其他的特化细胞转变为一种胚胎干细胞样的细胞。
由于细胞激活了一种与存在病毒遗传物质时的炎症相似的免疫反应,研究人员将这一过程称为“转炎症”(
transflammation)。他们认为他们的研究发现有可能为在人类中使用iPS细胞,以及阐明多能性发生借助的生物学信号通路铺平了道路。
Cooke和同事们一开始就致力于优化利用细胞渗透性蛋白来重编程成体特化细胞变为多能干细胞。他们知道蛋白质进入到了细胞的细胞核中,在实验室它们能够结合正确的DNA序列。它们还能够维持过去采用其他方法重编程细胞的多能性。那么为何这些蛋白远不如病毒方法有效呢?
当研究人员将暴露于细胞渗透性蛋白的细胞的基因表达模式与负载基因的病毒感染的细胞进行比较时获得了突破:它们完全不同。Cooke想知道是否有可能病毒的某些特性对此负责。
研究人员利用细胞渗透性蛋白质和一种无关病毒重复了这一试验。多能性转化的效率显着提高。进一步的调查揭示这一效应是由于细胞内Toll样受体3(Toll-like
receptor 3)信号激活所致,利用小分子模拟这一病毒遗传物质触发信号通路具有相似的效应。
“这些蛋白质是非整合性的,因此我们不必担心病毒诱导对宿主基因组的损害,”Cooke说。此外他还指出利用细胞渗透性蛋白可以赋予对重编程过程更高水平的控制,有可能促成在人类治疗中使用iPS细胞。
“现在我们知道当受到病原体挑战时细胞会呈现出更大的可塑性,理论上我们可以利用这一信息进一步操纵细胞诱导直接重编程,”Cooke说。
直接重编程涉及将像皮肤细胞这样的一种特化细胞诱导成为如内皮细胞这样的一种细胞分化类型,无需通过中间的多能状态。斯坦福大学的研究人员Marius
Wernig博士利用直接重编程成功地将人类皮肤细胞转变为了功能性的神经元。
Ⅷ 5分钟内哈,克隆资料,短点的,好抄~我明交
胚胎发育过程是核质之间、细胞与细胞及细胞与胞外基质按严格的时空秩序相互作用的结果。从全能或多能胚胎干细胞分化为具有独特功能的体细胞,完全取决于基因在时间与地点上的选择性表达。对细胞分化和发育来说,最重要的不是个别基因的表达,而是整个基因网络在时间和空间上的紧密联系和配合。组成包括人体在内的高等动物机体的亿万个细胞,都是由一个受精卵发育而来的。像胚胎干细胞一样,分化了的体细胞仍然具有一整套完整的遗传信息。过去人们认为,细胞的分化程度越高,它指导早期胚胎发育成新个体的能力就越低,高度分化的体细胞甚至完全不具备这种能力。近几年体细胞动物克隆技术上取得的突破,不仅给人们的观念带来了很大的改变,而且由于它所蕴藏的商业和社会价值,在全世界引起了轰动。
克隆技术在现代生物学中被称为“生物放大技术”,它已经历了三个发展时期:第一个时期是微生物克隆,即用一个细菌很快复制出成千上万个和它一模一样的细菌,而变成一个细菌群;第二个时期是生物技术克隆,比如用遗传基因――DNA克隆;第三个时期是动物克隆,即由一个细胞克隆成一个动物。克隆绵羊“多利”由一头母羊的体细胞克隆而来,使用的便是动物克隆技术。
在自然界,有不少植物具有先天的克隆本能,如番薯、马铃薯、玫瑰等的插枝繁殖的植物。而动物的克隆技术,则经历了由胚胎细胞到体细胞的发展过程
1. 人类进行克隆的历史
公元前5000年·谷物选种
人类祖先发现,最茁壮的植株的种子培植出的谷物也更优良。这是人类开始按照人的意图控制生命的开端,这也是克隆技术最终目标的最初体现。
1952年·克隆蝌蚪
小小的蝌蚪改写了生物技术发展史,成为世界上第一种被克隆的动物。美国科学家罗伯特·布里格斯和托玛斯·金用一只蝌蚪的细胞创造了与原版完全一样的复制品。
1972年·基因复制
克隆技术精细到以单个基因复制为单位。科学家将某种特定基因单离出来,将它与某有机体(最初是一种酵母)结合,有机体将新基因融入自己的DNA结构后再繁殖,产生出理想基因的复制品。
1978年·第一例试管婴儿出生
整个世界吵嚷着想要目睹人类第一个体外受精婴儿路易斯的“庐山真面目”。英国医生用丈夫的精子在一个试管内使卵子受精,然后将胚胎植入健康母亲的子宫内。
1997年·多利,你好!
1996年,世界第一例从成年动物细胞克隆出的哺乳动物绵羊多利诞生。这个秘密直到1997年2月才向世人公布。苏格兰胚胎学家伊恩·威尔姆特和同事用一只成年母羊乳房内取出的细胞克隆出多利。
1998年·克隆批量化
美国夏威夷大学的科学家用成年细胞克隆出50多只老鼠,并接着培育出3代遗传特征完全一致的实验鼠。与此同时,其它几个私立研究机构也用不同的方法成功克隆出小牛。其中最引人注目的是,日本人用一个成年母牛的细胞培育出8只遗传特征完全一样的小牛,成功率高达80%。
2000年·人类近亲被克隆
美国俄勒冈的研究者用与克隆多利羊截然不同的方法克隆出猴子,科学家将一个仅包含8个细胞的早期胚胎分裂为4份,再将它们分别培育出新胚胎,惟一成活的只有Tetra。与多利不同的是,tetra既有母亲也有父亲,但它只是人工4胞胎中的一个。此外,帮助培育出多利羊的生物技术公司宣布克隆出5只小猪仔。该公司宣称,克隆猪终将成为人类移植器官的“加工厂”。
2001年·克隆人?
3月,美国生殖科学家帕纳伊奥提斯·扎沃斯和一个国际研究小组宣布,数百对夫妇已自愿报名参加培育克隆婴孩的实验。该小组宣称最早至2003年便可帮助不孕夫妇培育克隆婴儿。1月,英国成为全球第一个有效地使克隆人类胚胎合法化的国家。政府通过一项富争议性的法案,目的在于允许对人类胚胎内的根细胞进行科学实验。该法案要求克隆体必须在诞生后14日内被毁灭。培育克隆婴儿仍属非法行
2. 动物克隆的理论基础
在许多人眼里,体细胞克隆羊多莉 (Dolly) 的诞生是克隆技术的开始。其实不然。“克隆 (clone)”一词来源于希腊语,原意是用于扦插的枝条,也就是指无性繁殖。克隆在植物界的应用已有上千年的历史,理论上的突破则是本世纪的事。1902 年德国植物学家 Haberlandt指出,植物的体细胞具有母体全部的遗传信息,并具有发育成为完整个体的潜能,因而每个植物细胞都可像胚胎细胞那样,经离体培养再生成为完整植株。这就是所谓的细胞全能性。许多科学家为证实植物细胞的全能性作出了不懈的努力。1958 年,Steward成功地将一个胡萝卜细胞试管培养,长成了一株具有根、茎、叶等器官的完整植株。1964年Guha 和 Maheshwari利用毛叶曼陀罗的花药培育出单倍体植株。这样,植物细胞全能性获得了充分的论证。建立在此基础上的组织培养技术也得到迅速发展。
与植物细胞不同,在动物发育过程中分化了的细胞不能再产生完整的充分分化的个体。然而,动物胚胎的生长、分化和发育是否造成体细胞基因组的不可逆性修饰,即在发育过程中分化了的细胞是否具有与受精卵相同的核等价性 (nuclear equivalency) 或基因组连续性,一直是发育生物学要解决的问题。早在30 年代,着名的胚胎学家 Spemann 就已经提出“分化了的细胞核移入卵子中能否指导胚胎发育”这样的设想。用两栖类动物进行的一些克隆实验表明,早期胚胎细胞核经移植可产生成熟的动物个体,而从蝌蚪及成体动物细胞中取出的细胞核经移植生成的克隆动物最晚只能发育至蝌蚪期。胚胎分割及胚胎细胞核移植克隆动物已在许多物种中获得了成功。体细胞克隆绵羊、小鼠、牛 及山羊的成功,证明高度分化的细胞核仍具有全能性。
3. 体细胞克隆羊及小鼠实验成功分析
克隆羊Dolly 是世界上第一只由成体细胞通过无性过程产生的哺乳动物。
1996年7月里的一天,对英国爱丁堡罗斯林(Roslin)研究所由伊恩·维尔穆特(I. Wilmut)领导的科学研究小组全体成员来讲,是一个令人激动的日子。对全世界来说,也是值得庆贺的一天。因为在这一天,一只妊娠了148天,体重为6.6千克, 编号为6LL3的小羊来到了这个世界。这只羊的身世与众不同,它既无父亲,又无母亲,它是科学家们用克隆技术复制出来的一只小绵羊。经过几个月的精心呵护,这只身世不凡的小绵羊茁壮成长,并获得了一个动听的名字——多莉(Dolly)。
1997年2月23日,伊恩. 维尔穆特科学研究小组向全世界宣布了他们的研究结果,英国的“自然”杂志(Nature)于1997年2月27日全文刊登了他们的实验结果。这一消息立刻轰动了全世界。各国的报刊,电台,电视台等媒体对此结果纷纷进行了报道和评述。科学家和大学教授也纷纷被邀请到各种媒体讲解,评论“多莉”的身世和它的出生对科学研究、经济发展和社会进步的影响。许多国家的政府官员也纷纷发表讲话,明令不准将“多莉”克隆技术用于人类。由于各种媒体的大量传播,一个新的名词已为广大民众所逐渐知晓的“克隆”。
早在20世纪50年代,美国的科学家以两栖动物和鱼类作研究对象,首创了细胞核移植技术。1986年,英国科学家魏拉德森用胚胎细胞克隆出一只羊,以后又有人相继克隆出牛、鼠、兔、猴等动物。这些克隆动物的诞生,均是利用胚胎细胞作为供体细胞进行细胞核移植而获得成功的。
而克隆绵羊“多利”是用乳腺上皮细胞(体细胞)作为供体细胞进行细胞核移植的,它翻开了生物克隆史上崭新的一页,突破了利用胚胎细胞进行核移植的传统方式,使克隆技术有了长足的进展。
克隆绵羊“多利”没有父亲,多莉”的产生与三只母羊有关;一只是怀孕三个月的芬兰多塞特母绵羊,两只是苏格兰黑面母绵羊。芬兰多塞特母绵羊提供了全套遗传信息,即提供了细胞核(称之为供体);一只苏格兰黑面母绵羊提供无细胞核的卵细胞;另一只苏格兰黑面母绵羊提供羊胚胎的发育环境—子宫,是“多莉”羊的“生”母。其整个克隆过程简述如下:
1、从芬兰多塞特母绵羊的乳腺中取出乳腺细胞,将其放入低浓度的营养培养液中,细胞逐渐停止了分裂,此细胞称之为供体细胞;
2、从一头苏格兰黑面母绵羊的卵巢中取出未受精的卵细胞,并立即将其细胞核除去,留下一个无核的卵细胞,此细胞称之为受体细胞;
3、利用电脉冲的方法,使供体细胞和受体细胞发生融合,最后形成了融合细胞,由于电脉冲还可以产生类似于自然受精过程中的一系列反应,使融合细胞也能象受精卵一样进行细胞分裂、分化,从而形成胚胎细胞;
4、将胚胎细胞转移到另一只苏格兰黑面母绵羊的子宫内,胚胎细胞进一步分化和发育,最后形成一只小绵羊。
出生的“多莉”小绵羊与多塞特母绵羊具有完全相同的外貌。“多莉”出生后生长正常,并于1997年底与一头威尔士高山羊自然交配怀孕。在1998年4月13日凌晨4时生下了一只雌性的体重为2.7千克的小羊羔,取名为“邦妮(Bonnie)”。这说明生世不凡的“多莉”具有正常的生育能力。随着“多莉”的诞生,不同的实验室也宣称成功地克隆出了猪、猴和牛等,他们所用的生物材料也都是体细胞。
无性繁殖现象在低等植物中是存在的,而按照哺乳动物界的规律,动物的繁衍要由两性生殖细胞来完成,由于父体和母体的遗传物质在后代体内各占一半,因此后代绝对不是父母的复制品。而克隆绵羊的诞生,意味着人类可以利用哺乳动物的一个细胞大量生产出完全相同的生命体,完全打破了亘古不变的自然规律。这是生物工程技术发展史中的一个里程碑,也是人类历史上的一项重大科学突破。
在Dolly 诞生后的一年多时间里,全世界掀起了一股克隆热,并引起了一些激烈的争论和对Dolly身份的质疑。1998 年7 月出版的《Nature》报道两个独立的研究小组分别对Dolly 的血样、供体母羊冷冻组织及其细胞培养物进行卫星DNA 分析和DNA指纹分析,确认三者的一致性,证明Dolly 确实是体细胞克隆动物。在同期《Nature》上,美国夏威夷大学Wakayama 等人报道,由小鼠卵丘细胞 (cumulus cells) 克隆了27 只存活小鼠,其中7只是由克隆小鼠再次克隆的后代。
两栖类和哺乳类核移植实验发现,经核移植的卵母细胞不能正常发育的一个关键问题是供体核和受体卵母细胞之间的细胞周期不相容性。Wilmut 等的成功之处就在于他们找到了一种使供体核和受体卵母细胞更相容的方法。他们通过血清饥饿法使供体核细胞处于二倍体的G0 期,这样处理的供体核在DNA复制的时间上就与处于中期II的受体卵母细胞同步。从建立正确的染色体倍性 (ploidy) 这个角度来看,供体核处于G1 期也可以获得克隆动物。稳定表达b -半乳糖苷酶-新霉素基因的胎儿成纤维细胞作核供体,获得克隆牛证明了这一点。
人们一般认为,供体核和卵母细胞组成的重组胚胎的发育过程与正常状况受精卵相仿。 羊胚胎基因组的转录一直到8~16个细胞才开始,这种转录时间的差异在理论上将允许胚胎有充裕的时间对植入的成体羊细胞核进行重新编程,使其进入胚胎发育期。由于不同的物种胚胎转录的起始时间各异,所以克隆的难易也不同。以往的研究发现,在小鼠的克隆过程中,基因组很早就被激活,移植的细胞核没有足够的时间进行重新编程。因此,许多研究者认为小鼠是最难克隆的动物之一。
Wakayama 等人的工作改变了这种观点。与Wilmut 等的方法相比,Wakayama 等采用了一种新的、相对简单的克隆技术。Dolly 是采用母羊的乳腺组织细胞经过“饥饿“ 培养,与去核的卵细胞进行电融合,促使融合细胞中遗传物质的重编程 (reprogramming), 然后逐步发育成胚胎。克隆小鼠采用核移植的方法,将自然状态下处于G0 期的卵丘细胞作核供体,直接注入去核的卵细胞。小鼠克隆过程中核移植后的重组胚胎放置0~6 小时后再激活,也有异于Wilmut 等用电刺激法同时融合重组胚胎和激活胚胎。Dolly 的产生过程中遗传物质的重编程和卵细胞的激活是电刺激法,而小鼠的克隆则采用在培养基中添加锶离子 (Sr2+) 和细胞松弛素B 的化学方法激活重组胚胎。
4. 动物克隆技术的应用
动物克隆近几年取得的一些突破性进展,为动物发育过程中基因表达的调控及发育生物学、遗传学等相关学科的发展必将产生深远的影响。虽然目前这种方法尚不成熟,但它已显示出诱人的应用前景。
动物克隆技术将首先应用于医药领域。利用体细胞供体经核移植生产转基因动物,可望降低生产成本。到目前为止,产生转基因动物的方法仍主要是1985 年Hammer 等建立的原核显微注射法。但是,这种方法只能使大约5%的动物携带外源基因。外源基因整合入动物基因组是个随机的过程,这导致外源基因在许多转基因动物系中的表达量不够高,而且因整合进生殖细胞的机率低而难以遗传给下一代。Schnieke 等发现,利用体细胞克隆技术生产含人凝血因子 IX 的转基因羊比原核显微注射法要有效得多[8]。其中,两者最显着的差异是体细胞克隆中的受体母羊全都携带外源基因,而原核显微注射法会产生许多不带外源基因的羊羔。这是由于,原核微注射法中所用胚胎在体外培养的时间较短,在此期间被检测为阳性的转基因可能会在以后的发育过程中丢失。用作核移植供体的细胞在体外培养的时间则较长,有较多的检测机会。另外,显微注射法制备的转基因动物的性别只有等到动物出生后才能得知, 而核移植可以通过鉴别核供体的核型而预先得知转基因动物的性别,可选择性地制备雌性的转基因动物, 有利于在母乳中表达外源基因。
克隆技术除了可以生产各种医用人体蛋白外,对人类的细胞和组织治疗也大有好处。利用克隆技术,可以用患者本人细胞培育出新组织,用来治疗糖尿病、帕金森氏症、神经损伤等多种疾病。用这种方法培育出的组织具有与患者正常组织完全相同的基因构成,因此不会产生免疫排斥反应。但是这些都涉及到克隆人这个敏感话题,目前克隆人在许多国家是法律禁止的。随着人类胚胎干细胞培养技术的完善,目前已有两家美国公司开始研究利用克隆技术培育人胚胎,希望大批量生产治疗疾病的干细胞。事实上,几年前人们就曾把人胎儿神经组织用来治疗帕金森氏症。考虑到伦理上的原因,人们也可以用克隆动物的胚胎干细胞作异源移植,以解决人类移植器官供求矛盾。
动物克隆技术还有助于加速动物育种的进程。利用优良动物品种的体细胞作核供体克隆动物,可以避免自然条件下选种所受到的动物生育周期和生育效率的限制,从而大大缩短育种年限,提高育种效率。动物克隆技术用于拯救濒危动物也受到广泛的关注。中国科学院动物研究所陈大元研究员提出用动物克隆技术拯救大熊猫的计划,在国内外均引起一定的反响。
5. 动物克隆技术的不足及未来发展方向
动物克隆技术虽然取得了一定的进展,在生物医药领域也得到了初步应用。但是,该技术目前还很不完善。存活率低是当今核移植技术的最大缺陷。它突出表现为:孕期流产率高,围产期死亡率高,新生儿体重较重及产生后对环境的适应性较差。以成体细胞核作核供体问题更为严重。最近,Shiels 等报道克隆羊的端粒较同年羊短。
Renard 等报道,体细胞核移植可能影响克隆动物免疫系统的正常发育。他们用胚胎细胞克隆牛的耳细胞通过核移植克隆出一头牛。牛犊看起来很健康,但出生一个半月后,它体内的淋巴细胞和红血球急剧减少,不久就死于贫血。尸体解剖发现,该牛犊脾脏、胸腺和淋巴结等淋巴组织都没有得到正常发育。
导致动物克隆存活率低和异常发育的原因很多,缺乏基础理论支撑是其中之一。动物克隆技术的不断完善,还需要分子遗传学、细胞学、发育生物学等相关基础学科的进一步研究和发展。迄今为止,人们虽然在动物克隆过程中已经积累了不少数据,但一些很基本的问题仍亟需解决。
基因组重新编程的机制尚不清楚。人们虽然观测到核移植后细胞核的激活与早期胚胎原核发育类似,但较详细的信息仍不甚明了。其中,成熟促进因子(maturation promoting factor,MPF)、核膜破裂(nuclear envelope breakdown,NEBD) 和早熟染色体凝集 (premature chromosome condensation, PCC) 在基因组重编过程中的作用还需明确。
基因印记 (imprinting) 对核移植后基因组重新编程的影响。基因印记现象在哺乳动物的发育过程中普遍存在,它是指基因的表达与否取决于它们是在父源染色体上还是母源染色体上。有些印记基因只从母源染色体上表达,而有些则只从父源染色体上表达。基因印记与动物克隆技术的成功及不足有何关系值得深入研究。
动物克隆种属及细胞差异的原因。克隆不同种属的动物难易有别,其中的原因目前人们还不清楚。目前可以用作体细胞核移植核供体的细胞类型还较少。Wakayama 等用处于 G0/G1期的卵丘细胞克隆得到小鼠,而他们采用处于G0 期的足细胞 、神经细胞作核供体进行的克隆实验均未获得成活个体,这显示供体核处于G0 期并非保证胚胎发育的充分条件。Dominko等发现去核的牛卵细胞能使来自羊、猴、鼠、猪等不同种属的细胞核激活,并在体外发育为相应的胚胎,但目前还没有一个可继续发育为完整的动物个体。如果这项工作能成功,将十分有利于濒危动物的保护。
动物克隆技术条件的优化还没有解决。如核供体和卵细胞的选材、核质比的选择、重组胚胎的激活方式、是否需要作连续核移植等。
克隆技术被誉为“一座挖掘不尽的金矿”,它在生产实践上具有重要的意义,潜在的经济价值十分巨大。首先,在动物杂种优势利用方面,较常规方法而言,哺乳动物克隆技术费时少、选育的种畜性状稳定;其次,克隆技术在抢救濒危珍稀物种、保护生物多样性方面可发挥重要作用,即使在自然交配成功率很低的情况下,科研人员也可以从濒危珍稀动物个体身上选择适当的体细胞进行无性繁殖,达到有效保护这些物种的目的。
动物克隆技术的重大突破,也带来了广泛的争议。克隆技术对人类来说,是一把“双刃剑”。一方面,它能给人类带来许多益处――诸如保持优良品种、挽救濒危动物、利用克隆动物相同的基因背景进行生物医学研究等;另一方面,它将对生物多样性提出挑战――生物多样性是自然进化的结果,也是进化的动力,有性繁殖是形成生物多样性的重要基础,而“克隆动物”则会导致生物品系减少,个体生存能力下降。
更让人不寒而栗的是,克隆技术一旦被滥用于克隆人类自身,将不可避免地失去控制,带来空前的生态混乱,并引发一系列严重的伦理道德冲突。世界各国政府和科学界已对此高度关注,采取立法等措施明令禁止用克隆技术制造“克隆人”,以保证克隆只用于造福人类,而绝非复制人类。
综上所述,动物克隆研究已在理论基础、技术优化及实际应用等方面取得很大的进展。但该技术目前还很不完善,相关理论研究还很薄弱,人们要提高动物克隆的成功率还需不懈的努力。另外,克隆动物与正常胚胎的发育有何异同,也值得深入研究。这些问题的解决,将有助于加深人们对动物胚胎发育过程中分子机制的认识。
Ⅸ 实现细胞重编程的方法有哪些
试题答案:BC 试题解析:分析:本题考查的是细胞核在生物遗传中的功能,首先明确细胞核是遗传的控制中心.解答:克隆技术属于现代生物技术.在克隆羊多莉的培育过程中,科学家先将甲羊卵细胞的细胞核抽出,再将乙羊乳腺细胞的细胞核取出,将该细胞核注入来自甲羊的无核卵细胞中.这个融合成的卵细胞经过分裂形成胚胎,将这个胚胎移入丙羊的子宫内继续发育.发育成熟后小羊多利出生.因为细胞核内含有遗传物质,能够传递遗传信息,所以,培育出的小羊多莉和提供细胞核的母羊乙一模一样.因此“多莉”与生出它的母羊一模一样的说法错误.①多莉的诞生证明高度分化成熟的哺乳动物乳腺细胞,仍具有全能性,还能像胚胎细胞一样完整地保存遗传信息,这些遗传信息在母体发育过程中并没有发生不可回复的改变,还能完全恢复到早期胚胎细胞状态.最终仍能发育成与核供体成体完全相同的个体.②成功地找到了供体核与受体卵细胞质更加相容的方法.克隆动物“多利”问世,证明动物成体细胞的细胞核能够去分化;证明了高度分化的动物体细胞的细胞核仍然保持有全能性.故选:B、C点评:关于细胞核与DNA的知识是考查的重点内容,可通过分析细胞核内的遗传物质来掌握,难度一般.